kicad/gerbview/export_to_pcbnew.cpp

564 lines
18 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2007-2014 Jean-Pierre Charras jp.charras at wanadoo.fr
* Copyright (C) 1992-2020 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <vector>
#include <export_to_pcbnew.h>
#include <confirm.h>
#include <macros.h>
#include <trigo.h>
#include <gerbview_frame.h>
#include <gerber_file_image.h>
#include <gerber_file_image_list.h>
#include <build_version.h>
#include <wildcards_and_files_ext.h>
#include "excellon_image.h"
// Imported function
extern const wxString GetPCBDefaultLayerName( LAYER_NUM aLayerNumber );
GBR_TO_PCB_EXPORTER::GBR_TO_PCB_EXPORTER( GERBVIEW_FRAME* aFrame, const wxString& aFileName )
{
m_gerbview_frame = aFrame;
m_pcb_file_name = aFileName;
m_fp = NULL;
m_pcbCopperLayersCount = 2;
}
GBR_TO_PCB_EXPORTER::~GBR_TO_PCB_EXPORTER()
{
}
bool GBR_TO_PCB_EXPORTER::ExportPcb( LAYER_NUM* aLayerLookUpTable, int aCopperLayers )
{
LOCALE_IO toggle; // toggles on, then off, the C locale.
m_fp = wxFopen( m_pcb_file_name, wxT( "wt" ) );
if( m_fp == NULL )
{
wxString msg;
msg.Printf( _( "Cannot create file \"%s\"" ), m_pcb_file_name );
DisplayError( m_gerbview_frame, msg );
return false;
}
m_pcbCopperLayersCount = aCopperLayers;
writePcbHeader( aLayerLookUpTable );
// create an image of gerber data
const int pcbCopperLayerMax = 31;
GERBER_FILE_IMAGE_LIST* images = m_gerbview_frame->GetGerberLayout()->GetImagesList();
// First collect all the holes. We'll use these to generate pads, vias, etc.
for( unsigned layer = 0; layer < images->ImagesMaxCount(); ++layer )
{
EXCELLON_IMAGE* excellon = dynamic_cast<EXCELLON_IMAGE*>( images->GetGbrImage( layer ) );
if( excellon == NULL ) // Layer not yet used or not a drill image
continue;
for( GERBER_DRAW_ITEM* gerb_item : excellon->GetItems() )
collect_hole( gerb_item );
}
// Next: non copper layers:
for( unsigned layer = 0; layer < images->ImagesMaxCount(); ++layer )
{
GERBER_FILE_IMAGE* gerber = images->GetGbrImage( layer );
if( gerber == NULL ) // Graphic layer not yet used
continue;
LAYER_NUM pcb_layer_number = aLayerLookUpTable[layer];
if( !IsPcbLayer( pcb_layer_number ) )
continue;
if( pcb_layer_number <= pcbCopperLayerMax ) // copper layer
continue;
for( GERBER_DRAW_ITEM* gerb_item : gerber->GetItems() )
export_non_copper_item( gerb_item, pcb_layer_number );
}
// Copper layers
for( unsigned layer = 0; layer < images->ImagesMaxCount(); ++layer )
{
GERBER_FILE_IMAGE* gerber = images->GetGbrImage( layer );
if( gerber == NULL ) // Graphic layer not yet used
continue;
LAYER_NUM pcb_layer_number = aLayerLookUpTable[layer];
if( pcb_layer_number < 0 || pcb_layer_number > pcbCopperLayerMax )
continue;
for( GERBER_DRAW_ITEM* gerb_item : gerber->GetItems() )
export_copper_item( gerb_item, pcb_layer_number );
}
// Now write out the holes we collected earlier as vias
for( const EXPORT_VIA& via : m_vias )
export_via( via );
fprintf( m_fp, ")\n" );
fclose( m_fp );
m_fp = NULL;
return true;
}
void GBR_TO_PCB_EXPORTER::export_non_copper_item( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer )
{
