kicad/thirdparty/sentry-native/external/libunwindstack-ndk/ElfInterface.cpp

671 lines
21 KiB
C++

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <stdint.h>
#include <memory>
#include <string>
#include <utility>
#include <unwindstack/DwarfError.h>
#include <unwindstack/DwarfSection.h>
#include <unwindstack/ElfInterface.h>
#include <unwindstack/Log.h>
#include <unwindstack/Regs.h>
#ifdef WITH_DEBUG_FRAME
#include "DwarfDebugFrame.h"
#endif
#include "DwarfEhFrame.h"
#include "DwarfEhFrameWithHdr.h"
#include "MemoryBuffer.h"
#ifdef WITH_DEBUG_FRAME
#include "MemoryXz.h"
#endif
#include "Symbols.h"
namespace unwindstack {
ElfInterface::~ElfInterface() {
for (auto symbol : symbols_) {
delete symbol;
}
}
bool ElfInterface::IsValidPc(uint64_t pc) {
if (!pt_loads_.empty()) {
for (auto& entry : pt_loads_) {
uint64_t start = entry.second.table_offset;
uint64_t end = start + entry.second.table_size;
if (pc >= start && pc < end) {
return true;
}
}
return false;
}
// No PT_LOAD data, look for a fde for this pc in the section data.
if (debug_frame_ != nullptr && debug_frame_->GetFdeFromPc(pc) != nullptr) {
return true;
}
if (eh_frame_ != nullptr && eh_frame_->GetFdeFromPc(pc) != nullptr) {
return true;
}
return false;
}
bool ElfInterface::GetTextRange(uint64_t* addr, uint64_t* size) {
if (text_size_ != 0) {
*addr = text_addr_;
*size = text_size_;
return true;
}
return false;
}
#ifdef WITH_DEBUG_FRAME
std::unique_ptr<Memory> ElfInterface::CreateGnuDebugdataMemory() {
if (gnu_debugdata_offset_ == 0 || gnu_debugdata_size_ == 0) {
return nullptr;
}
auto decompressed =
std::make_unique<MemoryXz>(memory_, gnu_debugdata_offset_, gnu_debugdata_size_, GetSoname());
if (!decompressed || !decompressed->Init()) {
gnu_debugdata_offset_ = 0;
gnu_debugdata_size_ = 0;
return nullptr;
}
return decompressed;
}
#endif
template <typename ElfTypes>
void ElfInterfaceImpl<ElfTypes>::InitHeaders() {
if (eh_frame_hdr_offset_ != 0) {
DwarfEhFrameWithHdr<AddressType>* eh_frame_hdr = new DwarfEhFrameWithHdr<AddressType>(memory_);
eh_frame_.reset(eh_frame_hdr);
if (!eh_frame_hdr->EhFrameInit(eh_frame_offset_, eh_frame_size_, eh_frame_section_bias_) ||
!eh_frame_->Init(eh_frame_hdr_offset_, eh_frame_hdr_size_, eh_frame_hdr_section_bias_)) {
eh_frame_.reset(nullptr);
}
}
if (eh_frame_.get() == nullptr && eh_frame_offset_ != 0) {
// If there is an eh_frame section without an eh_frame_hdr section,
// or using the frame hdr object failed to init.
