kicad/pcbnew/class_zone.cpp

1360 lines
40 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2019 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <bitmaps.h>
#include <fctsys.h>
#include <geometry/geometry_utils.h>
#include <kicad_string.h>
#include <macros.h>
#include <msgpanel.h>
#include <pcb_base_frame.h>
#include <pcb_screen.h>
#include <richio.h>
#include <trigo.h>
#include <convert_to_biu.h>
#include <class_board.h>
#include <class_zone.h>
#include <pcbnew.h>
#include <zones.h>
#include <math_for_graphics.h>
#include <polygon_test_point_inside.h>
ZONE_CONTAINER::ZONE_CONTAINER( BOARD_ITEM_CONTAINER* aParent, bool aInModule )
: BOARD_CONNECTED_ITEM( aParent, aInModule ? PCB_MODULE_ZONE_AREA_T : PCB_ZONE_AREA_T )
{
m_CornerSelection = nullptr; // no corner is selected
m_IsFilled = false; // fill status : true when the zone is filled
m_FillMode = ZONE_FILL_MODE::POLYGONS;
m_hatchStyle = ZONE_HATCH_STYLE::DIAGONAL_EDGE;
m_hatchPitch = GetDefaultHatchPitch();
m_hv45 = false;
m_HatchFillTypeThickness = 0;
m_HatchFillTypeGap = 0;
m_HatchFillTypeOrientation = 0.0;
m_HatchFillTypeSmoothingLevel = 0; // Grid pattern smoothing type. 0 = no smoothing
m_HatchFillTypeSmoothingValue = 0.1; // Grid pattern chamfer value relative to the gap value
// used only if m_HatchFillTypeSmoothingLevel > 0
m_priority = 0;
m_cornerSmoothingType = ZONE_SETTINGS::SMOOTHING_NONE;
SetIsKeepout( aInModule ? true : false ); // Zones living in modules have the keepout option.
SetDoNotAllowCopperPour( false ); // has meaning only if m_isKeepout == true
SetDoNotAllowVias( true ); // has meaning only if m_isKeepout == true
SetDoNotAllowTracks( true ); // has meaning only if m_isKeepout == true
m_cornerRadius = 0;
SetLocalFlags( 0 ); // flags tempoarry used in zone calculations
m_Poly = new SHAPE_POLY_SET(); // Outlines
m_FilledPolysUseThickness = true; // set the "old" way to build filled polygon areas (before 6.0.x)
aParent->GetZoneSettings().ExportSetting( *this );
m_needRefill = false; // True only after some edition.
}
ZONE_CONTAINER::ZONE_CONTAINER( const ZONE_CONTAINER& aZone )
: BOARD_CONNECTED_ITEM( aZone.GetParent(), PCB_ZONE_AREA_T )
{
initDataFromSrcInCopyCtor( aZone );
}
ZONE_CONTAINER& ZONE_CONTAINER::operator=( const ZONE_CONTAINER& aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
// Replace the outlines for aOther outlines.
delete m_Poly;
m_Poly = new SHAPE_POLY_SET( *aOther.m_Poly );
m_isKeepout = aOther.m_isKeepout;
m_CornerSelection = nullptr; // for corner moving, corner index to (null if no selection)
m_ZoneClearance = aOther.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aOther.m_ZoneMinThickness;
m_FilledPolysUseThickness = aOther.m_FilledPolysUseThickness;
m_FillMode = aOther.m_FillMode; // filling mode (segments/polygons)
m_PadConnection = aOther.m_PadConnection;
m_ThermalReliefGap = aOther.m_ThermalReliefGap;
m_ThermalReliefCopperBridge = aOther.m_ThermalReliefCopperBridge;
SetHatchStyle( aOther.GetHatchStyle() );
SetHatchPitch( aOther.GetHatchPitch() );
m_HatchLines = aOther.m_HatchLines; // copy vector <SEG>
m_FilledPolysList.RemoveAllContours();
m_FilledPolysList.Append( aOther.m_FilledPolysList );
m_FillSegmList.clear();
m_FillSegmList = aOther.m_FillSegmList;
m_HatchFillTypeThickness = aOther.m_HatchFillTypeThickness;
m_HatchFillTypeGap = aOther.m_HatchFillTypeGap;
m_HatchFillTypeOrientation = aOther.m_HatchFillTypeOrientation;
m_HatchFillTypeSmoothingLevel = aOther.m_HatchFillTypeSmoothingLevel;
m_HatchFillTypeSmoothingValue = aOther.m_HatchFillTypeSmoothingValue;
SetLayerSet( aOther.GetLayerSet() );
return *this;
}
ZONE_CONTAINER::~ZONE_CONTAINER()
{
delete m_Poly;
delete m_CornerSelection;
}
void ZONE_CONTAINER::initDataFromSrcInCopyCtor( const ZONE_CONTAINER& aZone )
{
// members are expected non initialize in this.
