kicad/pcbnew/pad.cpp

2106 lines
66 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2024 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <base_units.h>
#include <bitmaps.h>
#include <core/mirror.h>
#include <math/util.h> // for KiROUND
#include <eda_draw_frame.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_compound.h>
#include <geometry/shape_null.h>
#include <string_utils.h>
#include <i18n_utility.h>
#include <view/view.h>
#include <board.h>
#include <board_connected_item.h>
#include <board_design_settings.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_shape.h>
#include <connectivity/connectivity_data.h>
#include <eda_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <widgets/msgpanel.h>
#include <pcb_painter.h>
#include <properties/property_validators.h>
#include <wx/log.h>
#include <memory>
#include <macros.h>
#include <magic_enum.hpp>
#include "kiface_base.h"
#include "pcbnew_settings.h"
using KIGFX::PCB_PAINTER;
using KIGFX::PCB_RENDER_SETTINGS;
PAD::PAD( FOOTPRINT* parent ) :
BOARD_CONNECTED_ITEM( parent, PCB_PAD_T )
{
m_size.x = m_size.y = EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 60 ); // Default pad size 60 mils.
m_drill.x = m_drill.y = EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 30 ); // Default drill size 30 mils.
m_orient = ANGLE_0;
m_lengthPadToDie = 0;
if( m_parent && m_parent->Type() == PCB_FOOTPRINT_T )
m_pos = GetParent()->GetPosition();
SetShape( PAD_SHAPE::CIRCLE ); // Default pad shape is PAD_CIRCLE.
SetAnchorPadShape( PAD_SHAPE::CIRCLE ); // Default shape for custom shaped pads
// is PAD_CIRCLE.
SetDrillShape( PAD_DRILL_SHAPE_CIRCLE ); // Default pad drill shape is a circle.
m_attribute = PAD_ATTRIB::PTH; // Default pad type is plated through hole
SetProperty( PAD_PROP::NONE ); // no special fabrication property
// Parameters for round rect only:
m_roundedCornerScale = 0.25; // from IPC-7351C standard
// Parameters for chamfered rect only:
m_chamferScale = 0.2; // Size of chamfer: ratio of smallest of X,Y size
m_chamferPositions = RECT_NO_CHAMFER; // No chamfered corner
m_zoneConnection = ZONE_CONNECTION::INHERITED; // Use parent setting by default
m_thermalSpokeWidth = 0; // Use parent setting by default
m_thermalSpokeAngle = ANGLE_45; // Default for circular pads
m_thermalGap = 0; // Use parent setting by default
m_customShapeClearanceArea = CUST_PAD_SHAPE_IN_ZONE_OUTLINE;
// Set layers mask to default for a standard thru hole pad.
m_layerMask = PTHMask();
SetSubRatsnest( 0 ); // used in ratsnest calculations
SetDirty();
m_effectiveBoundingRadius = 0;
m_removeUnconnectedLayer = false;
m_keepTopBottomLayer = true;
m_zoneLayerOverrides.fill( ZLO_NONE );
}
PAD::PAD( const PAD& aOther ) :
BOARD_CONNECTED_ITEM( aOther.GetParent(), PCB_PAD_T )
{
PAD::operator=( aOther );
const_cast<KIID&>( m_Uuid ) = aOther.m_Uuid;
}
PAD& PAD::operator=( const PAD &aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
ImportSettingsFrom( aOther );
SetPadToDieLength( aOther.GetPadToDieLength() );
SetPosition( aOther.GetPosition() );
SetNumber( aOther.GetNumber() );
SetPinType( aOther.GetPinType() );
SetPinFunction( aOther.GetPinFunction() );
SetSubRatsnest( aOther.GetSubRatsnest() );
m_effectiveBoundingRadius = aOther.m_effectiveBoundingRadius;
m_removeUnconnectedLayer = aOther.m_removeUnconnectedLayer;
m_keepTopBottomLayer = aOther.m_keepTopBottomLayer;
return *this;
}
bool PAD::CanHaveNumber() const
{
// Aperture pads don't get a number
if( IsAperturePad() )
return false;
// NPTH pads don't get numbers
if( GetAttribute() == PAD_ATTRIB::NPTH )
return false;
return true;
}
bool PAD::IsLocked() const
{
if( GetParent() && GetParent()->IsLocked() )
return true;
return BOARD_ITEM::IsLocked();
};
bool PAD::SharesNetTieGroup( const PAD* aOther ) const
{
FOOTPRINT* parentFp = GetParentFootprint();
if( parentFp && parentFp->IsNetTie() && aOther->GetParentFootprint() == parentFp )
{
std::map<wxString, int> padToNetTieGroupMap = parentFp->MapPadNumbersToNetTieGroups();
int thisNetTieGroup = padToNetTieGroupMap[ GetNumber() ];
int otherNetTieGroup = padToNetTieGroupMap[ aOther->GetNumber() ];
return thisNetTieGroup >= 0 && thisNetTieGroup == otherNetTieGroup;
}
return false;
}
bool PAD::IsNoConnectPad() const
{
return m_pinType.Contains( wxT( "no_connect" ) );
}
bool PAD::IsFreePad() const
{
return GetShortNetname().StartsWith( wxT( "unconnected-(" ) )
&& m_pinType == wxT( "free" );
}
LSET PAD::PTHMask()
{
static LSET saved = LSET::AllCuMask() | LSET( 2, F_Mask, B_Mask );
return saved;
}
LSET PAD::SMDMask()
{
static LSET saved( 3, F_Cu, F_Paste, F_Mask );
return saved;
}
LSET PAD::ConnSMDMask()
{
static LSET saved( 2, F_Cu, F_Mask );
return saved;
}
LSET PAD::UnplatedHoleMask()
{
static LSET saved = LSET( 4, F_Cu, B_Cu, F_Mask, B_Mask );
return saved;
}
LSET PAD::ApertureMask()
{
static LSET saved( 1, F_Paste );
return saved;
}
bool PAD::IsFlipped() const
{
FOOTPRINT* parent = GetParentFootprint();
return ( parent && parent->GetLayer() == B_Cu );
}
PCB_LAYER_ID PAD::GetLayer() const
{
return BOARD_ITEM::GetLayer();
}
PCB_LAYER_ID PAD::GetPrincipalLayer() const
{
if( m_attribute == PAD_ATTRIB::SMD || m_attribute == PAD_ATTRIB::CONN || GetLayerSet().none() )
return m_layer;
else
return GetLayerSet().Seq().front();
}
bool PAD::FlashLayer( LSET aLayers ) const
{
for( PCB_LAYER_ID layer : aLayers.Seq() )
{
if( FlashLayer( layer ) )
return true;
}
return false;
}
bool PAD::FlashLayer( int aLayer, bool aOnlyCheckIfPermitted ) const
{
if( aLayer == UNDEFINED_LAYER )
return true;
if( !IsOnLayer( static_cast<PCB_LAYER_ID>( aLayer ) ) )
return false;
if( GetAttribute() == PAD_ATTRIB::NPTH && IsCopperLayer( aLayer ) )
{
if( GetShape() == PAD_SHAPE::CIRCLE && GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
{
if( GetOffset() == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize().x )
return false;
}
else if( GetShape() == PAD_SHAPE::OVAL && GetDrillShape() == PAD_DRILL_SHAPE_OBLONG )
{
if( GetOffset() == VECTOR2I( 0, 0 )
&& GetDrillSize().x >= GetSize().x && GetDrillSize().y >= GetSize().y )
{
return false;
}
}
}
if( LSET::FrontBoardTechMask().test( aLayer ) )
aLayer = F_Cu;
else if( LSET::BackBoardTechMask().test( aLayer ) )
aLayer = B_Cu;
if( GetAttribute() == PAD_ATTRIB::PTH && IsCopperLayer( aLayer ) )
{
/// Heat sink pads always get copper
if( GetProperty() == PAD_PROP::HEATSINK )
return true;
if( !m_removeUnconnectedLayer )
return true;
// Plated through hole pads need copper on the top/bottom layers for proper soldering
// Unless the user has removed them in the pad dialog
if( m_keepTopBottomLayer && ( aLayer == F_Cu || aLayer == B_Cu ) )
return true;
if( const BOARD* board = GetBoard() )
{
// Must be static to keep from raising its ugly head in performance profiles
static std::initializer_list<KICAD_T> types = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T,
PCB_PAD_T };
if( m_zoneLayerOverrides[ aLayer ] == ZLO_FORCE_FLASHED )
return true;