eh_frame_.reset(new DwarfEhFrame<AddressType>(memory_));
if (!eh_frame_->Init(eh_frame_offset_, eh_frame_size_, eh_frame_section_bias_)) {
eh_frame_.reset(nullptr);
}
}
if (eh_frame_.get() == nullptr) {
eh_frame_hdr_offset_ = 0;
eh_frame_hdr_section_bias_ = 0;
eh_frame_hdr_size_ = static_cast<uint64_t>(-1);
eh_frame_offset_ = 0;
eh_frame_section_bias_ = 0;
eh_frame_size_ = static_cast<uint64_t>(-1);
}
#ifdef WITH_DEBUG_FRAME
if (debug_frame_offset_ != 0) {
debug_frame_.reset(new DwarfDebugFrame<AddressType>(memory_));
if (!debug_frame_->Init(debug_frame_offset_, debug_frame_size_, debug_frame_section_bias_)) {
debug_frame_.reset(nullptr);
debug_frame_offset_ = 0;
debug_frame_size_ = static_cast<uint64_t>(-1);
}
}
#endif
}
template <typename ElfTypes>
bool ElfInterfaceImpl<ElfTypes>::ReadAllHeaders(int64_t* load_bias) {
EhdrType ehdr;
if (!memory_->ReadFully(0, &ehdr, sizeof(ehdr))) {
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = 0;
return false;
}
// If we have enough information that this is an elf file, then allow
// malformed program and section headers.
ReadProgramHeaders(ehdr, load_bias);
ReadSectionHeaders(ehdr);
return true;
}
template <typename EhdrType, typename PhdrType>
int64_t ElfInterface::GetLoadBias(Memory* memory) {
EhdrType ehdr;
if (!memory->ReadFully(0, &ehdr, sizeof(ehdr))) {
return false;
}
uint64_t offset = ehdr.e_phoff;
for (size_t i = 0; i < ehdr.e_phnum; i++, offset += ehdr.e_phentsize) {
PhdrType phdr;
if (!memory->ReadFully(offset, &phdr, sizeof(phdr))) {
return 0;
}
// Find the first executable load when looking for the load bias.
if (phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
return static_cast<uint64_t>(phdr.p_vaddr) - phdr.p_offset;
}
}
return 0;
}
template <typename ElfTypes>
void ElfInterfaceImpl<ElfTypes>::ReadProgramHeaders(const EhdrType& ehdr, int64_t* load_bias) {
uint64_t offset = ehdr.e_phoff;
bool first_exec_load_header = true;
for (size_t i = 0; i < ehdr.e_phnum; i++, offset += ehdr.e_phentsize) {
PhdrType phdr;
if (!memory_->ReadFully(offset, &phdr, sizeof(phdr))) {
return;
}
switch (phdr.p_type) {
case PT_LOAD:
{
if ((phdr.p_flags & PF_X) == 0) {
continue;
}
pt_loads_[phdr.p_offset] = LoadInfo{phdr.p_offset, phdr.p_vaddr,
static_cast<size_t>(phdr.p_memsz)};
// Only set the load bias from the first executable load header.
if (first_exec_load_header) {
*load_bias = static_cast<uint64_t>(phdr.p_vaddr) - phdr.p_offset;
}
first_exec_load_header = false;
break;
}
case PT_GNU_EH_FRAME:
// This is really the pointer to the .eh_frame_hdr section.
eh_frame_hdr_offset_ = phdr.p_offset;
eh_frame_hdr_section_bias_ = static_cast<uint64_t>(phdr.p_vaddr) - phdr.p_offset;
eh_frame_hdr_size_ = phdr.p_memsz;
break;
case PT_DYNAMIC:
dynamic_offset_ = phdr.p_offset;
dynamic_vaddr_start_ = phdr.p_vaddr;
if (__builtin_add_overflow(dynamic_vaddr_start_, phdr.p_memsz, &dynamic_vaddr_end_)) {
dynamic_offset_ = 0;
dynamic_vaddr_start_ = 0;
dynamic_vaddr_end_ = 0;
}
break;
default:
HandleUnknownType(phdr.p_type, phdr.p_offset, phdr.p_filesz);
break;
}
}
}
template <typename ElfTypes>
std::string ElfInterfaceImpl<ElfTypes>::ReadBuildID() {
// Ensure there is no overflow in any of the calulations below.