// initDataFromSrcInCopyCtor() is expected to be called
// only from a copy constructor.
m_isKeepout = aZone.m_isKeepout;
SetLayerSet( aZone.GetLayerSet() );
m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly );
// For corner moving, corner index to drag, or nullptr if no selection
m_CornerSelection = nullptr;
m_IsFilled = aZone.m_IsFilled;
m_ZoneClearance = aZone.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aZone.m_ZoneMinThickness;
m_FilledPolysUseThickness = aZone.m_FilledPolysUseThickness;
m_FillMode = aZone.m_FillMode; // Filling mode (segments/polygons)
m_hv45 = aZone.m_hv45;
m_priority = aZone.m_priority;
m_PadConnection = aZone.m_PadConnection;
m_ThermalReliefGap = aZone.m_ThermalReliefGap;
m_ThermalReliefCopperBridge = aZone.m_ThermalReliefCopperBridge;
m_FilledPolysList.Append( aZone.m_FilledPolysList );
m_FillSegmList = aZone.m_FillSegmList; // vector <> copy
m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour;
m_doNotAllowVias = aZone.m_doNotAllowVias;
m_doNotAllowTracks = aZone.m_doNotAllowTracks;
m_cornerSmoothingType = aZone.m_cornerSmoothingType;
m_cornerRadius = aZone.m_cornerRadius;
m_hatchStyle = aZone.m_hatchStyle;
m_hatchPitch = aZone.m_hatchPitch;
m_HatchLines = aZone.m_HatchLines;
m_HatchFillTypeThickness = aZone.m_HatchFillTypeThickness;
m_HatchFillTypeGap = aZone.m_HatchFillTypeGap;
m_HatchFillTypeOrientation = aZone.m_HatchFillTypeOrientation;
m_HatchFillTypeSmoothingLevel = aZone.m_HatchFillTypeSmoothingLevel;
m_HatchFillTypeSmoothingValue = aZone.m_HatchFillTypeSmoothingValue;
SetLocalFlags( aZone.GetLocalFlags() );
// Now zone type and layer are set, transfer net info
// (has meaning only for copper zones)
m_netinfo = aZone.m_netinfo;
SetNeedRefill( aZone.NeedRefill() );
}
EDA_ITEM* ZONE_CONTAINER::Clone() const
{
return new ZONE_CONTAINER( *this );
}
bool ZONE_CONTAINER::UnFill()
{
bool change = ( !m_FilledPolysList.IsEmpty() || m_FillSegmList.size() > 0 );
m_FilledPolysList.RemoveAllContours();
m_FillSegmList.clear();
m_IsFilled = false;
return change;
}
const wxPoint ZONE_CONTAINER::GetPosition() const
{
return (wxPoint) GetCornerPosition( 0 );
}
PCB_LAYER_ID ZONE_CONTAINER::GetLayer() const
{
return BOARD_ITEM::GetLayer();
}
bool ZONE_CONTAINER::IsOnCopperLayer() const
{
if( GetIsKeepout() )
{
return ( m_layerSet & LSET::AllCuMask() ).count() > 0;
}
else
{
return IsCopperLayer( GetLayer() );
}
}
bool ZONE_CONTAINER::CommonLayerExists( const LSET aLayerSet ) const
{
LSET common = GetLayerSet() & aLayerSet;
return common.count() > 0;
}
void ZONE_CONTAINER::SetLayer( PCB_LAYER_ID aLayer )
{
SetLayerSet( LSET( aLayer ) );
m_Layer = aLayer;
}
void ZONE_CONTAINER::SetLayerSet( LSET aLayerSet )
{
if( GetIsKeepout() )
{
// Keepouts can only exist on copper layers
aLayerSet &= LSET::AllCuMask();
}
if( aLayerSet.count() == 0 )
return;
if( m_layerSet != aLayerSet )
SetNeedRefill( true );
m_layerSet = aLayerSet;
// Set the single layer parameter.
// For keepout zones that can be on many layers, this parameter does not have
// really meaning and is a bit arbitrary if more than one layer is set.
// But many functions are using it.
// So we need to initialize it to a reasonable value.
// Priority is F_Cu then B_Cu then to the first selected layer
m_Layer = aLayerSet.Seq()[0];
if( m_Layer != F_Cu && aLayerSet[B_Cu] )
m_Layer = B_Cu;
}
LSET ZONE_CONTAINER::GetLayerSet() const
{
// TODO - Enable multi-layer zones for all zone types
// not just keepout zones
if( GetIsKeepout() )
{
return m_layerSet;
}
else
{
return LSET( m_Layer );
}
}
void ZONE_CONTAINER::ViewGetLayers( int aLayers[], int& aCount ) const
{
if( GetIsKeepout() )
{
LSEQ layers = m_layerSet.Seq();
for( unsigned int idx = 0; idx < layers.size(); idx++ )
aLayers[idx] = layers[idx];
aCount = layers.size();
}
else
{
aLayers[0] = m_Layer;
aCount = 1;
}
}
bool ZONE_CONTAINER::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
if( GetIsKeepout() )
return m_layerSet.test( aLayer );
return BOARD_ITEM::IsOnLayer( aLayer );
}
void ZONE_CONTAINER::Print( PCB_BASE_FRAME* aFrame, wxDC* DC, const wxPoint& offset )
{
if( !DC )
return;
wxPoint seg_start, seg_end;
PCB_LAYER_ID curr_layer = aFrame->GetActiveLayer();
BOARD* brd = GetBoard();
PCB_LAYER_ID draw_layer = UNDEFINED_LAYER;
LSET layers = GetLayerSet() & brd->GetVisibleLayers();
// If there are no visible layers, return
if( layers.count() == 0 )
return;
/* Keepout zones can exist on multiple layers
* Thus, determining which color to use to render them is a bit tricky.
