kicad/pcbnew/router/pns_node.cpp

902 lines
21 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013 CERN
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.or/licenses/>.
*/
#include <vector>
#include <cassert>
#include <math/vector2d.h>
#include <geometry/seg.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_index.h>
#include "trace.h"
#include "pns_item.h"
#include "pns_line.h"
#include "pns_node.h"
#include "pns_via.h"
#include "pns_solid.h"
#include "pns_joint.h"
#include "pns_index.h"
using namespace std;
using boost::unordered_set;
using boost::unordered_map;
static boost::unordered_set<PNS_NODE *> allocNodes;
PNS_NODE::PNS_NODE()
{
//printf("MakeNode [%p, total = %d]\n", this, allocNodes.size());
m_root = this;
m_parent = NULL;
m_maxClearance = 800000; // fixme: depends on how thick traces are.
m_index = new PNS_INDEX;
allocNodes.insert(this);
}
PNS_NODE::~PNS_NODE()
{
if(!m_children.empty())
{
TRACEn(0, "attempting to free a node that has kids.\n");
assert(false);
}
if(allocNodes.find(this) == allocNodes.end())
{
TRACEn(0, "attempting to free an already-free'd node.\n");
assert(false);
}
allocNodes.erase(this);
for(PNS_INDEX::ItemSet::iterator i = m_index->begin(); i != m_index->end(); ++i)
if( (*i) ->BelongsTo(this))
delete *i;
unlinkParent();
delete m_index;
}
int PNS_NODE::GetClearance(const PNS_ITEM *a, const PNS_ITEM *b) const
{
int clearance = (* m_clearanceFunctor) (a, b);
if( a->OfKind (PNS_ITEM::SEGMENT) )
clearance += static_cast<const PNS_SEGMENT *>(a) -> GetWidth() / 2;
if( a->OfKind (PNS_ITEM::LINE) )
clearance += static_cast<const PNS_LINE *>(a) -> GetWidth() / 2;
if( b->OfKind (PNS_ITEM::SEGMENT) )
clearance += static_cast<const PNS_SEGMENT *>(b) -> GetWidth() / 2;
if( b->OfKind (PNS_ITEM::LINE) )
clearance += static_cast<const PNS_LINE *>(b) -> GetWidth() / 2;
return clearance;
}
PNS_NODE* PNS_NODE::Branch()
{
PNS_NODE *child = new PNS_NODE;
m_children.push_back(child);
child->m_parent = this;
child->m_clearanceFunctor = m_clearanceFunctor;
child->m_root = isRoot() ? this : m_root;
// immmediate offspring of the root branch needs not copy anything. For the rest,
// deep-copy joints, overridden item map and pointers to stored items.
if(!isRoot())
{
JointMap::iterator j;
for(PNS_INDEX::ItemSet::iterator i = m_index->begin(); i != m_index->end(); ++i)
child->m_index->Add(*i);
child->m_joints = m_joints;
child->m_override = m_override;
}
TRACE(2, "%d items, %d joints, %d overrides", child->m_index->Size() % child->m_joints.size() % child->m_override.size());
return child;
}
void PNS_NODE::unlinkParent ( )
{
if( isRoot() )
return;
for( vector<PNS_NODE *>::iterator i = m_parent->m_children.begin(); i != m_parent->m_children.end(); ++i)
{
if (*i == this)
{
m_parent->m_children.erase(i);
return;
}
}
}
// function object that visits potential obstacles and performs the actual collision refining
struct PNS_NODE::obstacleVisitor {
///> node we are searching in (either root or a branch)
PNS_NODE *m_node;
///> node that overrides root entries
PNS_NODE *m_override;
///> list of encountered obstacles
Obstacles& m_tab;
///> the item we are looking for collisions with
const PNS_ITEM* m_item;
///> acccepted kinds of colliding items (solids, vias, segments, etc...)