uint64_t tmp;
if (__builtin_add_overflow(gnu_build_id_offset_, gnu_build_id_size_, &tmp)) {
return "";
}
uint64_t offset = 0;
while (offset < gnu_build_id_size_) {
if (gnu_build_id_size_ - offset < sizeof(NhdrType)) {
return "";
}
NhdrType hdr;
if (!memory_->ReadFully(gnu_build_id_offset_ + offset, &hdr, sizeof(hdr))) {
return "";
}
offset += sizeof(hdr);
if (gnu_build_id_size_ - offset < hdr.n_namesz) {
return "";
}
if (hdr.n_namesz > 0) {
std::string name(hdr.n_namesz, '\0');
if (!memory_->ReadFully(gnu_build_id_offset_ + offset, &(name[0]), hdr.n_namesz)) {
return "";
}
// Trim trailing \0 as GNU is stored as a C string in the ELF file.
if (name.back() == '\0')
name.resize(name.size() - 1);
// Align hdr.n_namesz to next power multiple of 4. See man 5 elf.
offset += (hdr.n_namesz + 3) & ~3;
if (name == "GNU" && hdr.n_type == NT_GNU_BUILD_ID) {
if (gnu_build_id_size_ - offset < hdr.n_descsz || hdr.n_descsz == 0) {
return "";
}
std::string build_id(hdr.n_descsz, '\0');
if (memory_->ReadFully(gnu_build_id_offset_ + offset, &build_id[0], hdr.n_descsz)) {
return build_id;
}
return "";
}
}
// Align hdr.n_descsz to next power multiple of 4. See man 5 elf.
offset += (hdr.n_descsz + 3) & ~3;
}
return "";
}
template <typename ElfTypes>
void ElfInterfaceImpl<ElfTypes>::ReadSectionHeaders(const EhdrType& ehdr) {
uint64_t offset = ehdr.e_shoff;
uint64_t sec_offset = 0;
uint64_t sec_size = 0;
// Get the location of the section header names.
// If something is malformed in the header table data, we aren't going
// to terminate, we'll simply ignore this part.
ShdrType shdr;
if (ehdr.e_shstrndx < ehdr.e_shnum) {
uint64_t sh_offset = offset + ehdr.e_shstrndx * ehdr.e_shentsize;
if (memory_->ReadFully(sh_offset, &shdr, sizeof(shdr))) {
sec_offset = shdr.sh_offset;
sec_size = shdr.sh_size;
}
}
// Skip the first header, it's always going to be NULL.
offset += ehdr.e_shentsize;
for (size_t i = 1; i < ehdr.e_shnum; i++, offset += ehdr.e_shentsize) {
if (!memory_->ReadFully(offset, &shdr, sizeof(shdr))) {
return;
}
if (shdr.sh_type == SHT_SYMTAB || shdr.sh_type == SHT_DYNSYM) {
// Need to go get the information about the section that contains
// the string terminated names.
ShdrType str_shdr;
if (shdr.sh_link >= ehdr.e_shnum) {
continue;
}
uint64_t str_offset = ehdr.e_shoff + shdr.sh_link * ehdr.e_shentsize;
if (!memory_->ReadFully(str_offset, &str_shdr, sizeof(str_shdr))) {
continue;
}
if (str_shdr.sh_type != SHT_STRTAB) {
continue;
}
symbols_.push_back(new Symbols(shdr.sh_offset, shdr.sh_size, shdr.sh_entsize,
str_shdr.sh_offset, str_shdr.sh_size));
} else if ((shdr.sh_type == SHT_PROGBITS || shdr.sh_type == SHT_NOBITS) && sec_size != 0) {
// Look for the .debug_frame and .gnu_debugdata.