* In descending order of priority:
*
* 1. If in GR_HIGHLIGHT mode:
* a. If zone is on selected layer, use layer color!
* b. Else, use grey
* 1. Not in GR_HIGHLIGHT mode
* a. If zone is on selected layer, use layer color
* b. Else, use color of top-most (visible) layer
*
*/
if( GetIsKeepout() )
{
// At least one layer must be provided!
assert( GetLayerSet().count() > 0 );
// Not on any visible layer?
if( layers.count() == 0 )
return;
// Is keepout zone present on the selected layer?
if( layers.test( curr_layer ) )
{
draw_layer = curr_layer;
}
else
{
// Select the first (top) visible layer
if( layers.count() > 0 )
{
draw_layer = layers.Seq()[0];
}
else
{
draw_layer = GetLayerSet().Seq()[0];
}
}
}
/* Non-keepout zones are easier to deal with
*/
else
{
if( brd->IsLayerVisible( GetLayer() ) == false )
return;
draw_layer = GetLayer();
}
assert( draw_layer != UNDEFINED_LAYER );
auto color = aFrame->Settings().Colors().GetLayerColor( draw_layer );
auto displ_opts = aFrame->GetDisplayOptions();
if( displ_opts.m_ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) )
color = COLOR4D( DARKDARKGRAY );
}
color.a = 0.588;
// draw the lines
std::vector<wxPoint> lines;
lines.reserve( (GetNumCorners() * 2) + 2 );
// Iterate through the segments of the outline
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ )
{
// Create the segment
SEG segment = *iterator;
lines.push_back( static_cast<wxPoint>( segment.A ) + offset );
lines.push_back( static_cast<wxPoint>( segment.B ) + offset );
}
GRLineArray( nullptr, DC, lines, 0, color );
// draw hatches
lines.clear();
lines.reserve( (m_HatchLines.size() * 2) + 2 );
for( unsigned ic = 0; ic < m_HatchLines.size(); ic++ )
{
seg_start = static_cast<wxPoint>( m_HatchLines[ic].A ) + offset;
seg_end = static_cast<wxPoint>( m_HatchLines[ic].B ) + offset;
lines.push_back( seg_start );
lines.push_back( seg_end );
}
GRLineArray( nullptr, DC, lines, 0, color );
}
void ZONE_CONTAINER::PrintFilledArea( PCB_BASE_FRAME* aFrame, wxDC* DC, const wxPoint& offset )
{
static std::vector <wxPoint> CornersBuffer;
BOARD* brd = GetBoard();
KIGFX::COLOR4D color = aFrame->Settings().Colors().GetLayerColor( GetLayer() );
auto& displ_opts = aFrame->GetDisplayOptions();
bool outline_mode = displ_opts.m_DisplayZonesMode == 2;
if( DC == NULL )
return;
if( displ_opts.m_DisplayZonesMode == 1 ) // Do not show filled areas
return;
if( m_FilledPolysList.IsEmpty() ) // Nothing to draw
return;
if( brd->IsLayerVisible( GetLayer() ) == false )
return;
color.a = 0.588;
for( int ic = 0; ic < m_FilledPolysList.OutlineCount(); ic++ )
{
const SHAPE_LINE_CHAIN& path = m_FilledPolysList.COutline( ic );
CornersBuffer.clear();
wxPoint p0;
for( int j = 0; j < path.PointCount(); j++ )
{
const VECTOR2I& corner = path.CPoint( j );
wxPoint coord( corner.x + offset.x, corner.y + offset.y );
if( j == 0 )
p0 = coord;
CornersBuffer.push_back( coord );
}
CornersBuffer.push_back( p0 );
// Draw outlines:
int outline_thickness = GetFilledPolysUseThickness() ? GetMinThickness() : 0;
if( ( outline_thickness > 1 ) || outline_mode )
{
int ilim = CornersBuffer.size() - 1;
for( int is = 0, ie = ilim; is <= ilim; ie = is, is++ )
{
// Draw only basic outlines, not extra segments.
