kicad/pcbnew/tools/pcb_grid_helper.cpp

1001 lines
33 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 CERN
* Copyright (C) 2018-2023 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <functional>
#include <pcb_dimension.h>
#include <pcb_shape.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_group.h>
#include <pcb_track.h>
#include <zone.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <macros.h>
#include <math/util.h> // for KiROUND
#include <painter.h>
#include <pcbnew_settings.h>
#include <tool/tool_manager.h>
#include <tools/pcb_tool_base.h>
#include <view/view.h>
#include "pcb_grid_helper.h"
PCB_GRID_HELPER::PCB_GRID_HELPER( TOOL_MANAGER* aToolMgr, MAGNETIC_SETTINGS* aMagneticSettings ) :
GRID_HELPER( aToolMgr ),
m_magneticSettings( aMagneticSettings )
{
KIGFX::VIEW* view = m_toolMgr->GetView();
KIGFX::RENDER_SETTINGS* settings = view->GetPainter()->GetSettings();
KIGFX::COLOR4D auxItemsColor = settings->GetLayerColor( LAYER_AUX_ITEMS );
KIGFX::COLOR4D umbilicalColor = settings->GetLayerColor( LAYER_ANCHOR );
m_viewAxis.SetSize( 20000 );
m_viewAxis.SetStyle( KIGFX::ORIGIN_VIEWITEM::CROSS );
m_viewAxis.SetColor( auxItemsColor.WithAlpha( 0.4 ) );
m_viewAxis.SetDrawAtZero( true );
view->Add( &m_viewAxis );
view->SetVisible( &m_viewAxis, false );
m_viewSnapPoint.SetStyle( KIGFX::ORIGIN_VIEWITEM::CIRCLE_CROSS );
m_viewSnapPoint.SetColor( auxItemsColor );
m_viewSnapPoint.SetDrawAtZero( true );
view->Add( &m_viewSnapPoint );
view->SetVisible( &m_viewSnapPoint, false );
m_viewSnapLine.SetStyle( KIGFX::ORIGIN_VIEWITEM::DASH_LINE );
m_viewSnapLine.SetColor( umbilicalColor );
m_viewSnapLine.SetDrawAtZero( true );
view->Add( &m_viewSnapLine );
view->SetVisible( &m_viewSnapLine, false );
}
VECTOR2I PCB_GRID_HELPER::AlignToSegment( const VECTOR2I& aPoint, const SEG& aSeg )
{
const int c_gridSnapEpsilon_sq = 4;
VECTOR2I aligned = Align( aPoint );
if( !m_enableSnap )
return aligned;
std::vector<VECTOR2I> points;
const SEG testSegments[] = { SEG( aligned, aligned + VECTOR2( 1, 0 ) ),
SEG( aligned, aligned + VECTOR2( 0, 1 ) ),
SEG( aligned, aligned + VECTOR2( 1, 1 ) ),
SEG( aligned, aligned + VECTOR2( 1, -1 ) ) };
for( const SEG& seg : testSegments )
{
OPT_VECTOR2I vec = aSeg.IntersectLines( seg );
if( vec && aSeg.SquaredDistance( *vec ) <= c_gridSnapEpsilon_sq )
points.push_back( *vec );
}
VECTOR2I nearest = aligned;
SEG::ecoord min_d_sq = VECTOR2I::ECOORD_MAX;
// Snap by distance between pointer and endpoints
for( const VECTOR2I& pt : { aSeg.A, aSeg.B } )
{
SEG::ecoord d_sq = ( pt - aPoint ).SquaredEuclideanNorm();
if( d_sq < min_d_sq )
{
min_d_sq = d_sq;
nearest = pt;
}
}
// Snap by distance between aligned cursor and intersections
for( const VECTOR2I& pt : points )
{
SEG::ecoord d_sq = ( pt - aligned ).SquaredEuclideanNorm();
if( d_sq < min_d_sq )
{
min_d_sq = d_sq;
nearest = pt;
}
}
return nearest;
}
VECTOR2I PCB_GRID_HELPER::AlignToArc( const VECTOR2I& aPoint, const SHAPE_ARC& aArc )
{
VECTOR2I aligned = Align( aPoint );
if( !m_enableSnap )
return aligned;
std::vector<VECTOR2I> points;
aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 1, 0 ) ), &points );
aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 0, 1 ) ), &points );
aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 1, 1 ) ), &points );
aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 1, -1 ) ), &points );
VECTOR2I nearest = aligned;
SEG::ecoord min_d_sq = VECTOR2I::ECOORD_MAX;
// Snap by distance between pointer and endpoints
for( const VECTOR2I& pt : { aArc.GetP0(), aArc.GetP1() } )
{
SEG::ecoord d_sq = ( pt - aPoint ).SquaredEuclideanNorm();
if( d_sq < min_d_sq )
{
min_d_sq = d_sq;
nearest = pt;
}
}
// Snap by distance between aligned cursor and intersections
for( const VECTOR2I& pt : points )
{
SEG::ecoord d_sq = ( pt - aligned ).SquaredEuclideanNorm();
if( d_sq < min_d_sq )
{
min_d_sq = d_sq;
nearest = pt;
}
}
return nearest;
}
VECTOR2I PCB_GRID_HELPER::AlignToNearestPad( const VECTOR2I& aMousePos, PADS& aPads )
{
clearAnchors();
for( BOARD_ITEM* item : aPads )
computeAnchors( item, aMousePos, true );
double minDist = std::numeric_limits<double>::max();
ANCHOR* nearestOrigin = nullptr;
for( ANCHOR& a : m_anchors )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( a.item );
if( ( ORIGIN & a.flags ) != ORIGIN )
continue;
if( !item->HitTest( aMousePos ) )
continue;
double dist = a.Distance( aMousePos );
if( dist < minDist )
{
minDist = dist;
nearestOrigin = &a;
}
}
return nearestOrigin ? nearestOrigin->pos : aMousePos;
}
VECTOR2I PCB_GRID_HELPER::BestDragOrigin( const VECTOR2I &aMousePos,
std::vector<BOARD_ITEM*>& aItems,
GRID_HELPER_GRIDS aGrid,
const SELECTION_FILTER_OPTIONS* aSelectionFilter )
{
clearAnchors();
for( BOARD_ITEM* item : aItems )
computeAnchors( item, aMousePos, true, aSelectionFilter );
double worldScale = m_toolMgr->GetView()->GetGAL()->GetWorldScale();
double lineSnapMinCornerDistance = 50.0 / worldScale;
ANCHOR* nearestOutline = nearestAnchor( aMousePos, OUTLINE, LSET::AllLayersMask() );
ANCHOR* nearestCorner = nearestAnchor( aMousePos, CORNER, LSET::AllLayersMask() );
ANCHOR* nearestOrigin = nearestAnchor( aMousePos, ORIGIN, LSET::AllLayersMask() );
ANCHOR* best = nullptr;
double minDist = std::numeric_limits<double>::max();
if( nearestOrigin )
{
minDist = nearestOrigin->Distance( aMousePos );
best = nearestOrigin;
}
if( nearestCorner )
{
double dist = nearestCorner->Distance( aMousePos );
if( dist < minDist )
{
minDist = dist;
best = nearestCorner;
}
}
if( nearestOutline )
{
double dist = nearestOutline->Distance( aMousePos );
if( minDist > lineSnapMinCornerDistance && dist < minDist )
best = nearestOutline;
}
return best ? best->pos : aMousePos;
}
VECTOR2I PCB_GRID_HELPER::BestSnapAnchor( const VECTOR2I& aOrigin, BOARD_ITEM* aReferenceItem,
GRID_HELPER_GRIDS aGrid )
{
LSET layers;
std::vector<BOARD_ITEM*> item;
if( aReferenceItem )
{
layers = aReferenceItem->GetLayerSet();
item.push_back( aReferenceItem );
}
else
{
layers = LSET::AllLayersMask();
}
return BestSnapAnchor( aOrigin, layers, aGrid, item );
}
VECTOR2I PCB_GRID_HELPER::BestSnapAnchor( const VECTOR2I& aOrigin, const LSET& aLayers,
GRID_HELPER_GRIDS aGrid,
const std::vector<BOARD_ITEM*>& aSkip )
{
// Tuning constant: snap radius in screen space
const int snapSize = 25;
// Snapping distance is in screen space, clamped to the current grid to ensure that the grid
// points that are visible can always be snapped to.