else if( aOnlyCheckIfPermitted )
return true;
else
return board->GetConnectivity()->IsConnectedOnLayer( this, aLayer, types );
}
}
return true;
}
int PAD::GetRoundRectCornerRadius() const
{
return KiROUND( std::min( m_size.x, m_size.y ) * m_roundedCornerScale );
}
void PAD::SetRoundRectCornerRadius( double aRadius )
{
int min_r = std::min( m_size.x, m_size.y );
if( min_r > 0 )
SetRoundRectRadiusRatio( aRadius / min_r );
}
void PAD::SetRoundRectRadiusRatio( double aRadiusScale )
{
m_roundedCornerScale = alg::clamp( 0.0, aRadiusScale, 0.5 );
SetDirty();
}
void PAD::SetChamferRectRatio( double aChamferScale )
{
m_chamferScale = alg::clamp( 0.0, aChamferScale, 0.5 );
SetDirty();
}
const std::shared_ptr<SHAPE_POLY_SET>& PAD::GetEffectivePolygon( ERROR_LOC aErrorLoc ) const
{
if( m_polyDirty[ aErrorLoc ] )
BuildEffectivePolygon( aErrorLoc );
return m_effectivePolygon[ aErrorLoc ];
}
std::shared_ptr<SHAPE> PAD::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING flashPTHPads ) const
{
if( aLayer == Edge_Cuts )
{
if( GetAttribute() == PAD_ATTRIB::PTH || GetAttribute() == PAD_ATTRIB::NPTH )
return GetEffectiveHoleShape();
else
return std::make_shared<SHAPE_NULL>();
}
if( GetAttribute() == PAD_ATTRIB::PTH )
{
bool flash;
if( flashPTHPads == FLASHING::NEVER_FLASHED )
flash = false;
else if( flashPTHPads == FLASHING::ALWAYS_FLASHED )
flash = true;
else
flash = FlashLayer( aLayer );
if( !flash )
{
if( GetAttribute() == PAD_ATTRIB::PTH )
return GetEffectiveHoleShape();
else
return std::make_shared<SHAPE_NULL>();
}
}
if( m_shapesDirty )
BuildEffectiveShapes( aLayer );
return m_effectiveShape;
}
std::shared_ptr<SHAPE_SEGMENT> PAD::GetEffectiveHoleShape() const
{
if( m_shapesDirty )
BuildEffectiveShapes( UNDEFINED_LAYER );
return m_effectiveHoleShape;
}
int PAD::GetBoundingRadius() const
{
if( m_polyDirty[ ERROR_OUTSIDE ] )
BuildEffectivePolygon( ERROR_OUTSIDE );
return m_effectiveBoundingRadius;
}
void PAD::BuildEffectiveShapes( PCB_LAYER_ID aLayer ) const
{
std::lock_guard<std::mutex> RAII_lock( m_shapesBuildingLock );
// If we had to wait for the lock then we were probably waiting for someone else to
// finish rebuilding the shapes. So check to see if they're clean now.
if( !m_shapesDirty )
return;
const BOARD* board = GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
m_effectiveShape = std::make_shared<SHAPE_COMPOUND>();
m_effectiveHoleShape = nullptr;
auto add = [this]( SHAPE* aShape )
{
m_effectiveShape->AddShape( aShape );
};
VECTOR2I shapePos = ShapePos(); // Fetch only once; rotation involves trig
PAD_SHAPE effectiveShape = GetShape();
if( GetShape() == PAD_SHAPE::CUSTOM )
effectiveShape = GetAnchorPadShape();
switch( effectiveShape )
{
case PAD_SHAPE::CIRCLE:
add( new SHAPE_CIRCLE( shapePos, m_size.x / 2 ) );
break;
case PAD_SHAPE::OVAL:
if( m_size.x == m_size.y ) // the oval pad is in fact a circle
{
add( new SHAPE_CIRCLE( shapePos, m_size.x / 2 ) );
}
else
{
VECTOR2I half_size = m_size / 2;
int half_width = std::min( half_size.x, half_size.y );
VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width );
RotatePoint( half_len, m_orient );
add( new SHAPE_SEGMENT( shapePos - half_len, shapePos + half_len, half_width * 2 ) );
}
break;
case PAD_SHAPE::RECTANGLE:
case PAD_SHAPE::TRAPEZOID:
case PAD_SHAPE::ROUNDRECT:
{
int r = ( effectiveShape == PAD_SHAPE::ROUNDRECT ) ? GetRoundRectCornerRadius() : 0;
VECTOR2I half_size( m_size.x / 2, m_size.y / 2 );
VECTOR2I trap_delta( 0, 0 );
if( r )
{
half_size -= VECTOR2I( r, r );
// Avoid degenerated shapes (0 length segments) that always create issues
// For roundrect pad very near a circle, use only a circle
const int min_len = pcbIUScale.mmToIU( 0.0001);
if( half_size.x < min_len && half_size.y < min_len )
{
add( new SHAPE_CIRCLE( shapePos, r ) );
break;
}
}
else if( effectiveShape == PAD_SHAPE::TRAPEZOID )
{
trap_delta = m_deltaSize / 2;
}
SHAPE_LINE_CHAIN corners;
corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x );
corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x );
corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x );
corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x );
corners.Rotate( m_orient );
corners.Move( shapePos );
// GAL renders rectangles faster than 4-point polygons so it's worth checking if our
// body shape is a rectangle.
if( corners.PointCount() == 4
&&
( ( corners.CPoint( 0 ).y == corners.CPoint( 1 ).y
&& corners.CPoint( 1 ).x == corners.CPoint( 2 ).x
&& corners.CPoint( 2 ).y == corners.CPoint( 3 ).y
&& corners.CPoint( 3 ).x == corners.CPoint( 0 ).x )
||
( corners.CPoint( 0 ).x == corners.CPoint( 1 ).x
&& corners.CPoint( 1 ).y == corners.CPoint( 2 ).y
&& corners.CPoint( 2 ).x == corners.CPoint( 3 ).x
&& corners.CPoint( 3 ).y == corners.CPoint( 0 ).y )
)
)
{
int width = std::abs( corners.CPoint( 2 ).x - corners.CPoint( 0 ).x );
int height = std::abs( corners.CPoint( 2 ).y - corners.CPoint( 0 ).y );
VECTOR2I pos( std::min( corners.CPoint( 2 ).x, corners.CPoint( 0 ).x ),
std::min( corners.CPoint( 2 ).y, corners.CPoint( 0 ).y ) );
add( new SHAPE_RECT( pos, width, height ) );
}
else
{
add( new SHAPE_SIMPLE( corners ) );
}
if( r )
{
add( new SHAPE_SEGMENT( corners.CPoint( 0 ), corners.CPoint( 1 ), r * 2 ) );
add( new SHAPE_SEGMENT( corners.CPoint( 1 ), corners.CPoint( 2 ), r * 2 ) );
add( new SHAPE_SEGMENT( corners.CPoint( 2 ), corners.CPoint( 3 ), r * 2 ) );
add( new SHAPE_SEGMENT( corners.CPoint( 3 ), corners.CPoint( 0 ), r * 2 ) );
}
}
break;
case PAD_SHAPE::CHAMFERED_RECT:
{
SHAPE_POLY_SET outline;
TransformRoundChamferedRectToPolygon( outline, shapePos, GetSize(), m_orient,
GetRoundRectCornerRadius(), GetChamferRectRatio(),
GetChamferPositions(), 0, maxError, ERROR_INSIDE );
add( new SHAPE_SIMPLE( outline.COutline( 0 ) ) );
}
break;
default:
wxFAIL_MSG( wxT( "PAD::buildEffectiveShapes: Unsupported pad shape: PAD_SHAPE::" )
+ wxString( std::string( magic_enum::enum_name( effectiveShape ) ) ) );
break;
}
if( GetShape() == PAD_SHAPE::CUSTOM )
{
for( const std::shared_ptr<PCB_SHAPE>& primitive : m_editPrimitives )
{
if( !primitive->IsProxyItem() )
{
for( SHAPE* shape : primitive->MakeEffectiveShapes() )
{
shape->Rotate( m_orient );
shape->Move( shapePos );
add( shape );
}
}
}
}
m_effectiveBoundingBox = m_effectiveShape->BBox();
// Hole shape
VECTOR2I half_size = m_drill / 2;
int half_width = std::min( half_size.x, half_size.y );
VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width );
RotatePoint( half_len, m_orient );
m_effectiveHoleShape = std::make_shared<SHAPE_SEGMENT>( m_pos - half_len, m_pos + half_len,
half_width * 2 );
m_effectiveBoundingBox.Merge( m_effectiveHoleShape->BBox() );
// All done
m_shapesDirty = false;
}
void PAD::BuildEffectivePolygon( ERROR_LOC aErrorLoc ) const
{
std::lock_guard<std::mutex> RAII_lock( m_polyBuildingLock );
// If we had to wait for the lock then we were probably waiting for someone else to
// finish rebuilding the shapes. So check to see if they're clean now.