if( !displ_opts.m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) )
{
GRCSegm( nullptr, DC, CornersBuffer[is], CornersBuffer[ie],
outline_thickness, color );
}
else
{
GRFilledSegment( nullptr, DC, CornersBuffer[is], CornersBuffer[ie],
outline_thickness, color );
}
}
}
// Draw fill:
if( !outline_mode )
GRPoly( nullptr, DC, CornersBuffer.size(), &CornersBuffer[0], true, 0, color, color );
}
}
const EDA_RECT ZONE_CONTAINER::GetBoundingBox() const
{
const int PRELOAD = 0x7FFFFFFF; // Biggest integer (32 bits)
int ymax = -PRELOAD;
int ymin = PRELOAD;
int xmin = PRELOAD;
int xmax = -PRELOAD;
int count = GetNumCorners();
for( int i = 0; i<count; ++i )
{
wxPoint corner = static_cast<wxPoint>( GetCornerPosition( i ) );
ymax = std::max( ymax, corner.y );
xmax = std::max( xmax, corner.x );
ymin = std::min( ymin, corner.y );
xmin = std::min( xmin, corner.x );
}
EDA_RECT ret( wxPoint( xmin, ymin ), wxSize( xmax - xmin + 1, ymax - ymin + 1 ) );
return ret;
}
int ZONE_CONTAINER::GetThermalReliefGap( D_PAD* aPad ) const
{
if( aPad == NULL || aPad->GetThermalGap() == 0 )
return m_ThermalReliefGap;
else
return aPad->GetThermalGap();
}
int ZONE_CONTAINER::GetThermalReliefCopperBridge( D_PAD* aPad ) const
{
if( aPad == NULL || aPad->GetThermalWidth() == 0 )
return m_ThermalReliefCopperBridge;
else
return aPad->GetThermalWidth();
}
void ZONE_CONTAINER::SetCornerRadius( unsigned int aRadius )
{
if( m_cornerRadius != aRadius )
SetNeedRefill( true );
m_cornerRadius = aRadius;
}
bool ZONE_CONTAINER::HitTest( const wxPoint& aPosition, int aAccuracy ) const
{
// Normally accuracy is zoom-relative, but for the generic HitTest we just use
// a fixed (small) value.
int accuracy = std::max( aAccuracy, Millimeter2iu( 0.1 ) );
return HitTestForCorner( aPosition, accuracy * 2 ) || HitTestForEdge( aPosition, accuracy );
}
void ZONE_CONTAINER::SetSelectedCorner( const wxPoint& aPosition, int aAccuracy )
{
SHAPE_POLY_SET::VERTEX_INDEX corner;
// If there is some corner to be selected, assign it to m_CornerSelection
if( HitTestForCorner( aPosition, aAccuracy * 2, corner )
|| HitTestForEdge( aPosition, aAccuracy, corner ) )
{
if( m_CornerSelection == nullptr )
m_CornerSelection = new SHAPE_POLY_SET::VERTEX_INDEX;
*m_CornerSelection = corner;
}
}
bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos, int aAccuracy,
SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const
{
return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, aAccuracy );
}
bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos, int aAccuracy ) const
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return HitTestForCorner( refPos, aAccuracy, dummy );
}
bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos, int aAccuracy,
SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const
{
return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, aAccuracy );
}
bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos, int aAccuracy ) const
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return HitTestForEdge( refPos, aAccuracy, dummy );
}
bool ZONE_CONTAINER::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
// Calculate bounding box for zone
EDA_RECT bbox = GetBoundingBox();
bbox.Normalize();
EDA_RECT arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
if( aContained )
{
return arect.Contains( bbox );
}
else // Test for intersection between aBox and the polygon
// For a polygon, using its bounding box has no sense here
{
// Fast test: if aBox is outside the polygon bounding box, rectangles cannot intersect
if( !arect.Intersects( bbox ) )
return false;
int count = m_Poly->TotalVertices();
for( int ii = 0; ii < count; ii++ )
{
auto vertex = m_Poly->CVertex( ii );
auto vertexNext = m_Poly->CVertex( ( ii + 1 ) % count );
// Test if the point is within the rect
if( arect.Contains( ( wxPoint ) vertex ) )
{
return true;
}
// Test if this edge intersects the rect
if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) )
{
return true;
}
}
return false;
}
}
int ZONE_CONTAINER::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const
{
int myClearance = m_ZoneClearance;
// The actual zone clearance is the biggest of the zone netclass clearance
// and the zone clearance setting in the zone properties dialog.
if( !m_isKeepout ) // Net class has no meaning for a keepout area.
{
NETCLASSPTR myClass = GetNetClass();
if( myClass )
myClearance = std::max( myClearance, myClass->GetClearance() );
}
// Get the final clearance between me and aItem
if( aItem )
{
int hisClearance = aItem->GetClearance( NULL );
myClearance = std::max( hisClearance, myClearance );
}
return myClearance;
}
bool ZONE_CONTAINER::HitTestFilledArea( const wxPoint& aRefPos ) const
{
return m_FilledPolysList.Contains( VECTOR2I( aRefPos.x, aRefPos.y ) );
}
void ZONE_CONTAINER::GetMsgPanelInfo( EDA_UNITS aUnits, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
msg = _( "Zone Outline" );
// Display Cutout instead of Outline for holes inside a zone
// i.e. when num contour !=0
// Check whether the selected corner is in a hole; i.e., in any contour but the first one.
