kicad/pcbnew/router/pns_joint.h

334 lines
8.7 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PNS_JOINT_H
#define __PNS_JOINT_H
#include <vector>
#include <math/vector2d.h>
#include "pns_item.h"
#include "pns_segment.h"
#include "pns_itemset.h"
namespace PNS {
/**
* A 2D point on a given set of layers and belonging to a certain net, that links
* together a number of board items.
*
* A hash table of joints is used by the router to follow connectivity between the items.
*/
class JOINT : public ITEM
{
public:
///< Joints are hashed by their position, layers and net.
///< Linked items are, obviously, not hashed.
struct HASH_TAG
{
VECTOR2I pos;
NET_HANDLE net;
};
struct JOINT_TAG_HASH
{
std::size_t operator()( const JOINT::HASH_TAG& aP ) const
{
using std::size_t;
using std::hash;
using std::string;
return ( (hash<int>()( aP.pos.x )
^ (hash<int>()( aP.pos.y ) << 1) ) >> 1 )
^ (hash<void*>()( aP.net ) << 1);
}
};
JOINT() :
ITEM( JOINT_T ), m_tag(), m_locked( false ) {}
JOINT( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, NET_HANDLE aNet = nullptr ) :
ITEM( JOINT_T )
{
m_tag.pos = aPos;
m_tag.net = aNet;
m_layers = aLayers;
m_locked = false;
}
JOINT( const JOINT& aB ) :
ITEM( JOINT_T )
{
m_layers = aB.m_layers;
m_tag.pos = aB.m_tag.pos;
m_tag.net = aB.m_tag.net;
m_linkedItems = aB.m_linkedItems;
m_layers = aB.m_layers;
m_locked = aB.m_locked;
}
ITEM* Clone( ) const override
{
assert( false );
return nullptr;
}
/**
* Checks if a joint connects two segments of the same net, layer, and width.
* @param aAllowLockedSegs will consider joints between locked and unlocked segments as trivial
* @return true if the joint is a trivial line corner
*/
bool IsLineCorner( bool aAllowLockedSegs = false ) const
{
if( m_linkedItems.Size() == 2 && m_linkedItems.Count( SEGMENT_T | ARC_T ) == 2 )
{
LINKED_ITEM* seg1 = static_cast<LINKED_ITEM*>( m_linkedItems[0] );
LINKED_ITEM* seg2 = static_cast<LINKED_ITEM*>( m_linkedItems[1] );
// joints between segments of different widths are not considered trivial.
return seg1->Width() == seg2->Width();
}
else if( m_linkedItems.Size() > 2 && m_linkedItems.Count( SEGMENT_T | ARC_T ) == 2 )
{
if( !aAllowLockedSegs )
{
return false;
}
// There will be multiple VVIAs on joints between two locked segments, because we
// naively add a VVIA to each end of a locked segment.
else if( ( m_linkedItems.Size() - m_linkedItems.Count( SEGMENT_T | ARC_T ) )
== m_linkedItems.Count( VIA_T ) )
{
const LINKED_ITEM* seg1 = nullptr;
const LINKED_ITEM* seg2 = nullptr;
const VIA* via = nullptr;
bool hasNonVirtualVia = false;
for( const ITEM* item : m_linkedItems.CItems() )
{
if( item->Kind() == VIA_T )
{
via = static_cast<const VIA*>( item );
hasNonVirtualVia |= !via->IsVirtual();
}
else if( item->Kind() == SEGMENT_T || item->Kind() == ARC_T )
{
if( !seg1 )
seg1 = static_cast<const LINKED_ITEM*>( item );
else
seg2 = static_cast<const LINKED_ITEM*>( item );
}
}
if( !via || hasNonVirtualVia )
return false;
assert ( seg1 && seg2 );
return seg1->Width() == seg2->Width();
}
}
return false;
}
bool IsNonFanoutVia() const
{
int vias = 0;
int segs = 0;
int realItems = 0;
for( const ITEM* item : m_linkedItems.CItems() )
{
if( item->Kind() == VIA_T )
{
if( static_cast<const VIA*>( item )->IsVirtual() )
continue;
vias++;
}
else if( item->Kind() == SEGMENT_T || item->Kind() == ARC_T )
{
segs++;
}
realItems++;
}
return ( realItems == 3 && vias == 1 && segs == 2 );
}
bool IsStitchingVia() const
{
return ( m_linkedItems.Size() == 1 && m_linkedItems.Count( VIA_T ) == 1 );
}
bool IsTraceWidthChange() const
{
if( m_linkedItems.Size() != 2 )
return false;
if( m_linkedItems.Count( SEGMENT_T ) != 2)
return false;
SEGMENT* seg1 = static_cast<SEGMENT*>( m_linkedItems[0] );
SEGMENT* seg2 = static_cast<SEGMENT*>( m_linkedItems[1] );
return seg1->Width() != seg2->Width();
}
///< Link the joint to a given board item (when it's added to the NODE).