if( !m_polyDirty[ aErrorLoc ] )
return;
const BOARD* board = GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
// Polygon
std::shared_ptr<SHAPE_POLY_SET>& effectivePolygon = m_effectivePolygon[ aErrorLoc ];
effectivePolygon = std::make_shared<SHAPE_POLY_SET>();
TransformShapeToPolygon( *effectivePolygon, UNDEFINED_LAYER, 0, maxError, aErrorLoc );
// Bounding radius
//
// PADSTACKS TODO: these will both need to cycle through all layers to get the largest
// values....
if( aErrorLoc == ERROR_OUTSIDE )
{
m_effectiveBoundingRadius = 0;
for( int cnt = 0; cnt < effectivePolygon->OutlineCount(); ++cnt )
{
const SHAPE_LINE_CHAIN& poly = effectivePolygon->COutline( cnt );
for( int ii = 0; ii < poly.PointCount(); ++ii )
{
int dist = KiROUND( ( poly.CPoint( ii ) - m_pos ).EuclideanNorm() );
m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, dist );
}
}
}
// All done
m_polyDirty[ aErrorLoc ] = false;
}
const BOX2I PAD::GetBoundingBox() const
{
if( m_shapesDirty )
BuildEffectiveShapes( UNDEFINED_LAYER );
return m_effectiveBoundingBox;
}
void PAD::SetAttribute( PAD_ATTRIB aAttribute )
{
if( m_attribute != aAttribute )
{
m_attribute = aAttribute;
switch( aAttribute )
{
case PAD_ATTRIB::PTH:
m_layerMask |= LSET::AllCuMask();
break;
case PAD_ATTRIB::SMD:
case PAD_ATTRIB::CONN:
if( m_layerMask.test( F_Cu ) )
{
m_layerMask &= ~LSET::AllCuMask();
m_layerMask.set( F_Cu );
}
else
{
m_layerMask &= ~LSET::AllCuMask();
m_layerMask.set( B_Cu );
}
m_drill = VECTOR2I( 0, 0 );
break;
case PAD_ATTRIB::NPTH:
m_number = wxEmptyString;
SetNetCode( NETINFO_LIST::UNCONNECTED );
break;
}
}
SetDirty();
}
void PAD::SetProperty( PAD_PROP aProperty )
{
m_property = aProperty;
SetDirty();
}
void PAD::SetOrientation( const EDA_ANGLE& aAngle )
{
m_orient = aAngle;
m_orient.Normalize();
SetDirty();
}
void PAD::SetFPRelativeOrientation( const EDA_ANGLE& aAngle )
{
if( FOOTPRINT* parentFP = GetParentFootprint() )
SetOrientation( aAngle + parentFP->GetOrientation() );
else
SetOrientation( aAngle );
}
EDA_ANGLE PAD::GetFPRelativeOrientation()
{
if( FOOTPRINT* parentFP = GetParentFootprint() )
return GetOrientation() - parentFP->GetOrientation();
else
return GetOrientation();
}
void PAD::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
{
if( aFlipLeftRight )
{
MIRROR( m_pos.x, aCentre.x );
MIRROR( m_offset.x, 0 );
MIRROR( m_deltaSize.x, 0 );
}
else
{
MIRROR( m_pos.y, aCentre.y );
MIRROR( m_offset.y, 0 );
MIRROR( m_deltaSize.y, 0 );
}
SetFPRelativeOrientation( -GetFPRelativeOrientation() );
auto mirrorBitFlags = []( int& aBitfield, int a, int b )
{
bool temp = aBitfield & a;
if( aBitfield & b )
aBitfield |= a;
else
aBitfield &= ~a;
if( temp )
aBitfield |= b;
else
aBitfield &= ~b;
};
if( aFlipLeftRight )
{
mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT );
mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_BOTTOM_LEFT, RECT_CHAMFER_BOTTOM_RIGHT );
}
else
{
mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_BOTTOM_LEFT );
mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_RIGHT, RECT_CHAMFER_BOTTOM_RIGHT );
}
// flip pads layers
// PADS items are currently on all copper layers, or
// currently, only on Front or Back layers.
// So the copper layers count is not taken in account
SetLayerSet( FlipLayerMask( m_layerMask ) );
// Flip the basic shapes, in custom pads
FlipPrimitives( aFlipLeftRight );
SetDirty();
}
void PAD::FlipPrimitives( bool aFlipLeftRight )
{
for( std::shared_ptr<PCB_SHAPE>& primitive : m_editPrimitives )
primitive->Flip( VECTOR2I( 0, 0 ), aFlipLeftRight );
SetDirty();
}
VECTOR2I PAD::ShapePos() const
{
if( m_offset.x == 0 && m_offset.y == 0 )
return m_pos;
VECTOR2I loc_offset = m_offset;
RotatePoint( loc_offset, m_orient );
VECTOR2I shape_pos = m_pos + loc_offset;
return shape_pos;
}
bool PAD::IsOnCopperLayer() const
{
if( GetAttribute() == PAD_ATTRIB::NPTH )
{
// NPTH pads have no plated hole cylinder. If their annular ring size is 0 or
// negative, then they have no annular ring either.
switch( GetShape() )
{
case PAD_SHAPE::CIRCLE:
if( m_offset == VECTOR2I( 0, 0 ) && m_size.x <= m_drill.x )
return false;
break;
case PAD_SHAPE::OVAL:
if( m_offset == VECTOR2I( 0, 0 ) && m_size.x <= m_drill.x && m_size.y <= m_drill.y )
return false;
break;
default:
// We could subtract the hole polygon from the shape polygon for these, but it
// would be expensive and we're probably well out of the common use cases....
break;
}
}
return ( GetLayerSet() & LSET::AllCuMask() ).any();
}
std::optional<int> PAD::GetLocalClearance( wxString* aSource ) const
{
if( m_clearance.has_value() && aSource )
*aSource = _( "pad" );
return m_clearance;
}
std::optional<int> PAD::GetClearanceOverrides( wxString* aSource ) const
{
if( m_clearance.has_value() )
return GetLocalClearance( aSource );
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
return parentFootprint->GetClearanceOverrides( aSource );
return std::optional<int>();
}
int PAD::GetOwnClearance( PCB_LAYER_ID aLayer, wxString* aSource ) const
{
DRC_CONSTRAINT c;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
if( GetAttribute() == PAD_ATTRIB::NPTH )
c = bds.m_DRCEngine->EvalRules( HOLE_CLEARANCE_CONSTRAINT, this, nullptr, aLayer );
else
c = bds.m_DRCEngine->EvalRules( CLEARANCE_CONSTRAINT, this, nullptr, aLayer );
}
if( c.Value().HasMin() )
{
if( aSource )
*aSource = c.GetName();
return c.Value().Min();
}
return 0;
}
int PAD::GetSolderMaskExpansion() const
{
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only. ALL other pads, even those that don't actually have
// any copper (such as NPTH pads with holes the same size as the pad) get mask expansion.