// used when a D_CODE is not found. default D_CODE to draw a flashed item
static D_CODE dummyD_CODE( 0 );
wxPoint seg_start = aGbrItem->m_Start;
wxPoint seg_end = aGbrItem->m_End;
D_CODE* d_codeDescr = aGbrItem->GetDcodeDescr();
SHAPE_POLY_SET polygon;
if( d_codeDescr == NULL )
d_codeDescr = &dummyD_CODE;
switch( aGbrItem->m_Shape )
{
case GBR_POLYGON:
writePcbPolygon( aGbrItem->m_Polygon, aLayer );
break;
case GBR_SPOT_CIRCLE:
case GBR_SPOT_RECT:
case GBR_SPOT_OVAL:
case GBR_SPOT_POLY:
case GBR_SPOT_MACRO:
d_codeDescr->ConvertShapeToPolygon();
writePcbPolygon( d_codeDescr->m_Polygon, aLayer, aGbrItem->GetABPosition( seg_start ) );
break;
case GBR_ARC:
{
double a = atan2( (double) ( aGbrItem->m_Start.y - aGbrItem->m_ArcCentre.y ),
(double) ( aGbrItem->m_Start.x - aGbrItem->m_ArcCentre.x ) );
double b = atan2( (double) ( aGbrItem->m_End.y - aGbrItem->m_ArcCentre.y ),
(double) ( aGbrItem->m_End.x - aGbrItem->m_ArcCentre.x ) );
double angle = RAD2DEG(b - a);
seg_start = aGbrItem->m_ArcCentre;
// Ensure arc orientation is CCW
if( angle < 0 )
angle += 360.0;
// Reverse Y axis:
seg_start.y = -seg_start.y;
seg_end.y = -seg_end.y;
if( angle == 360.0 || angle == 0 )
{
fprintf( m_fp, "(gr_circle (center %s %s) (end %s %s) (layer %s) (width %s))\n",
Double2Str( MapToPcbUnits(seg_start.x) ).c_str(),
Double2Str( MapToPcbUnits(seg_start.y) ).c_str(),
Double2Str( MapToPcbUnits(seg_end.x) ).c_str(),
Double2Str( MapToPcbUnits(seg_end.y) ).c_str(),
TO_UTF8( GetPCBDefaultLayerName( aLayer ) ),
Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str()
);
}
else
{
fprintf( m_fp, "(gr_arc (start %s %s) (end %s %s) (angle %s) (layer %s) (width %s))\n",
Double2Str( MapToPcbUnits(seg_start.x) ).c_str(),
Double2Str( MapToPcbUnits(seg_start.y) ).c_str(),
Double2Str( MapToPcbUnits(seg_end.x) ).c_str(),
Double2Str( MapToPcbUnits(seg_end.y) ).c_str(),
Double2Str( angle ).c_str(),
TO_UTF8( GetPCBDefaultLayerName( aLayer ) ),
Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str()
);
}
}
break;
case GBR_CIRCLE:
// Reverse Y axis:
seg_start.y = -seg_start.y;
seg_end.y = -seg_end.y;
fprintf( m_fp, "(gr_circle (start %s %s) (end %s %s) (layer %s) (width %s))\n",
Double2Str( MapToPcbUnits( seg_start.x ) ).c_str(),
Double2Str( MapToPcbUnits( seg_start.y ) ).c_str(),
Double2Str( MapToPcbUnits( seg_end.x ) ).c_str(),
Double2Str( MapToPcbUnits( seg_end.y ) ).c_str(),
TO_UTF8( GetPCBDefaultLayerName( aLayer ) ),
Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() );
break;
case GBR_SEGMENT:
// Reverse Y axis:
seg_start.y = -seg_start.y;
seg_end.y = -seg_end.y;
fprintf( m_fp, "(gr_line (start %s %s) (end %s %s) (layer %s) (width %s))\n",
Double2Str( MapToPcbUnits( seg_start.x ) ).c_str(),
Double2Str( MapToPcbUnits( seg_start.y ) ).c_str(),
Double2Str( MapToPcbUnits( seg_end.x ) ).c_str(),
Double2Str( MapToPcbUnits( seg_end.y ) ).c_str(),
TO_UTF8( GetPCBDefaultLayerName( aLayer ) ),
Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() );
break;
}
}
/*
* Many holes will be pads, but we have no way to create those without footprints, and creating
* a module per pad is not really viable.