// see https://gitlab.com/kicad/code/kicad/-/issues/5638
// see https://gitlab.com/kicad/code/kicad/-/issues/7125
// see https://gitlab.com/kicad/code/kicad/-/issues/12303
double snapScale = snapSize / m_toolMgr->GetView()->GetGAL()->GetWorldScale();
// warning: GetVisibleGrid().x sometimes returns a value > INT_MAX. Intermediate calculation
// needs double.
int snapRange = KiROUND( m_enableGrid ? std::min( snapScale, GetVisibleGrid().x ) : snapScale );
int snapDist = snapRange;
//Respect limits of coordinates representation
BOX2I bb;
bb.SetOrigin( GetClampedCoords<double, int>( VECTOR2D( aOrigin ) - snapRange / 2.0 ) );
bb.SetEnd( GetClampedCoords<double, int>( VECTOR2D( aOrigin ) + snapRange / 2.0 ) );
clearAnchors();
for( BOARD_ITEM* item : queryVisible( bb, aSkip ) )
computeAnchors( item, aOrigin );
ANCHOR* nearest = nearestAnchor( aOrigin, SNAPPABLE, aLayers );
VECTOR2I nearestGrid = Align( aOrigin, aGrid );
if( nearest )
snapDist = nearest->Distance( aOrigin );
// Existing snap lines need priority over new snaps
if( m_snapItem && m_enableSnapLine && m_enableSnap )
{
bool snapLine = false;
int x_dist = std::abs( m_viewSnapLine.GetPosition().x - aOrigin.x );
int y_dist = std::abs( m_viewSnapLine.GetPosition().y - aOrigin.y );
/// Allows de-snapping from the line if you are closer to another snap point
if( x_dist < snapRange && ( !nearest || snapDist > snapRange ) )
{
nearestGrid.x = m_viewSnapLine.GetPosition().x;
snapLine = true;
}
if( y_dist < snapRange && ( !nearest || snapDist > snapRange ) )
{
nearestGrid.y = m_viewSnapLine.GetPosition().y;
snapLine = true;
}
if( snapLine && m_skipPoint != VECTOR2I( m_viewSnapLine.GetPosition() ) )
{
m_viewSnapLine.SetEndPosition( nearestGrid );
if( m_toolMgr->GetView()->IsVisible( &m_viewSnapLine ) )
m_toolMgr->GetView()->Update( &m_viewSnapLine, KIGFX::GEOMETRY );
else
m_toolMgr->GetView()->SetVisible( &m_viewSnapLine, true );
return nearestGrid;
}
}
if( nearest && m_enableSnap )
{
if( nearest->Distance( aOrigin ) <= snapRange )
{
m_viewSnapPoint.SetPosition( nearest->pos );
m_viewSnapLine.SetPosition( nearest->pos );
m_toolMgr->GetView()->SetVisible( &m_viewSnapLine, false );
if( m_toolMgr->GetView()->IsVisible( &m_viewSnapPoint ) )
m_toolMgr->GetView()->Update( &m_viewSnapPoint, KIGFX::GEOMETRY);
else
m_toolMgr->GetView()->SetVisible( &m_viewSnapPoint, true );
m_snapItem = nearest;
return nearest->pos;
}
}
m_snapItem = nullptr;
m_toolMgr->GetView()->SetVisible( &m_viewSnapPoint, false );
m_toolMgr->GetView()->SetVisible( &m_viewSnapLine, false );
return nearestGrid;
}
BOARD_ITEM* PCB_GRID_HELPER::GetSnapped() const
{
if( !m_snapItem )
return nullptr;
return static_cast<BOARD_ITEM*>( m_snapItem->item );
}
GRID_HELPER_GRIDS PCB_GRID_HELPER::GetItemGrid( const EDA_ITEM* aItem ) const
{
if( !aItem )
return GRID_CURRENT;
switch( aItem->Type() )
{
case PCB_FOOTPRINT_T:
case PCB_PAD_T:
return GRID_CONNECTABLE;
case PCB_TEXT_T:
case PCB_FIELD_T:
return GRID_TEXT;
case PCB_SHAPE_T:
case PCB_DIMENSION_T:
case PCB_BITMAP_T:
case PCB_TEXTBOX_T:
return GRID_GRAPHICS;
case PCB_TRACE_T:
case PCB_ARC_T:
return GRID_WIRES;
case PCB_VIA_T:
return GRID_VIAS;
default:
return GRID_CURRENT;
}
}
VECTOR2D PCB_GRID_HELPER::GetGridSize( GRID_HELPER_GRIDS aGrid ) const
{
const GRID_SETTINGS& grid = m_toolMgr->GetSettings()->m_Window.grid;
VECTOR2D g = m_toolMgr->GetView()->GetGAL()->GetGridSize();
