kicad/3d-viewer/vrml_v2_modelparser.cpp

895 lines
21 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Mario Luzeiro <mrluzeiro@gmail.com>
* Copyright (C) 2013 Tuomas Vaherkoski <tuomasvaherkoski@gmail.com>
* Copyright (C) 2012 Jean-Pierre Charras, jp.charras@wanadoo.fr
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
* Copyright (C) 1992-2015 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file vrml_v2_modelparser.cpp
*/
#include <fctsys.h>
#include <vector>
#include <macros.h>
#include <kicad_string.h>
#include <info3d_visu.h>
#include "3d_struct.h"
#include "modelparsers.h"
#include "vrml_aux.h"
/**
* Trace mask used to enable or disable the trace output of the VRML V2 parser code.
* The debug output can be turned on by setting the WXTRACE environment variable to
* "KI_TRACE_VRML_V2_PARSER". See the wxWidgets documentation on wxLogTrace for
* more information.
*/
static const wxChar* traceVrmlV2Parser = wxT( "KI_TRACE_VRML_V2_PARSER" );
VRML2_MODEL_PARSER::VRML2_MODEL_PARSER( S3D_MASTER* aMaster ) :
S3D_MODEL_PARSER( aMaster )
{
m_model = NULL;
m_file = NULL;
m_Materials = NULL;
m_normalPerVertex = true;
colorPerVertex = true;
}
VRML2_MODEL_PARSER::~VRML2_MODEL_PARSER()
{
for( unsigned int idx = 0; idx < childs.size(); idx++ )
{
delete childs[idx];
}
}
void VRML2_MODEL_PARSER::Load( const wxString& aFilename, double aVrmlunits_to_3Dunits )
{
char text[128];
wxLogTrace( traceVrmlV2Parser, wxT( "Load %s" ), GetChars( aFilename ) );
m_file = wxFopen( aFilename, wxT( "rt" ) );
if( m_file == NULL )
{
return;
}
float vrmlunits_to_3Dunits = aVrmlunits_to_3Dunits;
glScalef( vrmlunits_to_3Dunits, vrmlunits_to_3Dunits, vrmlunits_to_3Dunits );
glm::vec3 matScale( GetMaster()->m_MatScale.x, GetMaster()->m_MatScale.y,
GetMaster()->m_MatScale.z );
glm::vec3 matRot( GetMaster()->m_MatRotation.x, GetMaster()->m_MatRotation.y,
GetMaster()->m_MatRotation.z );
glm::vec3 matPos( GetMaster()->m_MatPosition.x, GetMaster()->m_MatPosition.y,
GetMaster()->m_MatPosition.z );
glTranslatef( matPos.x * SCALE_3D_CONV, matPos.y * SCALE_3D_CONV, matPos.z * SCALE_3D_CONV );
glRotatef( -matRot.z, 0.0f, 0.0f, 1.0f );
glRotatef( -matRot.y, 0.0f, 1.0f, 0.0f );
glRotatef( -matRot.x, 1.0f, 0.0f, 0.0f );
glScalef( matScale.x, matScale.y, matScale.z );
LOCALE_IO toggle; // Temporary switch the locale to standard C to r/w floats
childs.clear();
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( ( *text == '}' ) || ( *text == ']' ) )
{
continue;
}
if( strcmp( text, "Transform" ) == 0 )
{
m_model = new S3D_MESH();
childs.push_back( m_model );
read_Transform();
}
else if( strcmp( text, "DEF" ) == 0 )
{
m_model = new S3D_MESH();
childs.push_back( m_model );
read_DEF();
}
}
fclose( m_file );
if( GetMaster()->IsOpenGlAllowed() )
{
for( unsigned int idx = 0; idx < childs.size(); idx++ )
{
childs[idx]->openGL_RenderAllChilds();
}
}
}
int VRML2_MODEL_PARSER::read_Transform()
{
char text[128];
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
{
continue;
}
if( *text == '}' )
{
break;
}
if( strcmp( text, "translation" ) == 0 )
{
parseVertex( m_file, m_model->m_translation );
}
else if( strcmp( text, "rotation" ) == 0 )
{
if( fscanf( m_file, "%f %f %f %f", &m_model->m_rotation[0],
&m_model->m_rotation[1],
&m_model->m_rotation[2],
&m_model->m_rotation[3] ) != 4 )
{
// !TODO: log errors