if (shdr.sh_name < sec_size) {
std::string name;
if (memory_->ReadString(sec_offset + shdr.sh_name, &name, sec_size - shdr.sh_name)) {
if (name == ".debug_frame") {
debug_frame_offset_ = shdr.sh_offset;
debug_frame_size_ = shdr.sh_size;
debug_frame_section_bias_ = static_cast<uint64_t>(shdr.sh_addr) - shdr.sh_offset;
} else if (name == ".gnu_debugdata") {
gnu_debugdata_offset_ = shdr.sh_offset;
gnu_debugdata_size_ = shdr.sh_size;
} else if (name == ".eh_frame") {
eh_frame_offset_ = shdr.sh_offset;
eh_frame_section_bias_ = static_cast<uint64_t>(shdr.sh_addr) - shdr.sh_offset;
eh_frame_size_ = shdr.sh_size;
} else if (eh_frame_hdr_offset_ == 0 && name == ".eh_frame_hdr") {
eh_frame_hdr_offset_ = shdr.sh_offset;
eh_frame_hdr_section_bias_ = static_cast<uint64_t>(shdr.sh_addr) - shdr.sh_offset;
eh_frame_hdr_size_ = shdr.sh_size;
} else if (name == ".data") {
data_offset_ = shdr.sh_offset;
data_vaddr_start_ = shdr.sh_addr;
if (__builtin_add_overflow(data_vaddr_start_, shdr.sh_size, &data_vaddr_end_)) {
data_offset_ = 0;
data_vaddr_start_ = 0;
data_vaddr_end_ = 0;
}
} else if (name == ".text") {
text_addr_ = shdr.sh_addr;
text_size_ = shdr.sh_size;
}
}
}
} else if (shdr.sh_type == SHT_STRTAB) {
// In order to read soname, keep track of address to offset mapping.
strtabs_.push_back(std::make_pair<uint64_t, uint64_t>(static_cast<uint64_t>(shdr.sh_addr),
static_cast<uint64_t>(shdr.sh_offset)));
} else if (shdr.sh_type == SHT_NOTE) {
if (shdr.sh_name < sec_size) {
std::string name;
if (memory_->ReadString(sec_offset + shdr.sh_name, &name, sec_size - shdr.sh_name) &&
name == ".note.gnu.build-id") {
gnu_build_id_offset_ = shdr.sh_offset;
gnu_build_id_size_ = shdr.sh_size;
}
}
}
}
}
template <typename ElfTypes>
std::string ElfInterfaceImpl<ElfTypes>::GetSoname() {
if (soname_type_ == SONAME_INVALID) {
return "";
}
if (soname_type_ == SONAME_VALID) {
return soname_;
}
soname_type_ = SONAME_INVALID;
uint64_t soname_offset = 0;
uint64_t strtab_addr = 0;
uint64_t strtab_size = 0;
// Find the soname location from the dynamic headers section.
DynType dyn;
uint64_t offset = dynamic_offset_;
uint64_t max_offset = offset + dynamic_vaddr_end_ - dynamic_vaddr_start_;
for (uint64_t offset = dynamic_offset_; offset < max_offset; offset += sizeof(DynType)) {
if (!memory_->ReadFully(offset, &dyn, sizeof(dyn))) {
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = offset;
return "";
}
if (dyn.d_tag == DT_STRTAB) {
strtab_addr = dyn.d_un.d_ptr;
} else if (dyn.d_tag == DT_STRSZ) {
strtab_size = dyn.d_un.d_val;
} else if (dyn.d_tag == DT_SONAME) {
soname_offset = dyn.d_un.d_val;
} else if (dyn.d_tag == DT_NULL) {
break;
}
}
// Need to map the strtab address to the real offset.
for (const auto& entry : strtabs_) {
if (entry.first == strtab_addr) {
soname_offset = entry.second + soname_offset;
uint64_t soname_max = entry.second + strtab_size;
if (soname_offset >= soname_max) {
return "";
}
if (!memory_->ReadString(soname_offset, &soname_, soname_max - soname_offset)) {
return "";
}
soname_type_ = SONAME_VALID;
return soname_;
}
}
return "";
}
template <typename ElfTypes>
bool ElfInterfaceImpl<ElfTypes>::GetFunctionName(uint64_t addr, SharedString* name,
uint64_t* func_offset) {
if (symbols_.empty()) {
return false;
}
for (const auto symbol : symbols_) {
if (symbol->template GetName<SymType>(addr, memory_, name, func_offset)) {
return true;
}
}
return false;
}
template <typename ElfTypes>
bool ElfInterfaceImpl<ElfTypes>::GetGlobalVariable(const std::string& name,
uint64_t* memory_address) {
if (symbols_.empty()) {
return false;
}
for (const auto symbol : symbols_) {
if (symbol->template GetGlobal<SymType>(memory_, name, memory_address)) {
return true;
}
}
return false;
}
bool ElfInterface::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished,
bool* is_signal_frame) {
last_error_.code = ERROR_NONE;
last_error_.address = 0;
// Try the debug_frame first since it contains the most specific unwind
// information.