*
* So we use vias to mimic holes, with the loss of any hole shape (as we only have round holes
* in vias at present).
*
* We start out with a via size minimally larger than the hole. We'll leave it this way if
* the pad gets drawn as a copper polygon, or increase it to the proper size if it has a
* circular, concentric copper flashing.
*/
void GBR_TO_PCB_EXPORTER::collect_hole( GERBER_DRAW_ITEM* aGbrItem )
{
int size = std::min( aGbrItem->m_Size.x, aGbrItem->m_Size.y );
m_vias.emplace_back( aGbrItem->m_Start, size + 1, size );
}
void GBR_TO_PCB_EXPORTER::export_via( const EXPORT_VIA& aVia )
{
wxPoint via_pos = aVia.m_Pos;
// Reverse Y axis:
via_pos.y = -via_pos.y;
// Layers are Front to Back
fprintf( m_fp, " (via (at %s %s) (size %s) (drill %s)",
Double2Str( MapToPcbUnits( via_pos.x ) ).c_str(),
Double2Str( MapToPcbUnits( via_pos.y ) ).c_str(),
Double2Str( MapToPcbUnits( aVia.m_Size ) ).c_str(),
Double2Str( MapToPcbUnits( aVia.m_Drill ) ).c_str() );
fprintf( m_fp, " (layers %s %s))\n",
TO_UTF8( GetPCBDefaultLayerName( F_Cu ) ),
TO_UTF8( GetPCBDefaultLayerName( B_Cu ) ) );
}
void GBR_TO_PCB_EXPORTER::export_copper_item( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer )
{
switch( aGbrItem->m_Shape )
{
case GBR_SPOT_CIRCLE:
case GBR_SPOT_RECT:
case GBR_SPOT_OVAL:
export_flashed_copper_item( aGbrItem, aLayer );
break;
case GBR_ARC:
export_segarc_copper_item( aGbrItem, aLayer );
break;
case GBR_POLYGON:
// One can use a polygon or a zone to output a Gerber region.
// none are perfect.
// The current way is use a polygon, as the zone export
// is exprimental and only for tests.
#if 1
writePcbPolygon( aGbrItem->m_Polygon, aLayer );
#else
// Only for tests:
writePcbZoneItem( aGbrItem, aLayer );
#endif
break;
default:
export_segline_copper_item( aGbrItem, aLayer );
break;
}
}
void GBR_TO_PCB_EXPORTER::export_segline_copper_item( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer )
{
wxPoint seg_start, seg_end;
seg_start = aGbrItem->m_Start;
seg_end = aGbrItem->m_End;
// Reverse Y axis:
seg_start.y = -seg_start.y;
seg_end.y = -seg_end.y;
writeCopperLineItem( seg_start, seg_end, aGbrItem->m_Size.x, aLayer );
}
void GBR_TO_PCB_EXPORTER::writeCopperLineItem( wxPoint& aStart, wxPoint& aEnd,
int aWidth, LAYER_NUM aLayer )
{
fprintf( m_fp, "(segment (start %s %s) (end %s %s) (width %s) (layer %s) (net 0))\n",
Double2Str( MapToPcbUnits(aStart.x) ).c_str(),
Double2Str( MapToPcbUnits(aStart.y) ).c_str(),
Double2Str( MapToPcbUnits(aEnd.x) ).c_str(),
Double2Str( MapToPcbUnits(aEnd.y) ).c_str(),
Double2Str( MapToPcbUnits( aWidth ) ).c_str(),
TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) );
}
void GBR_TO_PCB_EXPORTER::export_segarc_copper_item( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer )
{
double a = atan2( (double) ( aGbrItem->m_Start.y - aGbrItem->m_ArcCentre.y ),
(double) ( aGbrItem->m_Start.x - aGbrItem->m_ArcCentre.x ) );
double b = atan2( (double) ( aGbrItem->m_End.y - aGbrItem->m_ArcCentre.y ),
(double) ( aGbrItem->m_End.x - aGbrItem->m_ArcCentre.x ) );
wxPoint start = aGbrItem->m_Start;
wxPoint end = aGbrItem->m_End;
/* Because Pcbnew does not know arcs in tracks,
* approximate arc by segments (SEG_COUNT__CIRCLE segment per 360 deg)
* The arc is drawn anticlockwise from the start point to the end point.