m_model->m_rotation[0] = 0.0f;
m_model->m_rotation[1] = 0.0f;
m_model->m_rotation[2] = 0.0f;
m_model->m_rotation[3] = 0.0f;
}
else
{
m_model->m_rotation[3] = m_model->m_rotation[3] * 180.0f / 3.14f; // !TODO: use constants or functions
}
}
else if( strcmp( text, "scale" ) == 0 )
{
parseVertex( m_file, m_model->m_scale );
}
else if( strcmp( text, "scaleOrientation" ) == 0 )
{
// this m_scaleOrientation is not implemented, but it will be parsed
if( fscanf( m_file, "%f %f %f %f", &m_model->m_scaleOrientation[0],
&m_model->m_scaleOrientation[1],
&m_model->m_scaleOrientation[2],
&m_model->m_scaleOrientation[3] ) != 4 )
{
// !TODO: log errors
m_model->m_scaleOrientation[0] = 0.0f;
m_model->m_scaleOrientation[1] = 0.0f;
m_model->m_scaleOrientation[2] = 0.0f;
m_model->m_scaleOrientation[3] = 0.0f;
}
}
else if( strcmp( text, "center" ) == 0 )
{
parseVertex( m_file, m_model->m_center );
}
else if( strcmp( text, "children" ) == 0 )
{
// skip
}
else if( strcmp( text, "Switch" ) == 0 )
{
// skip
}
else if( strcmp( text, "whichChoice" ) == 0 )
{
int dummy;
if( fscanf( m_file, "%d", &dummy ) != 1 )
{
// !TODO: log errors
}
}
else if( strcmp( text, "choice" ) == 0 )
{
// skip
}
else if( strcmp( text, "Group" ) == 0 )
{
// skip
}
else if( strcmp( text, "Shape" ) == 0 )
{
S3D_MESH* parent = m_model;
S3D_MESH* new_mesh_model = new S3D_MESH();
m_model->childs.push_back( new_mesh_model );
m_model = new_mesh_model;
read_Shape();
m_model = parent;
}
else if( strcmp( text, "DEF" ) == 0 )
{
read_DEF();
}
else
{
wxLogTrace( traceVrmlV2Parser, wxT( " %s NotImplemented" ), text );
read_NotImplemented( m_file, '}' );
}
}
return 0;
}
int VRML2_MODEL_PARSER::read_DEF_Coordinate()
{
char text[128];
// Get the name of the definition.
if( !GetNextTag( m_file, text, sizeof(text) ) )
return -1;
std::string coordinateName = text;
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
continue;
if( *text == '}' )
return 0;
if( strcmp( text, "Coordinate" ) == 0 )
{
int retVal = read_CoordinateDef();
if( retVal == 0 )
m_defCoordinateMap.insert( std::make_pair( coordinateName, m_model->m_Point ) );
return retVal;
}
}
return -1;
}
int VRML2_MODEL_PARSER::read_DEF()
{
char text[128];
if( !GetNextTag( m_file, text, sizeof(text) ) )
return -1;
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
{
wxLogTrace( traceVrmlV2Parser, wxT( " skipping %c" ), *text );
continue;
}
if( *text == '}' )
{
return 0;
}
if( strcmp( text, "Transform" ) == 0 )
{
return read_Transform();
}
else if( strcmp( text, "children" ) == 0 )
{
// skip
}
else if( strcmp( text, "Switch" ) == 0 )
{
// skip
}
else if( strcmp( text, "whichChoice" ) == 0 )
{
// skip
}
else if( strcmp( text, "choice" ) == 0 )
{
// skip
}
else if( strcmp( text, "Shape" ) == 0 )
{
S3D_MESH* parent = m_model;
S3D_MESH* new_mesh_model = new S3D_MESH();
m_model->childs.push_back( new_mesh_model );
m_model = new_mesh_model;
read_Shape();
m_model = parent;
}
}
wxLogTrace( traceVrmlV2Parser, wxT( " DEF failed" ) );
return -1;
}
int VRML2_MODEL_PARSER::read_USE()
{
char text[128];
// Get the name of the definition.
if( !GetNextTag( m_file, text, sizeof(text) ) )
return -1;
std::string coordinateName = text;
// Look for it in our coordinate map.
VRML2_COORDINATE_MAP::iterator coordinate;
coordinate = m_defCoordinateMap.find( coordinateName );
// Not previously defined.