if( ( m_layerMask & LSET::AllCuMask() ).none() )
return 0;
std::optional<int> margin = m_solderMaskMargin;
if( !margin.has_value() )
{
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
margin = parentFootprint->GetLocalSolderMaskMargin();
}
if( !margin.has_value() )
{
if( const BOARD* brd = GetBoard() )
margin = brd->GetDesignSettings().m_SolderMaskExpansion;
}
int marginValue = margin.value_or( 0 );
// ensure mask have a size always >= 0
if( marginValue < 0 )
{
int minsize = -std::min( m_size.x, m_size.y ) / 2;
if( marginValue < minsize )
marginValue = minsize;
}
return marginValue;
}
VECTOR2I PAD::GetSolderPasteMargin() const
{
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only. ALL other pads, even those that don't actually have
// any copper (such as NPTH pads with holes the same size as the pad) get paste expansion.
if( ( m_layerMask & LSET::AllCuMask() ).none() )
return VECTOR2I( 0, 0 );
std::optional<int> margin = m_solderPasteMargin;
std::optional<double> mratio = m_solderPasteMarginRatio;
if( !margin.has_value() )
{
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
margin = parentFootprint->GetLocalSolderPasteMargin();
}
if( !margin.has_value() )
{
if( const BOARD* board = GetBoard() )
margin = board->GetDesignSettings().m_SolderPasteMargin;
}
if( !mratio.has_value() )
{
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
mratio = parentFootprint->GetLocalSolderPasteMarginRatio();
}
if( !mratio.has_value() )
{
if( const BOARD* board = GetBoard() )
mratio = board->GetDesignSettings().m_SolderPasteMarginRatio;
}
VECTOR2I pad_margin;
pad_margin.x = margin.value_or( 0 ) + KiROUND( m_size.x * mratio.value_or( 0 ) );
pad_margin.y = margin.value_or( 0 ) + KiROUND( m_size.y * mratio.value_or( 0 ) );
// ensure mask have a size always >= 0
if( m_padShape != PAD_SHAPE::CUSTOM )
{
if( pad_margin.x < -m_size.x / 2 )
pad_margin.x = -m_size.x / 2;
if( pad_margin.y < -m_size.y / 2 )
pad_margin.y = -m_size.y / 2;
}
return pad_margin;
}
ZONE_CONNECTION PAD::GetZoneConnectionOverrides( wxString* aSource ) const
{
ZONE_CONNECTION connection = m_zoneConnection;
if( connection != ZONE_CONNECTION::INHERITED )
{
if( aSource )
*aSource = _( "pad" );
}
if( connection == ZONE_CONNECTION::INHERITED )
{
if( FOOTPRINT* parentFootprint = GetParentFootprint() )
connection = parentFootprint->GetZoneConnectionOverrides( aSource );
}
return connection;
}
int PAD::GetLocalSpokeWidthOverride( wxString* aSource ) const
{
if( m_thermalSpokeWidth > 0 && aSource )
*aSource = _( "pad" );
return m_thermalSpokeWidth;
}
int PAD::GetLocalThermalGapOverride( wxString* aSource ) const
{
if( m_thermalGap > 0 && aSource )
*aSource = _( "pad" );
return m_thermalGap;
}
void PAD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
FOOTPRINT* parentFootprint = static_cast<FOOTPRINT*>( m_parent );
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME )
{
if( parentFootprint )
aList.emplace_back( _( "Footprint" ), parentFootprint->GetReference() );
}
aList.emplace_back( _( "Pad" ), m_number );
if( !GetPinFunction().IsEmpty() )
aList.emplace_back( _( "Pin Name" ), GetPinFunction() );
if( !GetPinType().IsEmpty() )
aList.emplace_back( _( "Pin Type" ), GetPinType() );
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME )
{
aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) );
aList.emplace_back( _( "Resolved Netclass" ),
UnescapeString( GetEffectiveNetClass()->GetName() ) );
if( IsLocked() )
aList.emplace_back( _( "Status" ), _( "Locked" ) );
}
if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN )
aList.emplace_back( _( "Layer" ), layerMaskDescribe() );
// Show the pad shape, attribute and property
wxString props = ShowPadAttr();
if( GetProperty() != PAD_PROP::NONE )
props += ',';
switch( GetProperty() )
{
case PAD_PROP::NONE: break;
case PAD_PROP::BGA: props += _( "BGA" ); break;
case PAD_PROP::FIDUCIAL_GLBL: props += _( "Fiducial global" ); break;
case PAD_PROP::FIDUCIAL_LOCAL: props += _( "Fiducial local" ); break;
case PAD_PROP::TESTPOINT: props += _( "Test point" ); break;
case PAD_PROP::HEATSINK: props += _( "Heat sink" ); break;
case PAD_PROP::CASTELLATED: props += _( "Castellated" ); break;
}
aList.emplace_back( ShowPadShape(), props );
if( ( GetShape() == PAD_SHAPE::CIRCLE || GetShape() == PAD_SHAPE::OVAL )
&& m_size.x == m_size.y )
{
aList.emplace_back( _( "Diameter" ), aFrame->MessageTextFromValue( m_size.x ) );
}
else
{
aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( m_size.x ) );
aList.emplace_back( _( "Height" ), aFrame->MessageTextFromValue( m_size.y ) );
}
EDA_ANGLE fp_orient = parentFootprint ? parentFootprint->GetOrientation() : ANGLE_0;
EDA_ANGLE pad_orient = GetOrientation() - fp_orient;
pad_orient.Normalize180();
if( !fp_orient.IsZero() )
msg.Printf( wxT( "%g(+ %g)" ), pad_orient.AsDegrees(), fp_orient.AsDegrees() );
else
msg.Printf( wxT( "%g" ), GetOrientation().AsDegrees() );
aList.emplace_back( _( "Rotation" ), msg );
if( GetPadToDieLength() )
{
aList.emplace_back( _( "Length in Package" ),
aFrame->MessageTextFromValue( GetPadToDieLength() ) );
}
if( m_drill.x > 0 || m_drill.y > 0 )
{
if( GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
{
aList.emplace_back( _( "Hole" ),
wxString::Format( wxT( "%s" ),
aFrame->MessageTextFromValue( m_drill.x ) ) );
}
else
{
aList.emplace_back( _( "Hole X / Y" ),
wxString::Format( wxT( "%s / %s" ),
aFrame->MessageTextFromValue( m_drill.x ),
aFrame->MessageTextFromValue( m_drill.y ) ) );
}
}
wxString source;
int clearance = GetOwnClearance( UNDEFINED_LAYER, &source );
if( !source.IsEmpty() )
{
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ),
aFrame->MessageTextFromValue( clearance ) ),
wxString::Format( _( "(from %s)" ),
source ) );
}
#if 0
// useful for debug only
aList.emplace_back( wxT( "UUID" ), m_Uuid.AsString() );
#endif
}
bool PAD::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
VECTOR2I delta = aPosition - GetPosition();
int boundingRadius = GetBoundingRadius() + aAccuracy;
if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) )
return false;
return GetEffectivePolygon( ERROR_INSIDE )->Contains( aPosition, -1, aAccuracy );
}
bool PAD::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
BOX2I bbox = GetBoundingBox();
if( aContained )
{
return arect.Contains( bbox );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bbox ) )
return false;
const std::shared_ptr<SHAPE_POLY_SET>& poly = GetEffectivePolygon( ERROR_INSIDE );
int count = poly->TotalVertices();
for( int ii = 0; ii < count; ii++ )
{
VECTOR2I vertex = poly->CVertex( ii );
VECTOR2I vertexNext = poly->CVertex( ( ii + 1 ) % count );
// Test if the point is within aRect
if( arect.Contains( vertex ) )
return true;
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
return false;
}
}
int PAD::Compare( const PAD* aPadRef, const PAD* aPadCmp )
{
int diff;
if( ( diff = static_cast<int>( aPadRef->GetShape() ) -
static_cast<int>( aPadCmp->GetShape() ) ) != 0 )
return diff;
if( ( diff = static_cast<int>( aPadRef->m_attribute ) -
static_cast<int>( aPadCmp->m_attribute ) ) != 0 )
return diff;
if( ( diff = aPadRef->m_drillShape - aPadCmp->m_drillShape ) != 0 )
return diff;
if( ( diff = aPadRef->m_drill.x - aPadCmp->m_drill.x ) != 0 )
return diff;
if( ( diff = aPadRef->m_drill.y - aPadCmp->m_drill.y ) != 0 )
return diff;
if( ( diff = aPadRef->m_size.x - aPadCmp->m_size.x ) != 0 )
return diff;
if( ( diff = aPadRef->m_size.y - aPadCmp->m_size.y ) != 0 )
return diff;
if( ( diff = aPadRef->m_offset.x - aPadCmp->m_offset.x ) != 0 )
return diff;
if( ( diff = aPadRef->m_offset.y - aPadCmp->m_offset.y ) != 0 )
return diff;
if( ( diff = aPadRef->m_deltaSize.x - aPadCmp->m_deltaSize.x ) != 0 )
return diff;
if( ( diff = aPadRef->m_deltaSize.y - aPadCmp->m_deltaSize.y ) != 0 )
return diff;
if( ( diff = aPadRef->m_roundedCornerScale - aPadCmp->m_roundedCornerScale ) != 0 )
return diff;
if( ( diff = aPadRef->m_chamferPositions - aPadCmp->m_chamferPositions ) != 0 )
return diff;
if( ( diff = aPadRef->m_chamferScale - aPadCmp->m_chamferScale ) != 0 )
return diff;
if( ( diff = static_cast<int>( aPadRef->m_editPrimitives.size() ) -
static_cast<int>( aPadCmp->m_editPrimitives.size() ) ) != 0 )
return diff;
// @todo: Compare custom pad primitives for pads that have the same number of primitives
// here. Currently there is no compare function for PCB_SHAPE objects.