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
msg << wxT( " " ) << _( "(Cutout)" );
aList.emplace_back( MSG_PANEL_ITEM( _( "Type" ), msg, DARKCYAN ) );
if( GetIsKeepout() )
{
msg.Empty();
if( GetDoNotAllowVias() )
AccumulateDescription( msg, _( "No via" ) );
if( GetDoNotAllowTracks() )
AccumulateDescription( msg, _("No track") );
if( GetDoNotAllowCopperPour() )
AccumulateDescription( msg, _("No copper pour") );
aList.emplace_back( MSG_PANEL_ITEM( _( "Keepout" ), msg, RED ) );
}
else if( IsOnCopperLayer() )
{
if( GetNetCode() >= 0 )
{
NETINFO_ITEM* net = GetNet();
if( net )
msg = UnescapeString( net->GetNetname() );
else // Should not occur
msg = _( "<unknown>" );
}
else // a netcode < 0 is an error
msg = wxT( "<error>" );
aList.emplace_back( MSG_PANEL_ITEM( _( "NetName" ), msg, RED ) );
// Display net code : (useful in test or debug)
msg.Printf( wxT( "%d" ), GetNetCode() );
aList.emplace_back( MSG_PANEL_ITEM( _( "NetCode" ), msg, RED ) );
// Display priority level
msg.Printf( wxT( "%d" ), GetPriority() );
aList.emplace_back( MSG_PANEL_ITEM( _( "Priority" ), msg, BLUE ) );
}
else
{
aList.emplace_back( MSG_PANEL_ITEM( _( "Non Copper Zone" ), wxEmptyString, RED ) );
}
aList.emplace_back( MSG_PANEL_ITEM( _( "Layer" ), GetLayerName(), BROWN ) );
msg.Printf( wxT( "%d" ), (int) m_Poly->TotalVertices() );
aList.emplace_back( MSG_PANEL_ITEM( _( "Vertices" ), msg, BLUE ) );
switch( m_FillMode )
{
case ZONE_FILL_MODE::POLYGONS:
msg = _( "Solid" ); break;
case ZONE_FILL_MODE::HATCH_PATTERN:
msg = _( "Hatched" ); break;
default:
msg = _( "Unknown" ); break;
}
aList.emplace_back( MSG_PANEL_ITEM( _( "Fill Mode" ), msg, BROWN ) );
// Useful for statistics :
msg.Printf( wxT( "%d" ), (int) m_HatchLines.size() );
aList.emplace_back( MSG_PANEL_ITEM( _( "Hatch Lines" ), msg, BLUE ) );
if( !m_FilledPolysList.IsEmpty() )
{
msg.Printf( wxT( "%d" ), m_FilledPolysList.TotalVertices() );
aList.emplace_back( MSG_PANEL_ITEM( _( "Corner Count" ), msg, BLUE ) );
}
}
/* Geometric transforms: */
void ZONE_CONTAINER::Move( const wxPoint& offset )
{
/* move outlines */
m_Poly->Move( offset );
Hatch();
m_FilledPolysList.Move( offset );
for( SEG& seg : m_FillSegmList )
{
seg.A += VECTOR2I( offset );
seg.B += VECTOR2I( offset );
}
}
void ZONE_CONTAINER::MoveEdge( const wxPoint& offset, int aEdge )
{
int next_corner;
if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) )
{
m_Poly->SetVertex( aEdge, m_Poly->CVertex( aEdge ) + VECTOR2I( offset ) );
m_Poly->SetVertex( next_corner, m_Poly->CVertex( next_corner ) + VECTOR2I( offset ) );
Hatch();
SetNeedRefill( true );
}
}
void ZONE_CONTAINER::Rotate( const wxPoint& centre, double angle )
{
wxPoint pos;
angle = -DECIDEG2RAD( angle );
m_Poly->Rotate( angle, VECTOR2I( centre ) );
Hatch();
/* rotate filled areas: */
m_FilledPolysList.Rotate( angle, VECTOR2I( centre ) );
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{
wxPoint a( m_FillSegmList[ic].A );
RotatePoint( &a, centre, angle );
m_FillSegmList[ic].A = a;
wxPoint b( m_FillSegmList[ic].B );
RotatePoint( &b, centre, angle );
m_FillSegmList[ic].B = a;
}
}
void ZONE_CONTAINER::Flip( const wxPoint& aCentre, bool aFlipLeftRight )
{
Mirror( aCentre, aFlipLeftRight );
int copperLayerCount = GetBoard()->GetCopperLayerCount();
if( GetIsKeepout() )
{
SetLayerSet( FlipLayerMask( GetLayerSet(), copperLayerCount ) );
}
else
{
SetLayer( FlipLayer( GetLayer(), copperLayerCount ) );
}
}
void ZONE_CONTAINER::Mirror( const wxPoint& aMirrorRef, bool aMirrorLeftRight )
{
// ZONE_CONTAINERs mirror about the x-axis (why?!?)