if( coordinate == m_defCoordinateMap.end() )
{
wxLogTrace( traceVrmlV2Parser, wxT( "USE: coordinate %s not previously defined "
"in a DEF section." ), text );
return -1;
}
m_model->m_Point = coordinate->second;
return 0;
}
int VRML2_MODEL_PARSER::read_Shape()
{
char text[128];
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
{
continue;
}
if( *text == '}' )
{
return 0;
}
if( strcmp( text, "appearance" ) == 0 )
{
wxLogTrace( traceVrmlV2Parser, wxT( "\"appearance\" key word not supported." ) );
// skip
}
else if( strcmp( text, "Appearance" ) == 0 )
{
read_Appearance();
}
else if( strcmp( text, "geometry" ) == 0 )
{
wxLogTrace( traceVrmlV2Parser, wxT( "\"geometry\" key word not supported." ) );
// skip
}
else if( strcmp( text, "IndexedFaceSet" ) == 0 )
{
read_IndexedFaceSet();
}
else if( strcmp( text, "IndexedLineSet" ) == 0 )
{
read_IndexedLineSet();
}
else
{
wxLogTrace( traceVrmlV2Parser, wxT( " %s NotImplemented" ), text );
read_NotImplemented( m_file, '}' );
}
}
wxLogTrace( traceVrmlV2Parser, wxT( " Shape failed" ) );
return -1;
}
int VRML2_MODEL_PARSER::read_Appearance()
{
char text[128];
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
{
continue;
}
if( *text == '}' )
{
return 0;
}
if( strcmp( text, "material" ) == 0 )
{
read_material();
}
}
wxLogTrace( traceVrmlV2Parser, wxT( " Appearance failed" ) );
return -1;
}
int VRML2_MODEL_PARSER::read_material()
{
S3D_MATERIAL* material = NULL;
char text[128];
if( GetNextTag( m_file, text, sizeof(text) ) )
{
if( strcmp( text, "Material" ) == 0 )
{
wxString mat_name;
material = new S3D_MATERIAL( GetMaster(), mat_name );
GetMaster()->Insert( material );
m_model->m_Materials = material;
if( strcmp( text, "Material" ) == 0 )
{
return read_Material();
}
}
else if( strcmp( text, "DEF" ) == 0 )
{
if( GetNextTag( m_file, text, sizeof(text) ) )
{
wxString mat_name;
mat_name = FROM_UTF8( text );
material = new S3D_MATERIAL( GetMaster(), mat_name );
GetMaster()->Insert( material );
m_model->m_Materials = material;
if( GetNextTag( m_file, text, sizeof(text) ) )
{
if( strcmp( text, "Material" ) == 0 )
{
return read_Material();
}
}
}
}
else if( strcmp( text, "USE" ) == 0 )
{
if( GetNextTag( m_file, text, sizeof(text) ) )
{
wxString mat_name;
mat_name = FROM_UTF8( text );
for( material = GetMaster()->m_Materials; material; material = material->Next() )
{
if( material->m_Name == mat_name )
{
m_model->m_Materials = material;
return 0;
}
}
wxLogTrace( traceVrmlV2Parser, wxT( " read_material error: material not found" ) );
}
}
}
wxLogTrace( traceVrmlV2Parser, wxT( " failed material" ) );
return -1;
}
int VRML2_MODEL_PARSER::read_Material()
{
char text[128];
glm::vec3 vertex;
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
{
continue;
}
if( *text == '}' )
{
return 0;
}
if( strcmp( text, "diffuseColor" ) == 0 )
{
parseVertex( m_file, vertex );
m_model->m_Materials->m_DiffuseColor.push_back( vertex );
}
else if( strcmp( text, "emissiveColor" ) == 0 )
{
parseVertex( m_file, vertex );
if( GetMaster()->m_use_modelfile_emissiveColor == true )
{
m_model->m_Materials->m_EmissiveColor.push_back( vertex );
}
}
else if( strcmp( text, "specularColor" ) == 0 )
{
parseVertex( m_file, vertex );
if( GetMaster()->m_use_modelfile_specularColor == true )
{
m_model->m_Materials->m_SpecularColor.push_back( vertex );
}
}
else if( strcmp( text, "ambientIntensity" ) == 0 )
{
float ambientIntensity;
parseFloat( m_file, &ambientIntensity );
if( GetMaster()->m_use_modelfile_ambientIntensity == true )
{
m_model->m_Materials->m_AmbientColor.push_back( glm::vec3( ambientIntensity,
ambientIntensity, ambientIntensity ) );
}
}
else if( strcmp( text, "transparency" ) == 0 )
{
float transparency;
parseFloat( m_file, &transparency );
if( GetMaster()->m_use_modelfile_transparency == true )
{
m_model->m_Materials->m_Transparency.push_back( transparency );
}
}
else if( strcmp( text, "shininess" ) == 0 )
{
float shininess;
parseFloat( m_file, &shininess );
// VRML value is normalized and openGL expects a value 0 - 128
if( GetMaster()->m_use_modelfile_shininess == true )
{
shininess = shininess * 128.0f;