void Link( ITEM* aItem )
{
if( m_linkedItems.Contains( aItem ) )
return;
m_linkedItems.Add( aItem );
}
///< Unlink a given board item from the joint (upon its removal from a NODE)
///< @return true if the joint became dangling after unlinking.
bool Unlink( ITEM* aItem )
{
m_linkedItems.Erase( aItem );
return m_linkedItems.Size() == 0;
}
///< For trivial joints, return the segment adjacent to (aCurrent). For non-trival ones,
///< return NULL, indicating the end of line.
LINKED_ITEM* NextSegment( ITEM* aCurrent, bool aAllowLockedSegs = false ) const
{
if( !IsLineCorner( aAllowLockedSegs ) )
return nullptr;
return static_cast<LINKED_ITEM*>( m_linkedItems[m_linkedItems[0] == aCurrent ? 1 : 0] );
}
VIA* Via() const
{
for( ITEM* item : m_linkedItems.CItems() )
{
if( item->OfKind( VIA_T ) )
return static_cast<VIA*>( item ); // fixme: const correctness
}
return nullptr;
}
/// trivial accessors
const HASH_TAG& Tag() const
{
return m_tag;
}
const VECTOR2I& Pos() const
{
return m_tag.pos;
}
NET_HANDLE Net() const override
{
return m_tag.net;
}
const std::vector<ITEM*>& LinkList() const
{
return m_linkedItems.CItems();
}
const ITEM_SET& CLinks() const
{
return m_linkedItems;
}
ITEM_SET& Links()
{
return m_linkedItems;
}
int LinkCount( int aMask = -1 ) const
{
return m_linkedItems.Count( aMask );
}
void Dump() const;
bool operator==( const JOINT& rhs ) const
{
return m_tag.pos == rhs.m_tag.pos && m_tag.net == rhs.m_tag.net;
}
void Merge( const JOINT& aJoint )
{
if( !Overlaps( aJoint ) )
return;
m_layers.Merge( aJoint.m_layers );
if( aJoint.IsLocked() )
m_locked = true;
for( ITEM* item : aJoint.LinkList() )
{
m_linkedItems.Add( item );
}
}
bool Overlaps( const JOINT& rhs ) const
{
return m_tag.pos == rhs.m_tag.pos &&
m_tag.net == rhs.m_tag.net && m_layers.Overlaps( rhs.m_layers );
}
void Lock( bool aLock = true )
{
m_locked = aLock;
}
bool IsLocked() const
{
return m_locked;
}
private:
///< hash tag for unordered_multimap
HASH_TAG m_tag;
///< list of items linked to this joint
ITEM_SET m_linkedItems;
///< locked (non-movable) flag
bool m_locked;
};
inline bool operator==( JOINT::HASH_TAG const& aP1, JOINT::HASH_TAG const& aP2 )
{
return aP1.pos == aP2.pos && aP1.net == aP2.net;
}
}
#endif // __PNS_JOINT_H