int m_kindMask;
///> max number of hits
int m_limitCount;
///> number of items found so far
int m_matchCount;
obstacleVisitor( PNS_NODE::Obstacles& aTab,
const PNS_ITEM* aItem,
int aKindMask )
: m_tab(aTab),
m_item(aItem),
m_kindMask(aKindMask),
m_limitCount(-1),
m_matchCount(0)
{ };
void SetCountLimit(int aLimit)
{
m_limitCount = aLimit;
}
void SetWorld(PNS_NODE *aNode, PNS_NODE *aOverride = NULL)
{
m_node = aNode;
m_override = aOverride;
}
bool operator()( PNS_ITEM *aItem )
{
if( !aItem->OfKind(m_kindMask))
return true;
// check if there is a more recent branch with a newer (possibily modified) version of this item.
if ( m_override && m_override -> overrides (aItem) )
return true;
int clearance = m_node->GetClearance(aItem, m_item);
if(!aItem->Collide(m_item, clearance))
return true;
PNS_OBSTACLE obs;
obs.item = aItem;
m_tab.push_back(obs);
m_matchCount ++;
if(m_limitCount > 0 && m_matchCount >= m_limitCount)
return false;
return true;
};
};
int PNS_NODE::QueryColliding( const PNS_ITEM* aItem, PNS_NODE::Obstacles& aObstacles, int aKindMask, int aLimitCount)
{
obstacleVisitor visitor ( aObstacles, aItem, aKindMask );
assert(allocNodes.find(this) != allocNodes.end());
visitor.SetCountLimit(aLimitCount);
visitor.SetWorld( this, NULL );
// first, look for colliding items ourselves
m_index->Query(aItem, m_maxClearance, visitor);
// if we haven't found enough items, look in the root branch as well.
if(!isRoot() && ( visitor.m_matchCount < aLimitCount || aLimitCount < 0) )
{
visitor.SetWorld ( m_root, this );
m_root->m_index->Query(aItem, m_maxClearance, visitor);
}
return aObstacles.size();
}
PNS_NODE::OptObstacle PNS_NODE::NearestObstacle( const PNS_LINE *aItem, int aKindMask)
{
Obstacles obs_list;
bool found_isects = false;
const SHAPE_LINE_CHAIN &line = aItem->GetCLine();
obs_list.reserve(100);
int n = 0;
for(int i = 0; i < line.SegmentCount(); i++)
{
const PNS_SEGMENT s ( *aItem, line.CSegment(i));
n += QueryColliding ( &s, obs_list, aKindMask );
}
if( aItem->EndsWithVia () )
n += QueryColliding ( &aItem->GetVia(), obs_list, aKindMask );
//if(! QueryColliding ( aItem, obs_list, aKindMask ))
if(!n)
return OptObstacle();
PNS_LINE& aLine = (PNS_LINE&) *aItem;
PNS_OBSTACLE nearest;
nearest.item = NULL;
nearest.dist_first = INT_MAX;
BOOST_FOREACH(PNS_OBSTACLE obs, obs_list)
{
VECTOR2I ip_first, ip_last;
int dist_max = INT_MIN;
vector<SHAPE_LINE_CHAIN::Intersection> isect_list;
int clearance = GetClearance(obs.item, &aLine);
SHAPE_LINE_CHAIN hull = obs.item->Hull ( clearance );
if(aLine.EndsWithVia())
{
int clearance = GetClearance(obs.item, &aLine.GetVia());
SHAPE_LINE_CHAIN viaHull = aLine.GetVia().Hull (clearance);
viaHull.Intersect(hull, isect_list);
BOOST_FOREACH(SHAPE_LINE_CHAIN::Intersection isect, isect_list)
{
int dist = aLine.GetCLine().Length() + (isect.p - aLine.GetVia().GetPos()).EuclideanNorm();
if(dist < nearest.dist_first)
{
found_isects = true;
nearest.dist_first = dist;
nearest.ip_first = isect.p;
nearest.item = obs.item;
nearest.hull = hull;
}
if(dist > dist_max)
{
dist_max = dist;
ip_last = isect.p;
}
}
}
isect_list.clear();
hull.Intersect(aLine.GetCLine(), isect_list);
BOOST_FOREACH(SHAPE_LINE_CHAIN::Intersection isect, isect_list)
{