m_model->m_Materials->m_Shininess.push_back( shininess );
}
}
}
wxLogTrace( traceVrmlV2Parser, wxT( " Material failed\n" ) );
return -1;
}
int VRML2_MODEL_PARSER::read_IndexedFaceSet()
{
char text[128];
m_normalPerVertex = false;
colorPerVertex = false;
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
{
continue;
}
if( *text == '}' )
{
return 0;
}
if( strcmp( text, "normalPerVertex" ) == 0 )
{
if( GetNextTag( m_file, text, sizeof(text) ) )
{
if( strcmp( text, "TRUE" ) == 0 )
{
m_normalPerVertex = true;
}
}
}
else if( strcmp( text, "colorPerVertex" ) == 0 )
{
GetNextTag( m_file, text, sizeof(text) );
if( strcmp( text, "TRUE" ) )
{
colorPerVertex = true;
}
else
{
colorPerVertex = false;
}
}
else if( strcmp( text, "Coordinate" ) == 0 )
{
read_Coordinate();
}
else if( strcmp( text, "Normal" ) == 0 )
{
read_Normal();
}
else if( strcmp( text, "normalIndex" ) == 0 )
{
read_NormalIndex();
}
else if( strcmp( text, "Color" ) == 0 )
{
read_Color();
}
else if( strcmp( text, "coordIndex" ) == 0 )
{
read_coordIndex();
}
else if( strcmp( text, "colorIndex" ) == 0 )
{
read_colorIndex();
}
else if( strcmp( text, "USE" ) == 0 )
{
read_USE();
}
}
wxLogTrace( traceVrmlV2Parser, wxT( " IndexedFaceSet failed %s" ), text );
return -1;
}
int VRML2_MODEL_PARSER::read_IndexedLineSet()
{
char text[128];
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
continue;
if( *text == '}' )
return 0;
if( strcmp( text, "Coordinate" ) == 0 )
read_Coordinate();
else if( strcmp( text, "coordIndex" ) == 0 )
read_coordIndex();
else if( strcmp( text, "DEF" ) == 0 )
read_DEF_Coordinate();
}
return -1;
}
int VRML2_MODEL_PARSER::read_colorIndex()
{
m_model->m_MaterialIndex.clear();
if( colorPerVertex == true )
{
int index;
int first_index;
while( fscanf( m_file, "%d, ", &index ) )
{
if( index == -1 )
{
// it only implemented color per face, so it will store as the first in the list
m_model->m_MaterialIndex.push_back( first_index );
}
else
{
first_index = index;
}
}
}
else
{
int index;
while( fscanf( m_file, "%d,", &index ) )
{
m_model->m_MaterialIndex.push_back( index );
}
}
return 0;
}
int VRML2_MODEL_PARSER::read_NormalIndex()
{
m_model->m_NormalIndex.clear();
glm::ivec3 coord;
int dummy; // should be -1
std::vector<int> coord_list;
coord_list.clear();
while( fscanf( m_file, "%d, ", &dummy ) == 1 )
{
if( dummy == -1 )
{
m_model->m_NormalIndex.push_back( coord_list );
coord_list.clear();
}
else
{
coord_list.push_back( dummy );
}
}
return 0;
}
int VRML2_MODEL_PARSER::read_coordIndex()
{
m_model->m_CoordIndex.clear();
glm::ivec3 coord;
int dummy; // should be -1
std::vector<int> coord_list;
coord_list.clear();
while( fscanf( m_file, "%d, ", &dummy ) == 1 )
{
if( dummy == -1 )
{
m_model->m_CoordIndex.push_back( coord_list );
coord_list.clear();
}
else
{
coord_list.push_back( dummy );
}
}
return 0;
}
int VRML2_MODEL_PARSER::read_Color()
{
char text[128];
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
{
continue;
}
if( *text == '}' )
{
return 0;
}
if( strcmp( text, "color" ) == 0 )
{
parseVertexList( m_file, m_model->m_Materials->m_DiffuseColor );
}
}
wxLogTrace( traceVrmlV2Parser, wxT( " read_Color failed" ) );
return -1;
}
int VRML2_MODEL_PARSER::read_Normal()
{
char text[128];
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
{
continue;
}
if( *text == '}' )
{
return 0;
}
if( strcmp( text, "vector" ) == 0 )
{
if( m_normalPerVertex == false )
{
parseVertexList( m_file, m_model->m_PerFaceNormalsNormalized );
}
else
{
parseVertexList( m_file, m_model->m_PerVertexNormalsNormalized );
}
}
}
return -1;
}
int VRML2_MODEL_PARSER::read_Coordinate()
{
char text[128];
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
{
continue;
}
if( *text == '}' )
{
return 0;
}
if( strcmp( text, "point" ) == 0 )
{
parseVertexList( m_file, m_model->m_Point );
}
}
return -1;
}
/**
* Read the point of the Coordinate for a DEF
*/
int VRML2_MODEL_PARSER::read_CoordinateDef()
{
char text[128];
while( GetNextTag( m_file, text, sizeof(text) ) )
{
if( *text == ']' )
continue;
if( *text == '}' )
return 0;
if( strcmp( text, "point" ) == 0 )
parseVertexList( m_file, m_model->m_Point );
}
return -1;
}