DwarfSection* debug_frame = debug_frame_.get();
if (debug_frame != nullptr &&
debug_frame->Step(pc, regs, process_memory, finished, is_signal_frame)) {
return true;
}
// Try the eh_frame next.
DwarfSection* eh_frame = eh_frame_.get();
if (eh_frame != nullptr && eh_frame->Step(pc, regs, process_memory, finished, is_signal_frame)) {
return true;
}
if (gnu_debugdata_interface_ != nullptr &&
gnu_debugdata_interface_->Step(pc, regs, process_memory, finished, is_signal_frame)) {
return true;
}
// Set the error code based on the first error encountered.
DwarfSection* section = nullptr;
if (debug_frame_ != nullptr) {
section = debug_frame_.get();
} else if (eh_frame_ != nullptr) {
section = eh_frame_.get();
} else if (gnu_debugdata_interface_ != nullptr) {
last_error_ = gnu_debugdata_interface_->last_error();
return false;
} else {
return false;
}
// Convert the DWARF ERROR to an external error.
DwarfErrorCode code = section->LastErrorCode();
switch (code) {
case DWARF_ERROR_NONE:
last_error_.code = ERROR_NONE;
break;
case DWARF_ERROR_MEMORY_INVALID:
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = section->LastErrorAddress();
break;
case DWARF_ERROR_ILLEGAL_VALUE:
case DWARF_ERROR_ILLEGAL_STATE:
case DWARF_ERROR_STACK_INDEX_NOT_VALID:
case DWARF_ERROR_TOO_MANY_ITERATIONS:
case DWARF_ERROR_CFA_NOT_DEFINED:
case DWARF_ERROR_NO_FDES:
last_error_.code = ERROR_UNWIND_INFO;
break;
case DWARF_ERROR_NOT_IMPLEMENTED:
case DWARF_ERROR_UNSUPPORTED_VERSION:
last_error_.code = ERROR_UNSUPPORTED;
break;
}
return false;
}
// This is an estimation of the size of the elf file using the location
// of the section headers and size. This assumes that the section headers
// are at the end of the elf file. If the elf has a load bias, the size
// will be too large, but this is acceptable.
template <typename ElfTypes>
void ElfInterfaceImpl<ElfTypes>::GetMaxSize(Memory* memory, uint64_t* size) {
EhdrType ehdr;
if (!memory->ReadFully(0, &ehdr, sizeof(ehdr))) {
*size = 0;
return;
}
// If this winds up as zero, the PT_LOAD reading will get a better value.
uint64_t elf_size = ehdr.e_shoff + ehdr.e_shentsize * ehdr.e_shnum;
// Search through the PT_LOAD values and if any result in a larger elf
// size, use that.
uint64_t offset = ehdr.e_phoff;
for (size_t i = 0; i < ehdr.e_phnum; i++, offset += ehdr.e_phentsize) {
PhdrType phdr;
if (!memory->ReadFully(offset, &phdr, sizeof(phdr))) {
break;
}
if (phdr.p_type == PT_LOAD) {
uint64_t end_offset;
if (__builtin_add_overflow(phdr.p_offset, phdr.p_memsz, &end_offset)) {
continue;
}
if (end_offset > elf_size) {
elf_size = end_offset;
}
}
}
*size = elf_size;
}
template <typename EhdrType, typename ShdrType>
bool GetBuildIDInfo(Memory* memory, uint64_t* build_id_offset, uint64_t* build_id_size) {
EhdrType ehdr;
if (!memory->ReadFully(0, &ehdr, sizeof(ehdr))) {
return false;
}
uint64_t offset = ehdr.e_shoff;
uint64_t sec_offset;
uint64_t sec_size;
ShdrType shdr;
if (ehdr.e_shstrndx >= ehdr.e_shnum) {
return false;
}
uint64_t sh_offset = offset + ehdr.e_shstrndx * ehdr.e_shentsize;
if (!memory->ReadFully(sh_offset, &shdr, sizeof(shdr))) {
return false;
}
sec_offset = shdr.sh_offset;
sec_size = shdr.sh_size;
// Skip the first header, it's always going to be NULL.