*/
#define SEG_COUNT_CIRCLE 16
#define DELTA_ANGLE 2 * M_PI / SEG_COUNT_CIRCLE
// calculate the number of segments from a to b.
// we want CNT_PER_360 segments fo a circle
if( a > b )
b += 2 * M_PI;
wxPoint curr_start = start;
wxPoint seg_start, seg_end;
int ii = 1;
for( double rot = a; rot < (b - DELTA_ANGLE); rot += DELTA_ANGLE, ii++ )
{
seg_start = curr_start;
wxPoint curr_end = start;
RotatePoint( &curr_end, aGbrItem->m_ArcCentre,
-RAD2DECIDEG( DELTA_ANGLE * ii ) );
seg_end = curr_end;
// Reverse Y axis:
seg_start.y = -seg_start.y;
seg_end.y = -seg_end.y;
writeCopperLineItem( seg_start, seg_end, aGbrItem->m_Size.x, aLayer );
curr_start = curr_end;
}
if( end != curr_start )
{
seg_start = curr_start;
seg_end = end;
// Reverse Y axis:
seg_start.y = -seg_start.y;
seg_end.y = -seg_end.y;
writeCopperLineItem( seg_start, seg_end, aGbrItem->m_Size.x, aLayer );
}
}
/*
* Flashed items are usually pads or vias. Pads are problematic because we have no way to
* represent one in Pcbnew outside of a module (and creating a module per pad isn't really
* viable).
* If we've already created a via from a hole, and the flashed copper item is a simple circle
* then we'll enlarge the via to the proper size. Otherwise we create a copper polygon to
* represent the flashed item (which is presumably a pad).
*/
void GBR_TO_PCB_EXPORTER::export_flashed_copper_item( GERBER_DRAW_ITEM* aGbrItem,
LAYER_NUM aLayer )
{
static D_CODE flashed_item_D_CODE( 0 );
D_CODE* d_codeDescr = aGbrItem->GetDcodeDescr();
SHAPE_POLY_SET polygon;
if( d_codeDescr == NULL )
d_codeDescr = &flashed_item_D_CODE;
if( aGbrItem->m_Shape == GBR_SPOT_CIRCLE )
{
// See if there's a via that we can enlarge to fit this flashed item
for( EXPORT_VIA& via : m_vias )
{
if( via.m_Pos == aGbrItem->m_Start )
{
via.m_Size = std::max( via.m_Size, aGbrItem->m_Size.x );
return;
}
}
}
d_codeDescr->ConvertShapeToPolygon();
wxPoint offset = aGbrItem->GetABPosition( aGbrItem->m_Start );
writePcbPolygon( d_codeDescr->m_Polygon, aLayer, offset );
}
void GBR_TO_PCB_EXPORTER::writePcbHeader( LAYER_NUM* aLayerLookUpTable )
{
fprintf( m_fp, "(kicad_pcb (version 4) (host Gerbview \"%s\")\n\n",
TO_UTF8( GetBuildVersion() ) );
// Write layers section
fprintf( m_fp, " (layers \n" );
for( int ii = 0; ii < m_pcbCopperLayersCount; ii++ )
{
int id = ii;
if( ii == m_pcbCopperLayersCount-1)
id = B_Cu;
fprintf( m_fp, " (%d %s signal)\n", id, TO_UTF8( GetPCBDefaultLayerName( id ) ) );
}
for( int ii = B_Adhes; ii < PCB_LAYER_ID_COUNT; ii++ )
{
if( GetPCBDefaultLayerName( ii ).IsEmpty() ) // Layer not available for export
continue;
fprintf( m_fp, " (%d %s user)\n", ii, TO_UTF8( GetPCBDefaultLayerName( ii ) ) );