if( !grid.overrides_enabled )
return g;
switch( aGrid )
{
case GRID_CONNECTABLE:
if( grid.override_connected )
{
g.x = g.y = EDA_UNIT_UTILS::UI::DoubleValueFromString(
pcbIUScale, EDA_UNITS::MILLIMETRES, grid.override_connected_size );
}
break;
case GRID_WIRES:
if( grid.override_wires )
{
g.x = g.y = EDA_UNIT_UTILS::UI::DoubleValueFromString( pcbIUScale, EDA_UNITS::MILLIMETRES,
grid.override_wires_size );
}
break;
case GRID_VIAS:
if( grid.override_vias )
{
g.x = g.y = EDA_UNIT_UTILS::UI::DoubleValueFromString( pcbIUScale, EDA_UNITS::MILLIMETRES,
grid.override_vias_size );
}
break;
case GRID_TEXT:
if( grid.override_text )
{
g.x = g.y = EDA_UNIT_UTILS::UI::DoubleValueFromString( pcbIUScale, EDA_UNITS::MILLIMETRES,
grid.override_text_size );
}
break;
case GRID_GRAPHICS:
if( grid.override_graphics )
{
g.x = g.y = EDA_UNIT_UTILS::UI::DoubleValueFromString( pcbIUScale, EDA_UNITS::MILLIMETRES,
grid.override_graphics_size );
}
break;
default:
break;
}
return g;
}
std::set<BOARD_ITEM*> PCB_GRID_HELPER::queryVisible( const BOX2I& aArea,
const std::vector<BOARD_ITEM*>& aSkip ) const
{
std::set<BOARD_ITEM*> items;
std::vector<KIGFX::VIEW::LAYER_ITEM_PAIR> selectedItems;
PCB_TOOL_BASE* currentTool = static_cast<PCB_TOOL_BASE*>( m_toolMgr->GetCurrentTool() );
KIGFX::VIEW* view = m_toolMgr->GetView();
RENDER_SETTINGS* settings = view->GetPainter()->GetSettings();
const std::set<int>& activeLayers = settings->GetHighContrastLayers();
bool isHighContrast = settings->GetHighContrast();
view->Query( aArea, selectedItems );
for( const auto& [ viewItem, layer ] : selectedItems )
{
BOARD_ITEM* boardItem = static_cast<BOARD_ITEM*>( viewItem );
if( currentTool->IsFootprintEditor() )
{
// If we are in the footprint editor, don't use the footprint itself
if( boardItem->Type() == PCB_FOOTPRINT_T )
continue;
}
else
{
// If we are not in the footprint editor, don't use footprint-editor-private items
if( FOOTPRINT* parentFP = boardItem->GetParentFootprint() )
{
if( IsPcbLayer( layer ) && parentFP->GetPrivateLayers().test( layer ) )
continue;
}
}
// The boardItem must be visible and on an active layer
if( view->IsVisible( boardItem )
&& ( !isHighContrast || activeLayers.count( layer ) )
&& boardItem->ViewGetLOD( layer, view ) < view->GetScale() )
{
items.insert ( boardItem );
}
}
for( BOARD_ITEM* skipItem : aSkip )
items.erase( skipItem );
return items;
}
void PCB_GRID_HELPER::computeAnchors( BOARD_ITEM* aItem, const VECTOR2I& aRefPos, bool aFrom,
const SELECTION_FILTER_OPTIONS* aSelectionFilter )
{
KIGFX::VIEW* view = m_toolMgr->GetView();
RENDER_SETTINGS* settings = view->GetPainter()->GetSettings();
const std::set<int>& activeLayers = settings->GetHighContrastLayers();
bool isHighContrast = settings->GetHighContrast();
auto handlePadShape =
[&]( PAD* aPad )
{
addAnchor( aPad->GetPosition(), ORIGIN | SNAPPABLE, aPad );
/// If we are getting a drag point, we don't want to center the edge of pads
if( aFrom )
return;
switch( aPad->GetShape() )
{
case PAD_SHAPE::CIRCLE:
{
int r = aPad->GetSizeX() / 2;
VECTOR2I center = aPad->ShapePos();
addAnchor( center + VECTOR2I( -r, 0 ), OUTLINE | SNAPPABLE, aPad );
addAnchor( center + VECTOR2I( r, 0 ), OUTLINE | SNAPPABLE, aPad );
addAnchor( center + VECTOR2I( 0, -r ), OUTLINE | SNAPPABLE, aPad );
addAnchor( center + VECTOR2I( 0, r ), OUTLINE | SNAPPABLE, aPad );
break;
}
