kicad/pcbnew/router/pns_line.h

255 lines
7.8 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2017 CERN
* Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PNS_LINE_H
#define __PNS_LINE_H
#include <math/box2.h>
#include <math/vector2d.h>
#include <geometry/direction45.h>
#include <geometry/seg.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include "pns_item.h"
#include "pns_via.h"
#include "pns_link_holder.h"
namespace PNS {
class LINKED_ITEM;
class NODE;
class VIA;
#define PNS_HULL_MARGIN 10
/**
* Represents a track on a PCB, connecting two non-trivial joints (that is,
* vias, pads, junctions between multiple traces or two traces different widths
* and combinations of these). PNS_LINEs are NOT stored in the model (NODE).
* Instead, they are assembled on-the-fly, based on a via/pad/segment that
* belongs to/starts/ends them.
*
* PNS_LINEs can be either loose (consisting of segments that do not belong to
* any NODE) or owned (with segments taken from a NODE) - these are returned by
* #NODE::AssembleLine and friends.
*
* A LINE may have a VIA attached at its end (i.e. the last point) - this is used by via
* dragging/force propagation stuff.
*/
class LINE : public LINK_HOLDER
{
public:
/**
* Makes an empty line.
*/
LINE() :
LINK_HOLDER( LINE_T ),
m_blockingObstacle( nullptr )
{
m_width = 1; // Dummy value
m_snapThreshhold = 0;
m_via = nullptr;
}
LINE( const LINE& aOther );
/**
* Copy properties (net, layers, etc.) from a base line and replaces the shape by another.
*/
LINE( const LINE& aBase, const SHAPE_LINE_CHAIN& aLine ) :
LINK_HOLDER( aBase ),
m_line( aLine ),
m_width( aBase.m_width ),
m_snapThreshhold( aBase.m_snapThreshhold ),
m_blockingObstacle( nullptr )
{
m_net = aBase.m_net;
m_layers = aBase.m_layers;
m_via = nullptr;
}
/**
* Construct a LINE for a lone VIA (ie a stitching via).
*/
LINE( const VIA& aVia ) :
LINK_HOLDER( LINE_T ),
m_blockingObstacle( nullptr )
{
m_via = aVia.Clone();
m_width = aVia.Diameter();
m_net = aVia.Net();
m_layers = aVia.Layers();
m_rank = aVia.Rank();
m_snapThreshhold = 0;
}
~LINE();
static inline bool ClassOf( const ITEM* aItem )
{
return aItem && LINE_T == aItem->Kind();
}
/// @copydoc ITEM::Clone()
virtual LINE* Clone() const override;
LINE& operator=( const LINE& aOther );
bool IsLinkedChecked() const
{
return IsLinked() && LinkCount() == ShapeCount();
}
///< Assign a shape to the line (a polyline/line chain).
void SetShape( const SHAPE_LINE_CHAIN& aLine )
{
m_line = aLine;
m_line.SetWidth( m_width );
}
///< Return the shape of the line.
const SHAPE* Shape() const override { return &m_line; }
///< Modifiable accessor to the underlying shape.
SHAPE_LINE_CHAIN& Line() { return m_line; }
const SHAPE_LINE_CHAIN& CLine() const { return m_line; }
int SegmentCount() const { return m_line.SegmentCount(); }
int PointCount() const { return m_line.PointCount(); }
int ArcCount() const { return m_line.ArcCount(); }
int ShapeCount() const { return m_line.ShapeCount(); }
///< Return the \a aIdx-th point of the line.
const VECTOR2I& CPoint( int aIdx ) const { return m_line.CPoint( aIdx ); }
const SEG CSegment( int aIdx ) const { return m_line.CSegment( aIdx ); }
///< Set line width.
void SetWidth( int aWidth )
{
m_width = aWidth;
m_line.SetWidth( aWidth );
}
///< Return line width.
int Width() const { return m_width; }
///< Return true if the line is geometrically identical as line \a aOther.
bool CompareGeometry( const LINE& aOther );
///< Reverse the point/vertex order
void Reverse();
///< Clip the line to the nearest obstacle, traversing from the line's start vertex (0).
///< Returns the clipped line.
const LINE ClipToNearestObstacle( NODE* aNode ) const;
///< Clip the line to a given range of vertices.
void ClipVertexRange ( int aStart, int aEnd );
///< Return the number of corners of angles specified by mask aAngles.
int CountCorners( int aAngles ) const;
/**
* Calculate a line tightly wrapping a convex hull of an obstacle object (aObstacle).
* @param aPrePath is the path from origin to the obstacle.
* @param aWalkaroundPath is the path around the obstacle.
* @param aPostPath is the path from obstacle till the end.
* @param aCW determines whether to walk around in clockwise or counter-clockwise direction.
*/
bool Walkaround( SHAPE_LINE_CHAIN aObstacle, SHAPE_LINE_CHAIN& aPre, SHAPE_LINE_CHAIN& aWalk,
SHAPE_LINE_CHAIN& aPost, bool aCw ) const;
bool Walkaround( const SHAPE_LINE_CHAIN& aObstacle, SHAPE_LINE_CHAIN& aPath, bool aCw ) const;
///< Print out all linked segments.
void ShowLinks() const;
bool EndsWithVia() const { return m_via != nullptr; }
void AppendVia( const VIA& aVia );
void RemoveVia();
VIA& Via() { return *m_via; }
const VIA& Via() const { return *m_via; }
void SetViaDiameter( int aDiameter ) { assert(m_via); m_via->SetDiameter( aDiameter ); }
void SetViaDrill( int aDrill ) { assert(m_via); m_via->SetDrill( aDrill ); }
virtual void Mark( int aMarker ) const override;
virtual void Unmark( int aMarker = -1 ) const override;
virtual int Marker() const override;
void SetBlockingObstacle( ITEM* aObstacle ) { m_blockingObstacle = aObstacle; }
ITEM* GetBlockingObstacle() const { return m_blockingObstacle; }
void DragSegment( const VECTOR2I& aP, int aIndex, bool aFreeAngle = false );
void DragCorner( const VECTOR2I& aP, int aIndex, bool aFreeAngle = false );
void SetRank( int aRank ) override;
int Rank() const override;
bool HasLoops() const;
bool HasLockedSegments() const;
void Clear();
OPT_BOX2I ChangedArea( const LINE* aOther ) const;
void SetSnapThreshhold( int aThreshhold )
{
m_snapThreshhold = aThreshhold;
}
int GetSnapThreshhold() const
{
return m_snapThreshhold;
}
private:
void dragSegment45( const VECTOR2I& aP, int aIndex );
void dragCorner45( const VECTOR2I& aP, int aIndex );
void dragSegmentFree( const VECTOR2I& aP, int aIndex );
void dragCornerFree( const VECTOR2I& aP, int aIndex );
VECTOR2I snapToNeighbourSegments( const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP,
int aIndex ) const;
VECTOR2I snapDraggedCorner( const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP,
int aIndex ) const;
SHAPE_LINE_CHAIN m_line; ///< The actual shape of the line.
int m_width; ///< Our width.
int m_snapThreshhold; ///< Width to smooth out jagged segments.
VIA* m_via;
ITEM* m_blockingObstacle; ///< For mark obstacle mode.
};
}
#endif // __PNS_LINE_H