m_Poly->Mirror( aMirrorLeftRight, !aMirrorLeftRight, VECTOR2I( aMirrorRef ) );
Hatch();
m_FilledPolysList.Mirror( aMirrorLeftRight, !aMirrorLeftRight, VECTOR2I( aMirrorRef ) );
for( SEG& seg : m_FillSegmList )
{
if( aMirrorLeftRight )
{
MIRROR( seg.A.x, aMirrorRef.x );
MIRROR( seg.B.x, aMirrorRef.x );
}
else
{
MIRROR( seg.A.y, aMirrorRef.y );
MIRROR( seg.B.y, aMirrorRef.y );
}
}
}
ZONE_CONNECTION ZONE_CONTAINER::GetPadConnection( D_PAD* aPad ) const
{
if( aPad == NULL || aPad->GetZoneConnection() == ZONE_CONNECTION::INHERITED )
return m_PadConnection;
else
return aPad->GetZoneConnection();
}
void ZONE_CONTAINER::AddPolygon( const SHAPE_LINE_CHAIN& aPolygon )
{
wxASSERT( aPolygon.IsClosed() );
// Add the outline as a new polygon in the polygon set
if( m_Poly->OutlineCount() == 0 )
m_Poly->AddOutline( aPolygon );
else
m_Poly->AddHole( aPolygon );
SetNeedRefill( true );
}
void ZONE_CONTAINER::AddPolygon( std::vector< wxPoint >& aPolygon )
{
if( aPolygon.empty() )
return;
SHAPE_LINE_CHAIN outline;
// Create an outline and populate it with the points of aPolygon
for( unsigned i = 0; i < aPolygon.size(); i++ )
{
outline.Append( VECTOR2I( aPolygon[i] ) );
}
outline.SetClosed( true );
// Add the outline as a new polygon in the polygon set
if( m_Poly->OutlineCount() == 0 )
m_Poly->AddOutline( outline );
else
m_Poly->AddHole( outline );
SetNeedRefill( true );
}
bool ZONE_CONTAINER::AppendCorner( wxPoint aPosition, int aHoleIdx, bool aAllowDuplication )
{
// Ensure the main outline exists:
if( m_Poly->OutlineCount() == 0 )
m_Poly->NewOutline();
// If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx.
// (remember: the index of the first hole is 0)
// Return error if if does dot exist.
if( aHoleIdx >= m_Poly->HoleCount( 0 ) )
return false;
m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication );
SetNeedRefill( true );
return true;
}
wxString ZONE_CONTAINER::GetSelectMenuText( EDA_UNITS aUnits ) const
{
wxString text;
// Check whether the selected contour is a hole (contour index > 0)
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
text << wxT( " " ) << _( "(Cutout)" );
if( GetIsKeepout() )
text << wxT( " " ) << _( "(Keepout)" );
else
text << GetNetnameMsg();
return wxString::Format( _( "Zone Outline %s on %s" ), text, GetLayerName() );
}
int ZONE_CONTAINER::GetHatchPitch() const
{
return m_hatchPitch;
}
void ZONE_CONTAINER::SetHatch( ZONE_HATCH_STYLE aHatchStyle, int aHatchPitch, bool aRebuildHatch )
{
SetHatchPitch( aHatchPitch );
m_hatchStyle = aHatchStyle;
if( aRebuildHatch )
Hatch();
}
void ZONE_CONTAINER::SetHatchPitch( int aPitch )
{
m_hatchPitch = aPitch;
}
void ZONE_CONTAINER::UnHatch()
{
m_HatchLines.clear();
}
// Creates hatch lines inside the outline of the complex polygon
// sort function used in ::Hatch to sort points by descending wxPoint.x values
bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst )
{
return tst.x < ref.x;
}
void ZONE_CONTAINER::Hatch()
{
UnHatch();
if( m_hatchStyle == ZONE_HATCH_STYLE::NO_HATCH || m_hatchPitch == 0 || m_Poly->IsEmpty() )
return;
// define range for hatch lines
int min_x = m_Poly->CVertex( 0 ).x;
int max_x = m_Poly->CVertex( 0 ).x;
int min_y = m_Poly->CVertex( 0 ).y;
int max_y = m_Poly->CVertex( 0 ).y;
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ )
{
if( iterator->x < min_x )
min_x = iterator->x;
if( iterator->x > max_x )
max_x = iterator->x;
if( iterator->y < min_y )
min_y = iterator->y;
if( iterator->y > max_y )
max_y = iterator->y;
}
// Calculate spacing between 2 hatch lines
int spacing;
if( m_hatchStyle == ZONE_HATCH_STYLE::DIAGONAL_EDGE )
spacing = m_hatchPitch;
else
spacing = m_hatchPitch * 2;
// set the "length" of hatch lines (the length on horizontal axis)
int hatch_line_len = m_hatchPitch;
// To have a better look, give a slope depending on the layer
LAYER_NUM layer = GetLayer();
int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106 * slope_flag; // 45 degrees slope
int max_a, min_a;
if( slope_flag == 1 )