// Dick: specctra_export needs this
// Lorenzo: gencad also needs it to implement padstacks!
#if __cplusplus >= 201103L
long long d = aPadRef->m_layerMask.to_ullong() - aPadCmp->m_layerMask.to_ullong();
if( d < 0 )
return -1;
else if( d > 0 )
return 1;
return 0;
#else
// these strings are not typically constructed, since we don't get here often.
std::string s1 = aPadRef->m_layerMask.to_string();
std::string s2 = aPadCmp->m_layerMask.to_string();
return s1.compare( s2 );
#endif
}
void PAD::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
RotatePoint( m_pos, aRotCentre, aAngle );
m_orient += aAngle;
m_orient.Normalize();
SetDirty();
}
wxString PAD::ShowPadShape() const
{
switch( GetShape() )
{
case PAD_SHAPE::CIRCLE: return _( "Circle" );
case PAD_SHAPE::OVAL: return _( "Oval" );
case PAD_SHAPE::RECTANGLE: return _( "Rect" );
case PAD_SHAPE::TRAPEZOID: return _( "Trap" );
case PAD_SHAPE::ROUNDRECT: return _( "Roundrect" );
case PAD_SHAPE::CHAMFERED_RECT: return _( "Chamferedrect" );
case PAD_SHAPE::CUSTOM: return _( "CustomShape" );
default: return wxT( "???" );
}
}
wxString PAD::ShowPadAttr() const
{
switch( GetAttribute() )
{
case PAD_ATTRIB::PTH: return _( "PTH" );
case PAD_ATTRIB::SMD: return _( "SMD" );
case PAD_ATTRIB::CONN: return _( "Conn" );
case PAD_ATTRIB::NPTH: return _( "NPTH" );
default: return wxT( "???" );
}
}
wxString PAD::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const
{
if( GetNumber().IsEmpty() )
{
if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN )
{
return wxString::Format( _( "Pad %s of %s on %s" ),
GetNetnameMsg(),
GetParentFootprint()->GetReference(),
layerMaskDescribe() );
}
else if( GetAttribute() == PAD_ATTRIB::NPTH )
{
return wxString::Format( _( "NPTH pad of %s" ), GetParentFootprint()->GetReference() );
}
else
{
return wxString::Format( _( "PTH pad %s of %s" ),
GetNetnameMsg(),
GetParentFootprint()->GetReference() );
}
}
else
{
if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN )
{
return wxString::Format( _( "Pad %s %s of %s on %s" ),
GetNumber(),
GetNetnameMsg(),
GetParentFootprint()->GetReference(),
layerMaskDescribe() );
}
else if( GetAttribute() == PAD_ATTRIB::NPTH )
{
return wxString::Format( _( "NPTH of %s" ), GetParentFootprint()->GetReference() );
}
else
{
return wxString::Format( _( "PTH pad %s %s of %s" ),
GetNumber(),
GetNetnameMsg(),
GetParentFootprint()->GetReference() );
}
}
}
BITMAPS PAD::GetMenuImage() const
{
return BITMAPS::pad;
}
EDA_ITEM* PAD::Clone() const
{
return new PAD( *this );
}
void PAD::ViewGetLayers( int aLayers[], int& aCount ) const
{
aCount = 0;
// These 2 types of pads contain a hole
if( m_attribute == PAD_ATTRIB::PTH )
{
aLayers[aCount++] = LAYER_PAD_PLATEDHOLES;
aLayers[aCount++] = LAYER_PAD_HOLEWALLS;
}
if( m_attribute == PAD_ATTRIB::NPTH )
aLayers[aCount++] = LAYER_NON_PLATEDHOLES;
if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) )
{
// Multi layer pad
aLayers[aCount++] = LAYER_PADS_TH;
aLayers[aCount++] = LAYER_PAD_NETNAMES;
}
else if( IsOnLayer( F_Cu ) )
{
aLayers[aCount++] = LAYER_PADS_SMD_FR;
// Is this a PTH pad that has only front copper? If so, we need to also display the
// net name on the PTH netname layer so that it isn't blocked by the drill hole.
if( m_attribute == PAD_ATTRIB::PTH )
aLayers[aCount++] = LAYER_PAD_NETNAMES;
else
aLayers[aCount++] = LAYER_PAD_FR_NETNAMES;
}
else if( IsOnLayer( B_Cu ) )
{
aLayers[aCount++] = LAYER_PADS_SMD_BK;
// Is this a PTH pad that has only back copper? If so, we need to also display the
// net name on the PTH netname layer so that it isn't blocked by the drill hole.
if( m_attribute == PAD_ATTRIB::PTH )
aLayers[aCount++] = LAYER_PAD_NETNAMES;
else
aLayers[aCount++] = LAYER_PAD_BK_NETNAMES;
}
else
{
// Internal layers only. (Not yet supported in GUI, but is being used by Python
// footprint generators and will be needed anyway once pad stacks are supported.)
for ( int internal = In1_Cu; internal < In30_Cu; ++internal )
{
if( IsOnLayer( (PCB_LAYER_ID) internal ) )
aLayers[aCount++] = internal;
}
}
// Check non-copper layers. This list should include all the layers that the
// footprint editor allows a pad to be placed on.