offset += ehdr.e_shentsize;
for (size_t i = 1; i < ehdr.e_shnum; i++, offset += ehdr.e_shentsize) {
if (!memory->ReadFully(offset, &shdr, sizeof(shdr))) {
return false;
}
std::string name;
if (shdr.sh_type == SHT_NOTE && shdr.sh_name < sec_size &&
memory->ReadString(sec_offset + shdr.sh_name, &name, sec_size - shdr.sh_name) &&
name == ".note.gnu.build-id") {
*build_id_offset = shdr.sh_offset;
*build_id_size = shdr.sh_size;
return true;
}
}
return false;
}
template <typename EhdrType, typename ShdrType, typename NhdrType>
std::string ElfInterface::ReadBuildIDFromMemory(Memory* memory) {
uint64_t note_offset;
uint64_t note_size;
if (!GetBuildIDInfo<EhdrType, ShdrType>(memory, &note_offset, &note_size)) {
return "";
}
// Ensure there is no overflow in any of the calculations below.
uint64_t tmp;
if (__builtin_add_overflow(note_offset, note_size, &tmp)) {
return "";
}
uint64_t offset = 0;
while (offset < note_size) {
if (note_size - offset < sizeof(NhdrType)) {
return "";
}
NhdrType hdr;
if (!memory->ReadFully(note_offset + offset, &hdr, sizeof(hdr))) {
return "";
}
offset += sizeof(hdr);
if (note_size - offset < hdr.n_namesz) {
return "";
}
if (hdr.n_namesz > 0) {
std::string name(hdr.n_namesz, '\0');
if (!memory->ReadFully(note_offset + offset, &(name[0]), hdr.n_namesz)) {
return "";
}
// Trim trailing \0 as GNU is stored as a C string in the ELF file.
if (name.back() == '\0') name.resize(name.size() - 1);
// Align hdr.n_namesz to next power multiple of 4. See man 5 elf.
offset += (hdr.n_namesz + 3) & ~3;
if (name == "GNU" && hdr.n_type == NT_GNU_BUILD_ID) {
if (note_size - offset < hdr.n_descsz || hdr.n_descsz == 0) {
return "";
}
std::string build_id(hdr.n_descsz, '\0');
if (memory->ReadFully(note_offset + offset, &build_id[0], hdr.n_descsz)) {
return build_id;
}
return "";
}
}
// Align hdr.n_descsz to next power multiple of 4. See man 5 elf.
offset += (hdr.n_descsz + 3) & ~3;
}
return "";
}
// Instantiate all of the needed template functions.
template class ElfInterfaceImpl<ElfTypes32>;
template class ElfInterfaceImpl<ElfTypes64>;
template int64_t ElfInterface::GetLoadBias<Elf32_Ehdr, Elf32_Phdr>(Memory*);
template int64_t ElfInterface::GetLoadBias<Elf64_Ehdr, Elf64_Phdr>(Memory*);
template std::string ElfInterface::ReadBuildIDFromMemory<Elf32_Ehdr, Elf32_Shdr, Elf32_Nhdr>(
Memory*);
template std::string ElfInterface::ReadBuildIDFromMemory<Elf64_Ehdr, Elf64_Shdr, Elf64_Nhdr>(
Memory*);
} // namespace unwindstack