{
max_a = KiROUND( max_y - slope * min_x );
min_a = KiROUND( min_y - slope * max_x );
}
else
{
max_a = KiROUND( max_y - slope * max_x );
min_a = KiROUND( min_y - slope * min_x );
}
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number,
// for a better look of hatches on a multilayer board
int offset = (layer * 7) / 8;
min_a += offset;
// loop through hatch lines
#define MAXPTS 200 // Usually we store only few values per one hatch line
// depending on the complexity of the zone outline
static std::vector<VECTOR2I> pointbuffer;
pointbuffer.clear();
pointbuffer.reserve( MAXPTS + 2 );
for( int a = min_a; a < max_a; a += spacing )
{
// get intersection points for this hatch line
// Note: because we should have an even number of intersections with the
// current hatch line and the zone outline (a closed polygon,
// or a set of closed polygons), if an odd count is found
// we skip this line (should not occur)
pointbuffer.clear();
// Iterate through all vertices
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ )
{
double x, y, x2, y2;
int ok;
SEG segment = *iterator;
ok = FindLineSegmentIntersection( a, slope,
segment.A.x, segment.A.y,
segment.B.x, segment.B.y,
&x, &y, &x2, &y2 );
if( ok )
{
VECTOR2I point( KiROUND( x ), KiROUND( y ) );
pointbuffer.push_back( point );
}
if( ok == 2 )
{
VECTOR2I point( KiROUND( x2 ), KiROUND( y2 ) );
pointbuffer.push_back( point );
}
if( pointbuffer.size() >= MAXPTS ) // overflow
{
wxASSERT( 0 );
break;
}
}
// ensure we have found an even intersection points count
// because intersections are the ends of segments
// inside the polygon(s) and a segment has 2 ends.
// if not, this is a strange case (a bug ?) so skip this hatch
if( pointbuffer.size() % 2 != 0 )
continue;
// sort points in order of descending x (if more than 2) to
// ensure the starting point and the ending point of the same segment
// are stored one just after the other.
if( pointbuffer.size() > 2 )
sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX );
// creates lines or short segments inside the complex polygon
for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 )
{
int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x;
// Push only one line for diagonal hatch,
// or for small lines < twice the line length
// else push 2 small lines
if( m_hatchStyle == ZONE_HATCH_STYLE::DIAGONAL_FULL
|| std::abs( dx ) < 2 * hatch_line_len )
{
m_HatchLines.emplace_back( SEG( pointbuffer[ip], pointbuffer[ip + 1] ) );
}
else
{
double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y;
slope = dy / dx;
if( dx > 0 )
dx = hatch_line_len;
else
dx = -hatch_line_len;
int x1 = KiROUND( pointbuffer[ip].x + dx );
int x2 = KiROUND( pointbuffer[ip + 1].x - dx );
int y1 = KiROUND( pointbuffer[ip].y + dx * slope );
int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope );
m_HatchLines.emplace_back( SEG( pointbuffer[ip].x, pointbuffer[ip].y, x1, y1 ) );
m_HatchLines.emplace_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y, x2, y2 ) );
}
}
}
}
int ZONE_CONTAINER::GetDefaultHatchPitch()
{
return Mils2iu( 20 );
}
BITMAP_DEF ZONE_CONTAINER::GetMenuImage() const
{
return add_zone_xpm;
}
void ZONE_CONTAINER::SwapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_ZONE_AREA_T );
std::swap( *((ZONE_CONTAINER*) this), *((ZONE_CONTAINER*) aImage) );
}
void ZONE_CONTAINER::CacheTriangulation()
{
m_FilledPolysList.CacheTriangulation();
}
/*
* Some intersecting zones, despite being on the same layer with the same net, cannot be
* merged due to other parameters such as fillet radius. The copper pour will end up
* effectively merged though, so we want to keep the corners of such intersections sharp.
*/
void ZONE_CONTAINER::GetColinearCorners( BOARD* aBoard, std::set<VECTOR2I>& aCorners )
{
int epsilon = Millimeter2iu( 0.001 );
// Things get messy when zone of different nets intersect. To do it right we'd need to
// run our colinear test with the final filled regions rather than the outline regions.