static const PCB_LAYER_ID layers_mech[] = { F_Mask, B_Mask, F_Paste, B_Paste,
F_Adhes, B_Adhes, F_SilkS, B_SilkS, Dwgs_User, Eco1_User, Eco2_User };
for( PCB_LAYER_ID each_layer : layers_mech )
{
if( IsOnLayer( each_layer ) )
aLayers[aCount++] = each_layer;
}
}
double PAD::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
constexpr double HIDE = std::numeric_limits<double>::max();
PCB_PAINTER* painter = static_cast<PCB_PAINTER*>( aView->GetPainter() );
PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings();
const BOARD* board = GetBoard();
// Meta control for hiding all pads
if( !aView->IsLayerVisible( LAYER_PADS ) )
return HIDE;
// Handle Render tab switches
if( ( GetAttribute() == PAD_ATTRIB::PTH || GetAttribute() == PAD_ATTRIB::NPTH )
&& !aView->IsLayerVisible( LAYER_PADS_TH ) )
{
return HIDE;
}
if( !IsFlipped() && !aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) )
return HIDE;
if( IsFlipped() && !aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) )
return HIDE;
if( IsFrontLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PADS_SMD_FR ) )
return HIDE;
if( IsBackLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PADS_SMD_BK ) )
return HIDE;
LSET visible = board->GetVisibleLayers() & board->GetEnabledLayers();
if( IsHoleLayer( aLayer ) )
{
if( !( visible & LSET::PhysicalLayersMask() ).any() )
return HIDE;
}
else if( IsNetnameLayer( aLayer ) )
{
if( renderSettings->GetHighContrast() )
{
// Hide netnames unless pad is flashed to a high-contrast layer
if( !FlashLayer( renderSettings->GetPrimaryHighContrastLayer() ) )
return HIDE;
}
else
{
// Hide netnames unless pad is flashed to a visible layer
if( !FlashLayer( visible ) )
return HIDE;
}
// Netnames will be shown only if zoom is appropriate
int divisor = std::min( GetBoundingBox().GetWidth(), GetBoundingBox().GetHeight() );
// Pad sizes can be zero briefly when someone is typing a number like "0.5" in the pad
// properties dialog
if( divisor == 0 )
return HIDE;
return ( double ) pcbIUScale.mmToIU( 5 ) / divisor;
}
// Passed all tests; show.
return 0.0;
}
const BOX2I PAD::ViewBBox() const
{
// Bounding box includes soldermask too. Remember mask and/or paste margins can be < 0
int solderMaskMargin = std::max( GetSolderMaskExpansion(), 0 );
VECTOR2I solderPasteMargin = VECTOR2D( GetSolderPasteMargin() );
BOX2I bbox = GetBoundingBox();
int clearance = 0;
// If we're drawing clearance lines then get the biggest possible clearance
if( PCBNEW_SETTINGS* cfg = dynamic_cast<PCBNEW_SETTINGS*>( Kiface().KifaceSettings() ) )
{
if( cfg && cfg->m_Display.m_PadClearance && GetBoard() )
clearance = GetBoard()->GetMaxClearanceValue();
}
// Look for the biggest possible bounding box
int xMargin = std::max( solderMaskMargin, solderPasteMargin.x ) + clearance;
int yMargin = std::max( solderMaskMargin, solderPasteMargin.y ) + clearance;
return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ),
VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) );
}
void PAD::ImportSettingsFrom( const PAD& aMasterPad )
{
SetShape( aMasterPad.GetShape() );
SetLayerSet( aMasterPad.GetLayerSet() );
SetAttribute( aMasterPad.GetAttribute() );
SetProperty( aMasterPad.GetProperty() );
// Must be after setting attribute and layerSet
if( !CanHaveNumber() )
SetNumber( wxEmptyString );
// I am not sure the m_LengthPadToDie should be imported, because this is a parameter
// really specific to a given pad (JPC).
#if 0
SetPadToDieLength( aMasterPad.GetPadToDieLength() );
#endif
// The pad orientation, for historical reasons is the pad rotation + parent rotation.
EDA_ANGLE pad_rot = aMasterPad.GetOrientation();
if( aMasterPad.GetParentFootprint() )
pad_rot -= aMasterPad.GetParentFootprint()->GetOrientation();
if( GetParentFootprint() )
pad_rot += GetParentFootprint()->GetOrientation();
SetOrientation( pad_rot );
SetRemoveUnconnected( aMasterPad.GetRemoveUnconnected() );
SetKeepTopBottom( aMasterPad.GetKeepTopBottom() );
SetSize( aMasterPad.GetSize() );
SetDelta( VECTOR2I( 0, 0 ) );
SetOffset( aMasterPad.GetOffset() );
SetDrillSize( aMasterPad.GetDrillSize() );
SetDrillShape( aMasterPad.GetDrillShape() );
SetRoundRectRadiusRatio( aMasterPad.GetRoundRectRadiusRatio() );
SetChamferRectRatio( aMasterPad.GetChamferRectRatio() );
SetChamferPositions( aMasterPad.GetChamferPositions() );
switch( aMasterPad.GetShape() )
{
case PAD_SHAPE::TRAPEZOID:
SetDelta( aMasterPad.GetDelta() );
break;
case PAD_SHAPE::CIRCLE:
// ensure size.y == size.x
SetSize( VECTOR2I( GetSize().x, GetSize().x ) );
break;
default:
;
}
switch( aMasterPad.GetAttribute() )
{
case PAD_ATTRIB::SMD:
case PAD_ATTRIB::CONN:
// These pads do not have a hole (they are expected to be on one external copper layer)
SetDrillSize( VECTOR2I( 0, 0 ) );
break;
default:
;
}
// copy also local settings:
SetLocalClearance( aMasterPad.GetLocalClearance() );
SetLocalSolderMaskMargin( aMasterPad.GetLocalSolderMaskMargin() );
SetLocalSolderPasteMargin( aMasterPad.GetLocalSolderPasteMargin() );
SetLocalSolderPasteMarginRatio( aMasterPad.GetLocalSolderPasteMarginRatio() );
SetLocalZoneConnection( aMasterPad.GetLocalZoneConnection() );
SetThermalSpokeWidth( aMasterPad.GetThermalSpokeWidth() );
SetThermalSpokeAngle( aMasterPad.GetThermalSpokeAngle() );
SetThermalGap( aMasterPad.GetThermalGap() );
SetCustomShapeInZoneOpt( aMasterPad.GetCustomShapeInZoneOpt() );
m_teardropParams = aMasterPad.m_teardropParams;
// Add or remove custom pad shapes:
ReplacePrimitives( aMasterPad.GetPrimitives() );
SetAnchorPadShape( aMasterPad.GetAnchorPadShape() );
SetDirty();
}
void PAD::swapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_PAD_T );
std::swap( *this, *static_cast<PAD*>( aImage ) );
}
bool PAD::TransformHoleToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError,
ERROR_LOC aErrorLoc ) const
{
VECTOR2I drillsize = GetDrillSize();
if( !drillsize.x || !drillsize.y )
return false;
std::shared_ptr<SHAPE_SEGMENT> slot = GetEffectiveHoleShape();
TransformOvalToPolygon( aBuffer, slot->GetSeg().A, slot->GetSeg().B,
slot->GetWidth() + aClearance * 2, aError, aErrorLoc );
return true;
}
void PAD::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance,
int aMaxError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const
{
wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for pads." ) );
// minimal segment count to approximate a circle to create the polygonal pad shape
// This minimal value is mainly for very small pads, like SM0402.
// Most of time pads are using the segment count given by aError value.