case PAD_SHAPE::OVAL:
{
VECTOR2I pos = aPad->ShapePos();
VECTOR2I half_size = aPad->GetSize() / 2;
int half_width = std::min( half_size.x, half_size.y );
VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width );
RotatePoint( half_len, aPad->GetOrientation() );
VECTOR2I a( pos - half_len );
VECTOR2I b( pos + half_len );
VECTOR2I normal = b - a;
normal.Resize( half_width );
RotatePoint( normal, ANGLE_90 );
addAnchor( a + normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( a - normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( b + normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( b - normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( pos + normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( pos - normal, OUTLINE | SNAPPABLE, aPad );
RotatePoint( normal, -ANGLE_90 );
addAnchor( a - normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( b + normal, OUTLINE | SNAPPABLE, aPad );
break;
}
case PAD_SHAPE::RECTANGLE:
case PAD_SHAPE::TRAPEZOID:
case PAD_SHAPE::ROUNDRECT:
case PAD_SHAPE::CHAMFERED_RECT:
{
VECTOR2I half_size( aPad->GetSize() / 2 );
VECTOR2I trap_delta( 0, 0 );
if( aPad->GetShape() == PAD_SHAPE::TRAPEZOID )
trap_delta = aPad->GetDelta() / 2;
SHAPE_LINE_CHAIN corners;
corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x );
corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x );
corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x );
corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x );
corners.SetClosed( true );
corners.Rotate( aPad->GetOrientation() );
corners.Move( aPad->ShapePos() );
for( size_t ii = 0; ii < corners.GetSegmentCount(); ++ii )
{
const SEG& seg = corners.GetSegment( ii );
addAnchor( seg.A, OUTLINE | SNAPPABLE, aPad );
addAnchor( seg.Center(), OUTLINE | SNAPPABLE, aPad );
if( ii == corners.GetSegmentCount() - 1 )
addAnchor( seg.B, OUTLINE | SNAPPABLE, aPad );
}
break;
}
default:
{
const std::shared_ptr<SHAPE_POLY_SET>& outline = aPad->GetEffectivePolygon();
if( !outline->IsEmpty() )
{
for( const VECTOR2I& pt : outline->Outline( 0 ).CPoints() )
addAnchor( pt, OUTLINE | SNAPPABLE, aPad );
}
break;
}
}
};
auto handleShape =
[&]( PCB_SHAPE* shape )
{
VECTOR2I start = shape->GetStart();
VECTOR2I end = shape->GetEnd();
switch( shape->GetShape() )
{
case SHAPE_T::CIRCLE:
{
int r = ( start - end ).EuclideanNorm();
addAnchor( start, ORIGIN | SNAPPABLE, shape );
addAnchor( start + VECTOR2I( -r, 0 ), OUTLINE | SNAPPABLE, shape );
addAnchor( start + VECTOR2I( r, 0 ), OUTLINE | SNAPPABLE, shape );
addAnchor( start + VECTOR2I( 0, -r ), OUTLINE | SNAPPABLE, shape );
addAnchor( start + VECTOR2I( 0, r ), OUTLINE | SNAPPABLE, shape );
break;
}
case SHAPE_T::ARC:
addAnchor( shape->GetStart(), CORNER | SNAPPABLE, shape );
addAnchor( shape->GetEnd(), CORNER | SNAPPABLE, shape );
addAnchor( shape->GetArcMid(), CORNER | SNAPPABLE, shape );
addAnchor( shape->GetCenter(), ORIGIN | SNAPPABLE, shape );
break;
case SHAPE_T::RECTANGLE:
{
VECTOR2I point2( end.x, start.y );
VECTOR2I point3( start.x, end.y );
SEG first( start, point2 );
SEG second( point2, end );
SEG third( end, point3 );
SEG fourth( point3, start );
addAnchor( first.A, CORNER | SNAPPABLE, shape );
addAnchor( first.Center(), CORNER | SNAPPABLE, shape );
addAnchor( second.A, CORNER | SNAPPABLE, shape );
addAnchor( second.Center(), CORNER | SNAPPABLE, shape );
addAnchor( third.A, CORNER | SNAPPABLE, shape );