}
fprintf( m_fp, " )\n\n" );
}
void GBR_TO_PCB_EXPORTER::writePcbPolygon( const SHAPE_POLY_SET& aPolys, LAYER_NUM aLayer,
const wxPoint& aOffset )
{
SHAPE_POLY_SET polys = aPolys;
// Cleanup the polygon
polys.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
// Ensure the polygon is valid:
if( polys.OutlineCount() == 0 )
return;
polys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
SHAPE_LINE_CHAIN& poly = polys.Outline( 0 );
fprintf( m_fp, "(gr_poly (pts " );
#define MAX_COORD_CNT 4
int jj = MAX_COORD_CNT;
int cnt_max = poly.PointCount() -1;
// Do not generate last corner, if it is the same point as the first point:
if( poly.CPoint( 0 ) == poly.CPoint( cnt_max ) )
cnt_max--;
for( int ii = 0; ii <= cnt_max; ii++ )
{
if( --jj == 0 )
{
jj = MAX_COORD_CNT;
fprintf( m_fp, "\n" );
}
fprintf( m_fp, " (xy %s %s)",
Double2Str( MapToPcbUnits( poly.CPoint( ii ).x + aOffset.x ) ).c_str(),
Double2Str( MapToPcbUnits( -poly.CPoint( ii ).y + aOffset.y ) ).c_str() );
}
fprintf( m_fp, ")" );
if( jj != MAX_COORD_CNT )
fprintf( m_fp, "\n" );
fprintf( m_fp, "(layer %s) (width 0) )\n",
TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) );
}
void GBR_TO_PCB_EXPORTER::writePcbZoneItem( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer )
{
SHAPE_POLY_SET polys = aGbrItem->m_Polygon;
polys.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( polys.OutlineCount() == 0 )
return;
fprintf( m_fp, "(zone (net 0) (net_name \"\") (layer %s) (tstamp 0000000) (hatch edge 0.508)\n",
TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) );
fprintf( m_fp, " (connect_pads (clearance 0.0))\n" );
fprintf( m_fp, " (min_thickness 0.1) (filled_areas_thickness no)\n"
" (fill (thermal_gap 0.3) (thermal_bridge_width 0.3))\n" );
// Now, write the zone outlines with holes.
// first polygon is the main outline, next are holes
// One cannot know the initial zone outline.
// However most of (if not all) holes are just items with clearance,
// not really a hole in the initial zone outline.
// So we build a zone outline only with no hole.
fprintf( m_fp, " (polygon\n (pts" );
SHAPE_LINE_CHAIN& poly = polys.Outline( 0 );
#define MAX_COORD_CNT 4
int jj = MAX_COORD_CNT;
int cnt_max = poly.PointCount() -1;
// Do not generate last corner, if it is the same point as the first point:
if( poly.CPoint( 0 ) == poly.CPoint( cnt_max ) )
cnt_max--;
for( int ii = 0; ii <= cnt_max; ii++ )
{
if( --jj == 0 )
{
jj = MAX_COORD_CNT;
fprintf( m_fp, "\n " );
}
fprintf( m_fp, " (xy %s %s)", Double2Str( MapToPcbUnits( poly.CPoint( ii ).x ) ).c_str(),
Double2Str( MapToPcbUnits( -poly.CPoint( ii ).y ) ).c_str() );
}
fprintf( m_fp, ")\n" );
fprintf( m_fp, " )\n)\n" );
}