kicad/common/transform.cpp

128 lines
3.8 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2010 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright (C) 2015-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <macros.h>
#include <trigo.h>
#include <transform.h>
#include <common.h>
#include <math/util.h> // for KiROUND
#include <math/box2.h>
bool TRANSFORM::operator==( const TRANSFORM& aTransform ) const
{
return ( x1 == aTransform.x1 &&
y1 == aTransform.y1 &&
x2 == aTransform.x2 &&
y2 == aTransform.y2 );
}
VECTOR2I TRANSFORM::TransformCoordinate( const VECTOR2I& aPoint ) const
{
return VECTOR2I( ( x1 * aPoint.x ) + ( y1 * aPoint.y ), ( x2 * aPoint.x ) + ( y2 * aPoint.y ) );
}
BOX2I TRANSFORM::TransformCoordinate( const BOX2I& aRect ) const
{
BOX2I rect;
rect.SetOrigin( TransformCoordinate( aRect.GetOrigin() ) );
rect.SetEnd( TransformCoordinate( aRect.GetEnd() ) );
return rect;
}
TRANSFORM TRANSFORM::InverseTransform() const
{
int invx1;
int invx2;
int invy1;
int invy2;
/* Calculates the inverse matrix coeffs:
* for a matrix m{x1, x2, y1, y2}
* the inverse matrix is 1/(x1*y2 -x2*y1) m{y2,-x2,-y1,x1)
*/
int det = x1*y2 -x2*y1; // Is never null, because the inverse matrix exists
invx1 = y2/det;
invx2 = -x2/det;
invy1 = -y1/det;
invy2 = x1/det;
TRANSFORM invtransform( invx1, invy1, invx2, invy2 );
return invtransform;
}
bool TRANSFORM::MapAngles( EDA_ANGLE* aAngle1, EDA_ANGLE* aAngle2 ) const
{
wxCHECK_MSG( aAngle1 != nullptr && aAngle2 != nullptr, false,
wxT( "Cannot map NULL point angles." ) );
double x, y;
VECTOR2D v;
bool swap = false;
EDA_ANGLE delta = ( *aAngle2 - *aAngle1 ).Normalize180();
x = aAngle1->Cos();
y = aAngle1->Sin();
v = VECTOR2D( x * x1 + y * y1, x * x2 + y * y2 );
*aAngle1 = EDA_ANGLE( v );
aAngle1->Normalize180();
x = aAngle2->Cos();
y = aAngle2->Sin();
v = VECTOR2D( x * x1 + y * y1, x * x2 + y * y2 );
*aAngle2 = EDA_ANGLE( v );
aAngle2->Normalize180();
EDA_ANGLE deltaTransformed = ( *aAngle2 - *aAngle1 ).Normalize180();
if( sign( deltaTransformed.AsDegrees() )
!= sign( delta.AsDegrees() ) )
{
std::swap( *aAngle1, *aAngle2 );
swap = true;
if( *aAngle2 < *aAngle1 )
*aAngle2 += ANGLE_360;
}
#ifdef DEBUG
// This check is only valid for coordinate inversions (y=-y). If we start using this function on
// more complex transforms (different x to y scaling), we should re-write it/re think it.
static const EDA_ANGLE epsilon( 0.1, DEGREES_T );
EDA_ANGLE residualError( *aAngle2 - *aAngle1 - delta );
residualError.Normalize();
assert( residualError < epsilon || residualError > epsilon.Invert().Normalize() );
#endif // DEBUG
return swap;
}