addAnchor( third.Center(), CORNER | SNAPPABLE, shape );
addAnchor( fourth.A, CORNER | SNAPPABLE, shape );
addAnchor( fourth.Center(), CORNER | SNAPPABLE, shape );
break;
}
case SHAPE_T::SEGMENT:
addAnchor( start, CORNER | SNAPPABLE, shape );
addAnchor( end, CORNER | SNAPPABLE, shape );
addAnchor( shape->GetCenter(), CORNER | SNAPPABLE, shape );
break;
case SHAPE_T::POLY:
{
SHAPE_LINE_CHAIN lc;
lc.SetClosed( true );
std::vector<VECTOR2I> poly;
shape->DupPolyPointsList( poly );
for( const VECTOR2I& p : poly )
{
addAnchor( p, CORNER | SNAPPABLE, shape );
lc.Append( p );
}
addAnchor( lc.NearestPoint( aRefPos ), OUTLINE, aItem );
break;
}
case SHAPE_T::BEZIER:
addAnchor( start, CORNER | SNAPPABLE, shape );
addAnchor( end, CORNER | SNAPPABLE, shape );
KI_FALLTHROUGH;
default:
addAnchor( shape->GetPosition(), ORIGIN | SNAPPABLE, shape );
break;
}
};
switch( aItem->Type() )
{
case PCB_FOOTPRINT_T:
{
FOOTPRINT* footprint = static_cast<FOOTPRINT*>( aItem );
for( PAD* pad : footprint->Pads() )
{
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->pads )
continue;
}
else
{
if( m_magneticSettings->pads != MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
continue;
}
if( !view->IsVisible( pad ) || !pad->GetBoundingBox().Contains( aRefPos ) )
continue;
// Getting pads from a footprint requires re-checking that the pads are shown
bool onActiveLayer = !isHighContrast;
bool isLODVisible = false;
for( PCB_LAYER_ID layer : pad->GetLayerSet().Seq() )
{
if( !onActiveLayer && activeLayers.count( layer ) )
onActiveLayer = true;
if( !isLODVisible && pad->ViewGetLOD( layer, view ) < view->GetScale() )
isLODVisible = true;
if( onActiveLayer && isLODVisible )
{
handlePadShape( pad );
break;
}
}
}
if( aFrom && aSelectionFilter && !aSelectionFilter->footprints )
break;
// if the cursor is not over a pad, then drag the footprint by its origin
VECTOR2I position = footprint->GetPosition();
addAnchor( position, ORIGIN | SNAPPABLE, footprint );
// Add the footprint center point if it is markedly different from the origin
VECTOR2I center = footprint->GetBoundingBox( false, false ).Centre();
VECTOR2I grid( GetGrid() );
if( ( center - position ).SquaredEuclideanNorm() > grid.SquaredEuclideanNorm() )
addAnchor( center, ORIGIN | SNAPPABLE, footprint );
break;
}
case PCB_PAD_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->pads )
break;
}
else
{
if( m_magneticSettings->pads != MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
break;
}
handlePadShape( static_cast<PAD*>( aItem ) );
break;
case PCB_TEXTBOX_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->text )
break;
}
else
{
if( !m_magneticSettings->graphics )
break;
}
handleShape( static_cast<PCB_SHAPE*>( aItem ) );
break;
case PCB_SHAPE_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->graphics )
break;
}
else
{
if( !m_magneticSettings->graphics )
break;
}
handleShape( static_cast<PCB_SHAPE*>( aItem ) );
break;
case PCB_TRACE_T:
case PCB_ARC_T:
{
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->tracks )
break;
}
else
{
if( m_magneticSettings->tracks != MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
break;
}
PCB_TRACK* track = static_cast<PCB_TRACK*>( aItem );
addAnchor( track->GetStart(), CORNER | SNAPPABLE, track );
addAnchor( track->GetEnd(), CORNER | SNAPPABLE, track );
addAnchor( track->GetCenter(), ORIGIN, track);
break;
}