// However, since there's no order dependance the only way to do that is to iterate
// through successive zone fills until the results are no longer changing -- and that's
// not going to happen. So we punt and ignore any "messy" corners.
std::set<VECTOR2I> colinearCorners;
std::set<VECTOR2I> messyCorners;
for( ZONE_CONTAINER* candidate : aBoard->Zones() )
{
if( candidate == this )
continue;
if( candidate->GetLayerSet() != GetLayerSet() )
continue;
if( candidate->GetIsKeepout() != GetIsKeepout() )
continue;
for( auto iter = m_Poly->CIterate(); iter; iter++ )
{
if( candidate->m_Poly->Collide( iter.Get(), epsilon ) )
{
if( candidate->GetNetCode() == GetNetCode() )
colinearCorners.insert( VECTOR2I( iter.Get() ) );
else
messyCorners.insert( VECTOR2I( iter.Get() ) );
}
}
}
for( VECTOR2I corner : colinearCorners )
{
if( messyCorners.count( corner ) == 0 )
aCorners.insert( corner );
}
}
bool ZONE_CONTAINER::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly,
std::set<VECTOR2I>* aPreserveCorners ) const
{
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ...
return false;
// Make a smoothed polygon out of the user-drawn polygon if required
switch( m_cornerSmoothingType )
{
case ZONE_SETTINGS::SMOOTHING_CHAMFER:
aSmoothedPoly = m_Poly->Chamfer( m_cornerRadius, aPreserveCorners );
break;
case ZONE_SETTINGS::SMOOTHING_FILLET:
{
auto board = GetBoard();
int maxError = ARC_HIGH_DEF;
if( board )
maxError = board->GetDesignSettings().m_MaxError;
aSmoothedPoly = m_Poly->Fillet( m_cornerRadius, maxError, aPreserveCorners );
break;
}
default:
// Acute angles between adjacent edges can create issues in calculations,
// in inflate/deflate outlines transforms, especially when the angle is very small.
// We can avoid issues by creating a very small chamfer which remove acute angles,
// or left it without chamfer and use only CPOLYGONS_LIST::InflateOutline to create
// clearance areas
aSmoothedPoly = m_Poly->Chamfer( Millimeter2iu( 0.0 ), aPreserveCorners );
break;
}
return true;
};
/* Function TransformOutlinesShapeWithClearanceToPolygon
* Convert the zone filled areas polygons to polygons
* inflated (optional) by max( aClearanceValue, the zone clearance)
* and copy them in aCornerBuffer
* @param aMinClearanceValue the min clearance around outlines
* @param aUseNetClearance true to use a clearance which is the max value between
* aMinClearanceValue and the net clearance
* false to use aMinClearanceValue only
* @param aPreserveCorners an optional set of corners which should not be chamfered/filleted
*/
void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer,
int aMinClearanceValue,
bool aUseNetClearance,
std::set<VECTOR2I>* aPreserveCorners ) const
{
// Creates the zone outline polygon (with holes if any)
SHAPE_POLY_SET polybuffer;
BuildSmoothedPoly( polybuffer, aPreserveCorners );
// add clearance to outline
int clearance = aMinClearanceValue;
if( aUseNetClearance && IsOnCopperLayer() )
{
clearance = GetClearance();
if( aMinClearanceValue > clearance )
clearance = aMinClearanceValue;
}
// Calculate the polygon with clearance
// holes are linked to the main outline, so only one polygon is created.
if( clearance )
{
BOARD* board = GetBoard();
int maxError = ARC_HIGH_DEF;
if( board )
maxError = board->GetDesignSettings().m_MaxError;
int segCount = std::max( GetArcToSegmentCount( clearance, maxError, 360.0 ), 3 );
polybuffer.Inflate( clearance, segCount );
}
polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST );
aCornerBuffer.Append( polybuffer );
}
//
/********* MODULE_ZONE_CONTAINER **************/
//
MODULE_ZONE_CONTAINER::MODULE_ZONE_CONTAINER( BOARD_ITEM_CONTAINER* aParent ) :
ZONE_CONTAINER( aParent, true )
{
// in a footprint, net classes are not managed.
// so set the net to NETINFO_LIST::ORPHANED_ITEM
SetNetCode( -1, true );
}
MODULE_ZONE_CONTAINER::MODULE_ZONE_CONTAINER( const MODULE_ZONE_CONTAINER& aZone )
: ZONE_CONTAINER( aZone.GetParent(), true )
{
initDataFromSrcInCopyCtor( aZone );
}
MODULE_ZONE_CONTAINER& MODULE_ZONE_CONTAINER::operator=( const MODULE_ZONE_CONTAINER& aOther )
{
ZONE_CONTAINER::operator=( aOther );
return *this;
}
EDA_ITEM* MODULE_ZONE_CONTAINER::Clone() const
{
return new MODULE_ZONE_CONTAINER( *this );
}
unsigned int MODULE_ZONE_CONTAINER::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
const int HIDE = std::numeric_limits<unsigned int>::max();
if( !aView )
return 0;
bool flipped = GetParent() && GetParent()->GetLayer() == B_Cu;
// Handle Render tab switches
if( !flipped && !aView->IsLayerVisible( LAYER_MOD_FR ) )
return HIDE;
if( flipped && !aView->IsLayerVisible( LAYER_MOD_BK ) )
return HIDE;
// Other layers are shown without any conditions
return 0;
}