const int pad_min_seg_per_circle_count = 16;
int dx = m_size.x / 2;
int dy = m_size.y / 2;
VECTOR2I padShapePos = ShapePos(); // Note: for pad having a shape offset, the pad
// position is NOT the shape position
switch( GetShape() )
{
case PAD_SHAPE::CIRCLE:
case PAD_SHAPE::OVAL:
// Note: dx == dy is not guaranteed for circle pads in legacy boards
if( dx == dy || ( GetShape() == PAD_SHAPE::CIRCLE ) )
{
TransformCircleToPolygon( aBuffer, padShapePos, dx + aClearance, aMaxError, aErrorLoc,
pad_min_seg_per_circle_count );
}
else
{
int half_width = std::min( dx, dy );
VECTOR2I delta( dx - half_width, dy - half_width );
RotatePoint( delta, m_orient );
TransformOvalToPolygon( aBuffer, padShapePos - delta, padShapePos + delta,
( half_width + aClearance ) * 2, aMaxError, aErrorLoc,
pad_min_seg_per_circle_count );
}
break;
case PAD_SHAPE::TRAPEZOID:
case PAD_SHAPE::RECTANGLE:
{
int ddx = GetShape() == PAD_SHAPE::TRAPEZOID ? m_deltaSize.x / 2 : 0;
int ddy = GetShape() == PAD_SHAPE::TRAPEZOID ? m_deltaSize.y / 2 : 0;
SHAPE_POLY_SET outline;
TransformTrapezoidToPolygon( outline, padShapePos, m_size, m_orient, ddx, ddy, aClearance,
aMaxError, aErrorLoc );
aBuffer.Append( outline );
break;
}
case PAD_SHAPE::CHAMFERED_RECT:
case PAD_SHAPE::ROUNDRECT:
{
bool doChamfer = GetShape() == PAD_SHAPE::CHAMFERED_RECT;
SHAPE_POLY_SET outline;
TransformRoundChamferedRectToPolygon( outline, padShapePos, m_size, m_orient,
GetRoundRectCornerRadius(),
doChamfer ? GetChamferRectRatio() : 0,
doChamfer ? GetChamferPositions() : 0,
aClearance, aMaxError, aErrorLoc );
aBuffer.Append( outline );
break;
}
case PAD_SHAPE::CUSTOM:
{
SHAPE_POLY_SET outline;
MergePrimitivesAsPolygon( &outline, aErrorLoc );
outline.Rotate( m_orient );
outline.Move( VECTOR2I( padShapePos ) );
if( aClearance > 0 || aErrorLoc == ERROR_OUTSIDE )
{
if( aErrorLoc == ERROR_OUTSIDE )
aClearance += aMaxError;
outline.Inflate( aClearance, CORNER_STRATEGY::ROUND_ALL_CORNERS, aMaxError );
outline.Fracture( SHAPE_POLY_SET::PM_FAST );
}
else if( aClearance < 0 )
{
// Negative clearances are primarily for drawing solder paste layer, so we don't
// worry ourselves overly about which side the error is on.
// aClearance is negative so this is actually a deflate
outline.Inflate( aClearance, CORNER_STRATEGY::ALLOW_ACUTE_CORNERS, aMaxError );
outline.Fracture( SHAPE_POLY_SET::PM_FAST );
}
aBuffer.Append( outline );
break;
}
default:
wxFAIL_MSG( wxT( "PAD::TransformShapeToPolygon no implementation for " )
+ wxString( std::string( magic_enum::enum_name( GetShape() ) ) ) );
break;
}
}
bool PAD::operator==( const BOARD_ITEM& aOther ) const
{
if( Type() != aOther.Type() )
return false;
if( m_parent && aOther.GetParent() && m_parent->m_Uuid != aOther.GetParent()->m_Uuid )
return false;
const PAD& other = static_cast<const PAD&>( aOther );
if( GetShape() != other.GetShape() )
return false;
if( GetPosition() != other.GetPosition() )
return false;
if( GetAttribute() != other.GetAttribute() )
return false;
if( GetSize() != other.GetSize() )
return false;
if( GetOffset() != other.GetOffset() )
return false;
if( GetDrillSize() != other.GetDrillSize() )
return false;
if( GetDrillShape() != other.GetDrillShape() )
return false;
if( GetRoundRectRadiusRatio() != other.GetRoundRectRadiusRatio() )
return false;
if( GetChamferRectRatio() != other.GetChamferRectRatio() )
return false;
if( GetChamferPositions() != other.GetChamferPositions() )
return false;
if( GetOrientation() != other.GetOrientation() )
return false;
if( GetLocalZoneConnection() != other.GetLocalZoneConnection() )
return false;
if( GetThermalSpokeWidth() != other.GetThermalSpokeWidth() )
return false;
if( GetThermalSpokeAngle() != other.GetThermalSpokeAngle() )
return false;
if( GetThermalGap() != other.GetThermalGap() )
return false;
if( GetCustomShapeInZoneOpt() != other.GetCustomShapeInZoneOpt() )
return false;
if( GetPrimitives().size() != other.GetPrimitives().size() )
return false;
for( size_t ii = 0; ii < GetPrimitives().size(); ii++ )
{
if( GetPrimitives()[ii] != other.GetPrimitives()[ii] )
return false;
}
if( GetAnchorPadShape() != other.GetAnchorPadShape() )
return false;
if( GetLocalClearance() != other.GetLocalClearance() )
return false;
if( GetLocalSolderMaskMargin() != other.GetLocalSolderMaskMargin() )
return false;
if( GetLocalSolderPasteMargin() != other.GetLocalSolderPasteMargin() )
return false;
if( GetLocalSolderPasteMarginRatio() != other.GetLocalSolderPasteMarginRatio() )
return false;
if( GetLocalSpokeWidthOverride() != other.GetLocalSpokeWidthOverride() )
return false;
if( GetLayerSet() != other.GetLayerSet() )
return false;
return true;
}
double PAD::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
if( m_parent->m_Uuid != aOther.GetParent()->m_Uuid )
return 0.0;
const PAD& other = static_cast<const PAD&>( aOther );
double similarity = 1.0;
if( GetShape() != other.GetShape() )
similarity *= 0.9;
if( GetPosition() != other.GetPosition() )
similarity *= 0.9;
if( GetAttribute() != other.GetAttribute() )
similarity *= 0.9;
if( GetSize() != other.GetSize() )
similarity *= 0.9;
if( GetOffset() != other.GetOffset() )
similarity *= 0.9;
if( GetDrillSize() != other.GetDrillSize() )
similarity *= 0.9;
if( GetDrillShape() != other.GetDrillShape() )
similarity *= 0.9;
if( GetRoundRectRadiusRatio() != other.GetRoundRectRadiusRatio() )
similarity *= 0.9;
if( GetChamferRectRatio() != other.GetChamferRectRatio() )
similarity *= 0.9;
if( GetChamferPositions() != other.GetChamferPositions() )
similarity *= 0.9;
if( GetOrientation() != other.GetOrientation() )
similarity *= 0.9;
if( GetLocalZoneConnection() != other.GetLocalZoneConnection() )
similarity *= 0.9;
if( GetThermalSpokeWidth() != other.GetThermalSpokeWidth() )
similarity *= 0.9;
if( GetThermalSpokeAngle() != other.GetThermalSpokeAngle() )
similarity *= 0.9;
if( GetThermalGap() != other.GetThermalGap() )
similarity *= 0.9;
if( GetCustomShapeInZoneOpt() != other.GetCustomShapeInZoneOpt() )
similarity *= 0.9;
if( GetPrimitives().size() != other.GetPrimitives().size() )
similarity *= 0.9;
if( GetAnchorPadShape() != other.GetAnchorPadShape() )
similarity *= 0.9;
if( GetLocalClearance() != other.GetLocalClearance() )
similarity *= 0.9;
if( GetLocalSolderMaskMargin() != other.GetLocalSolderMaskMargin() )
similarity *= 0.9;
if( GetLocalSolderPasteMargin() != other.GetLocalSolderPasteMargin() )
similarity *= 0.9;
if( GetLocalSolderPasteMarginRatio() != other.GetLocalSolderPasteMarginRatio() )
similarity *= 0.9;
if( GetLocalSpokeWidthOverride() != other.GetLocalSpokeWidthOverride() )
similarity *= 0.9;
if( GetLayerSet() != other.GetLayerSet() )
similarity *= 0.9;
return similarity;
}
static struct PAD_DESC
{
PAD_DESC()
{
ENUM_MAP<PAD_ATTRIB>::Instance()
.Map( PAD_ATTRIB::PTH, _HKI( "Through-hole" ) )
.Map( PAD_ATTRIB::SMD, _HKI( "SMD" ) )
.Map( PAD_ATTRIB::CONN, _HKI( "Edge connector" ) )