case PCB_MARKER_T:
case PCB_TARGET_T:
addAnchor( aItem->GetPosition(), ORIGIN | CORNER | SNAPPABLE, aItem );
break;
case PCB_VIA_T:
if( aFrom )
{
if( aSelectionFilter && !aSelectionFilter->vias )
break;
}
else
{
if( m_magneticSettings->tracks != MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
break;
}
addAnchor( aItem->GetPosition(), ORIGIN | CORNER | SNAPPABLE, aItem );
break;
case PCB_ZONE_T:
{
if( aFrom && aSelectionFilter && !aSelectionFilter->zones )
break;
const SHAPE_POLY_SET* outline = static_cast<const ZONE*>( aItem )->Outline();
SHAPE_LINE_CHAIN lc;
lc.SetClosed( true );
for( auto iter = outline->CIterateWithHoles(); iter; iter++ )
{
addAnchor( *iter, CORNER | SNAPPABLE, aItem );
lc.Append( *iter );
}
addAnchor( lc.NearestPoint( aRefPos ), OUTLINE, aItem );
break;
}
case PCB_DIM_ALIGNED_T:
case PCB_DIM_ORTHOGONAL_T:
{
if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions )
break;
const PCB_DIM_ALIGNED* dim = static_cast<const PCB_DIM_ALIGNED*>( aItem );
addAnchor( dim->GetCrossbarStart(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetCrossbarEnd(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetEnd(), CORNER | SNAPPABLE, aItem );
break;
}
case PCB_DIM_CENTER_T:
{
if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions )
break;
const PCB_DIM_CENTER* dim = static_cast<const PCB_DIM_CENTER*>( aItem );
addAnchor( dim->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetEnd(), CORNER | SNAPPABLE, aItem );
VECTOR2I start( dim->GetStart() );
VECTOR2I radial( dim->GetEnd() - dim->GetStart() );
for( int i = 0; i < 2; i++ )
{
RotatePoint( radial, -ANGLE_90 );
addAnchor( start + radial, CORNER | SNAPPABLE, aItem );
}
break;
}
case PCB_DIM_RADIAL_T:
{
if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions )
break;
const PCB_DIM_RADIAL* radialDim = static_cast<const PCB_DIM_RADIAL*>( aItem );
addAnchor( radialDim->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( radialDim->GetEnd(), CORNER | SNAPPABLE, aItem );
addAnchor( radialDim->GetKnee(), CORNER | SNAPPABLE, aItem );
addAnchor( radialDim->GetTextPos(), CORNER | SNAPPABLE, aItem );
break;
}
case PCB_DIM_LEADER_T:
{
if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions )
break;
const PCB_DIM_LEADER* leader = static_cast<const PCB_DIM_LEADER*>( aItem );
addAnchor( leader->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( leader->GetEnd(), CORNER | SNAPPABLE, aItem );
addAnchor( leader->GetTextPos(), CORNER | SNAPPABLE, aItem );
break;
}
case PCB_FIELD_T:
case PCB_TEXT_T:
if( aFrom && aSelectionFilter && !aSelectionFilter->text )
break;
addAnchor( aItem->GetPosition(), ORIGIN, aItem );
break;
case PCB_GROUP_T:
{
const PCB_GROUP* group = static_cast<const PCB_GROUP*>( aItem );
for( BOARD_ITEM* item : group->GetItems() )
computeAnchors( item, aRefPos, aFrom );
break;
}
default:
break;
}
}
PCB_GRID_HELPER::ANCHOR* PCB_GRID_HELPER::nearestAnchor( const VECTOR2I& aPos, int aFlags,
LSET aMatchLayers )
{
double minDist = std::numeric_limits<double>::max();
ANCHOR* best = nullptr;
for( ANCHOR& a : m_anchors )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( a.item );
if( !m_magneticSettings->allLayers && ( ( aMatchLayers & item->GetLayerSet() ) == 0 ) )
continue;
if( ( aFlags & a.flags ) != aFlags )
continue;
double dist = a.Distance( aPos );
if( dist < minDist )
{
minDist = dist;
best = &a;
}
}
return best;
}