int dist = aLine.GetCLine().PathLength(isect.p);
if(dist < nearest.dist_first)
{
found_isects = true;
nearest.dist_first = dist;
nearest.ip_first = isect.p;
nearest.item = obs.item;
nearest.hull = hull;
}
if(dist > dist_max)
{
dist_max = dist;
ip_last = isect.p;
}
}
nearest.ip_last = ip_last;
nearest.dist_last = dist_max;
}
return found_isects ? nearest : OptObstacle();
}
PNS_NODE::OptObstacle PNS_NODE::CheckColliding( const PNS_ITEM *aItemA, int aKindMask )
{
Obstacles obs;
obs.reserve(100);
if(aItemA->GetKind() == PNS_ITEM::LINE)
{
int n = 0;
const PNS_LINE *line = static_cast<const PNS_LINE *>(aItemA);
const SHAPE_LINE_CHAIN &l = line->GetCLine();
for(int i = 0; i < l.SegmentCount(); i++)
{
const PNS_SEGMENT s ( *line, l.CSegment(i));
n += QueryColliding ( &s, obs, aKindMask, 1 );
if(n)
return OptObstacle(obs[0]);
}
if( line->EndsWithVia () )
{
n += QueryColliding ( &line->GetVia(), obs, aKindMask, 1 );
if(n)
return OptObstacle(obs[0]);
}
} else if (QueryColliding(aItemA, obs, aKindMask, 1) > 0)
return OptObstacle(obs[0]);
return OptObstacle();
}
bool PNS_NODE::CheckColliding( const PNS_ITEM *aItemA, const PNS_ITEM *aItemB, int aKindMask )
{
Obstacles dummy;
assert(aItemB);
// return QueryColliding(aItemA, dummy, aKindMask, 1) > 0;
return aItemA->Collide(aItemB, GetClearance(aItemA, aItemB));
}
struct hitVisitor {
PNS_ITEMSET& m_items;
const VECTOR2I& m_point;
PNS_NODE *m_world;
hitVisitor( PNS_ITEMSET& aTab,
const VECTOR2I& aPoint,
PNS_NODE *aWorld )
: m_items(aTab), m_point(aPoint), m_world(aWorld) { };
bool operator()( PNS_ITEM *aItem ) {
SHAPE_CIRCLE cp (m_point, 0);
int cl = 0;
if(aItem->GetKind() == PNS_ITEM::SEGMENT)
cl += static_cast<PNS_SEGMENT*>(aItem)->GetWidth() / 2;
if(aItem->GetShape()->Collide(&cp, cl))
m_items.Add(aItem);
return true;
}
};
const PNS_ITEMSET PNS_NODE::HitTest( const VECTOR2I& aPoint )
{
PNS_ITEMSET items;
SHAPE_CIRCLE s (aPoint, 0); // fixme: we treat a point as an infinitely small circle - this is inefficient.
hitVisitor visitor ( items, aPoint, this );
m_index->Query(&s, m_maxClearance, visitor);
if( ! isRoot() ) // fixme: could be made cleaner
{
PNS_ITEMSET items_root;
hitVisitor visitor_root ( items_root, aPoint, m_root );
m_root->m_index->Query( &s, m_maxClearance, visitor_root );
BOOST_FOREACH(PNS_ITEM *item, items_root.Items())
{
if (!overrides(item))
items.Add(item);
}
}
return items;
}
void PNS_NODE::addSolid(PNS_SOLID *aSolid)
{
linkJoint( aSolid->GetCenter(), aSolid->GetLayers(), aSolid->GetNet(), aSolid );
m_index->Add(aSolid);
}
void PNS_NODE::addVia(PNS_VIA *aVia)
{
linkJoint( aVia->GetPos(), aVia->GetLayers(), aVia->GetNet(), aVia );
m_index->Add(aVia);
}
void PNS_NODE::addLine( PNS_LINE *aLine )
{
const SHAPE_LINE_CHAIN& l = aLine->GetLine();
for(int i = 0; i < l.SegmentCount(); i++)
{
SEG s = l.CSegment(i);
if(s.a != s.b)
{
PNS_SEGMENT *pseg = new PNS_SEGMENT(*aLine, s);
pseg->SetOwner(this);
linkJoint( s.a, pseg->GetLayers(), aLine->GetNet(), pseg );
linkJoint( s.b, pseg->GetLayers(), aLine->GetNet(), pseg );
aLine->LinkSegment(pseg);
m_index->Add(pseg);
}
}
}
void PNS_NODE::addSegment( PNS_SEGMENT *aSeg )
{
if(aSeg->GetSeg().a == aSeg->GetSeg().b)
{
TRACEn(0, "attempting to add a segment with same end coordinates, ignoring.")