.Map( PAD_ATTRIB::NPTH, _HKI( "NPTH, mechanical" ) );
ENUM_MAP<PAD_SHAPE>::Instance()
.Map( PAD_SHAPE::CIRCLE, _HKI( "Circle" ) )
.Map( PAD_SHAPE::RECTANGLE, _HKI( "Rectangle" ) )
.Map( PAD_SHAPE::OVAL, _HKI( "Oval" ) )
.Map( PAD_SHAPE::TRAPEZOID, _HKI( "Trapezoid" ) )
.Map( PAD_SHAPE::ROUNDRECT, _HKI( "Rounded rectangle" ) )
.Map( PAD_SHAPE::CHAMFERED_RECT, _HKI( "Chamfered rectangle" ) )
.Map( PAD_SHAPE::CUSTOM, _HKI( "Custom" ) );
ENUM_MAP<PAD_PROP>::Instance()
.Map( PAD_PROP::NONE, _HKI( "None" ) )
.Map( PAD_PROP::BGA, _HKI( "BGA pad" ) )
.Map( PAD_PROP::FIDUCIAL_GLBL, _HKI( "Fiducial, global to board" ) )
.Map( PAD_PROP::FIDUCIAL_LOCAL, _HKI( "Fiducial, local to footprint" ) )
.Map( PAD_PROP::TESTPOINT, _HKI( "Test point pad" ) )
.Map( PAD_PROP::HEATSINK, _HKI( "Heatsink pad" ) )
.Map( PAD_PROP::CASTELLATED, _HKI( "Castellated pad" ) );
ENUM_MAP<ZONE_CONNECTION>& zcMap = ENUM_MAP<ZONE_CONNECTION>::Instance();
if( zcMap.Choices().GetCount() == 0 )
{
zcMap.Undefined( ZONE_CONNECTION::INHERITED );
zcMap.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) )
.Map( ZONE_CONNECTION::NONE, _HKI( "None" ) )
.Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) )
.Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) )
.Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) );
}
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( PAD );
propMgr.InheritsAfter( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
propMgr.Mask( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ) );
propMgr.AddProperty( new PROPERTY<PAD, double>( _HKI( "Orientation" ),
&PAD::SetOrientationDegrees, &PAD::GetOrientationDegrees,
PROPERTY_DISPLAY::PT_DEGREE ) );
auto isCopperPad =
[]( INSPECTABLE* aItem ) -> bool
{
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
return pad->GetAttribute() != PAD_ATTRIB::NPTH;
return false;
};
auto padCanHaveHole =
[]( INSPECTABLE* aItem ) -> bool
{
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
{
return pad->GetAttribute() == PAD_ATTRIB::PTH
|| pad->GetAttribute() == PAD_ATTRIB::NPTH;
}
return false;
};
propMgr.OverrideAvailability( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ),
_HKI( "Net" ), isCopperPad );
propMgr.OverrideAvailability( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ),
_HKI( "Net Class" ), isCopperPad );
const wxString groupPad = _HKI( "Pad Properties" );
auto padType = new PROPERTY_ENUM<PAD, PAD_ATTRIB>( _HKI( "Pad Type" ),
&PAD::SetAttribute, &PAD::GetAttribute );
propMgr.AddProperty( padType, groupPad );
auto shape = new PROPERTY_ENUM<PAD, PAD_SHAPE>( _HKI( "Pad Shape" ),
&PAD::SetShape, &PAD::GetShape );
propMgr.AddProperty( shape, groupPad );
auto padNumber = new PROPERTY<PAD, wxString>( _HKI( "Pad Number" ),
&PAD::SetNumber, &PAD::GetNumber );
padNumber->SetAvailableFunc( isCopperPad );
propMgr.AddProperty( padNumber, groupPad );
propMgr.AddProperty( new PROPERTY<PAD, wxString>( _HKI( "Pin Name" ),
NO_SETTER( PAD, wxString ), &PAD::GetPinFunction ), groupPad )
.SetIsHiddenFromLibraryEditors();
propMgr.AddProperty( new PROPERTY<PAD, wxString>( _HKI( "Pin Type" ),
NO_SETTER( PAD, wxString ), &PAD::GetPinType ), groupPad )
.SetIsHiddenFromLibraryEditors();
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Size X" ),
&PAD::SetSizeX, &PAD::GetSizeX,
PROPERTY_DISPLAY::PT_SIZE ), groupPad );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Size Y" ),
&PAD::SetSizeY, &PAD::GetSizeY,
PROPERTY_DISPLAY::PT_SIZE ), groupPad )
.SetAvailableFunc(
[=]( INSPECTABLE* aItem ) -> bool
{
// Circle pads have no usable y-size
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
return pad->GetShape() != PAD_SHAPE::CIRCLE;
return true;
} );
auto roundRadiusRatio = new PROPERTY<PAD, double>( _HKI( "Corner Radius Ratio" ),
&PAD::SetRoundRectRadiusRatio, &PAD::GetRoundRectRadiusRatio );
roundRadiusRatio->SetAvailableFunc(
[=]( INSPECTABLE* aItem ) -> bool
{
if( PAD* pad = dynamic_cast<PAD*>( aItem ) )
return pad->GetShape() == PAD_SHAPE::ROUNDRECT;
return false;
} );
propMgr.AddProperty( roundRadiusRatio, groupPad );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Hole Size X" ),
&PAD::SetDrillSizeX, &PAD::GetDrillSizeX,
PROPERTY_DISPLAY::PT_SIZE ), groupPad )
.SetWriteableFunc( padCanHaveHole )
.SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Hole Size Y" ),
&PAD::SetDrillSizeY, &PAD::GetDrillSizeY,
PROPERTY_DISPLAY::PT_SIZE ), groupPad )
.SetWriteableFunc( padCanHaveHole )
.SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator );
propMgr.AddProperty( new PROPERTY_ENUM<PAD, PAD_PROP>( _HKI( "Fabrication Property" ),
&PAD::SetProperty, &PAD::GetProperty ), groupPad );
auto padToDie = new PROPERTY<PAD, int>( _HKI( "Pad To Die Length" ),
&PAD::SetPadToDieLength, &PAD::GetPadToDieLength,
PROPERTY_DISPLAY::PT_SIZE );
padToDie->SetAvailableFunc( isCopperPad );
propMgr.AddProperty( padToDie, groupPad );
const wxString groupOverrides = _HKI( "Overrides" );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<int>>(
_HKI( "Clearance Override" ),
&PAD::SetLocalClearance, &PAD::GetLocalClearance,
PROPERTY_DISPLAY::PT_SIZE ), groupOverrides );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<int>>(
_HKI( "Soldermask Margin Override" ),
&PAD::SetLocalSolderMaskMargin, &PAD::GetLocalSolderMaskMargin,
PROPERTY_DISPLAY::PT_SIZE ), groupOverrides );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<int>>(
_HKI( "Solderpaste Margin Override" ),
&PAD::SetLocalSolderPasteMargin, &PAD::GetLocalSolderPasteMargin,
PROPERTY_DISPLAY::PT_SIZE ), groupOverrides );
propMgr.AddProperty( new PROPERTY<PAD, std::optional<double>>(
_HKI( "Solderpaste Margin Ratio Override" ),
&PAD::SetLocalSolderPasteMarginRatio, &PAD::GetLocalSolderPasteMarginRatio,
PROPERTY_DISPLAY::PT_RATIO ),
groupOverrides );
propMgr.AddProperty( new PROPERTY_ENUM<PAD, ZONE_CONNECTION>(
_HKI( "Zone Connection Style" ),
&PAD::SetLocalZoneConnection, &PAD::GetLocalZoneConnection ), groupOverrides );
constexpr int minZoneWidth = pcbIUScale.mmToIU( ZONE_THICKNESS_MIN_VALUE_MM );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Thermal Relief Spoke Width" ),
&PAD::SetThermalSpokeWidth, &PAD::GetThermalSpokeWidth,
PROPERTY_DISPLAY::PT_SIZE ), groupOverrides )
.SetValidator( PROPERTY_VALIDATORS::RangeIntValidator<minZoneWidth, INT_MAX> );
propMgr.AddProperty( new PROPERTY<PAD, double>( _HKI( "Thermal Relief Spoke Angle" ),
&PAD::SetThermalSpokeAngleDegrees, &PAD::GetThermalSpokeAngleDegrees,
PROPERTY_DISPLAY::PT_DEGREE ), groupOverrides );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Thermal Relief Gap" ),
&PAD::SetThermalGap, &PAD::GetThermalGap,
PROPERTY_DISPLAY::PT_SIZE ), groupOverrides )
.SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator );
// TODO delta, drill shape offset, layer set
}
} _PAD_DESC;
ENUM_TO_WXANY( PAD_ATTRIB );
ENUM_TO_WXANY( PAD_SHAPE );
ENUM_TO_WXANY( PAD_PROP );