return;
}
aSeg->SetOwner (this);
linkJoint( aSeg->GetSeg().a, aSeg->GetLayers(), aSeg->GetNet(), aSeg );
linkJoint( aSeg->GetSeg().b, aSeg->GetLayers(), aSeg->GetNet(), aSeg );
m_index->Add(aSeg);
}
void PNS_NODE::Add(PNS_ITEM* aItem)
{
aItem->SetOwner(this);
switch(aItem -> GetKind())
{
case PNS_ITEM::SOLID:
addSolid(static_cast<PNS_SOLID*>(aItem));
break;
case PNS_ITEM::SEGMENT:
addSegment(static_cast<PNS_SEGMENT*>(aItem));
break;
case PNS_ITEM::LINE:
addLine( static_cast<PNS_LINE*> (aItem));
break;
case PNS_ITEM::VIA:
addVia (static_cast<PNS_VIA*>(aItem));
break;
default:
assert (false);
}
}
void PNS_NODE::doRemove ( PNS_ITEM *aItem )
{
// case 1: removing an item that is stored in the root node from any branch: mark it as overridden, but do not remove
if( aItem->BelongsTo(m_root) && !isRoot() )
m_override.insert(aItem);
// case 2: the item belongs to this branch or a parent, non-root branch, or the root itself and we are the root: remove from the index
else if( !aItem->BelongsTo(m_root) || isRoot() )
m_index->Remove( aItem );
// the item belongs to this particular branch: un-reference it
if( aItem->BelongsTo( this ))
aItem->SetOwner(NULL);
}
void PNS_NODE::removeSegment (PNS_SEGMENT *aSeg )
{
unlinkJoint(aSeg->GetSeg().a, aSeg->GetLayers(), aSeg->GetNet(), aSeg);
unlinkJoint(aSeg->GetSeg().b, aSeg->GetLayers(), aSeg->GetNet(), aSeg);
doRemove(aSeg);
}
void PNS_NODE::removeLine( PNS_LINE *aLine )
{
vector<PNS_SEGMENT *> *segRefs = aLine->GetLinkedSegments();
if(!segRefs)
return;
assert ( aLine->GetOwner () );
BOOST_FOREACH(PNS_SEGMENT *seg, *segRefs)
{
removeSegment(seg);
}
aLine->SetOwner(NULL);
}
void PNS_NODE::removeVia ( PNS_VIA *aVia )
{
unlinkJoint(aVia->GetPos(), aVia->GetLayers(), aVia->GetNet(), aVia);
doRemove(aVia);
}
void PNS_NODE::Replace(PNS_ITEM *aOldItem, PNS_ITEM *aNewItem)
{
Remove(aOldItem);
Add(aNewItem);
}
void PNS_NODE::Remove(PNS_ITEM *aItem)
{
switch(aItem -> GetKind())
{
case PNS_ITEM::SOLID:
assert(false);
break;
case PNS_ITEM::SEGMENT:
removeSegment(static_cast<PNS_SEGMENT*>(aItem));
break;
case PNS_ITEM::LINE:
removeLine(static_cast<PNS_LINE *>(aItem));
break;
case PNS_ITEM::VIA:
removeVia(static_cast<PNS_VIA *>(aItem));
break;
default:
break;
}
}
void PNS_NODE::followLine(PNS_SEGMENT *current, bool scanDirection, int& pos, int limit, VECTOR2I *corners, PNS_SEGMENT **segments)
{
bool prevReversed = false;
for(;;)
{
const VECTOR2I p = (scanDirection ^ prevReversed) ? current->GetSeg().b : current->GetSeg().a;
const OptJoint jt = FindJoint(p, current->GetLayer(), current->GetNet());
assert (jt);
assert (pos > 0 && pos < limit);
corners [pos] = jt->GetPos();
segments [pos] = current;
pos += (scanDirection ? 1 : -1);
if(!jt->IsLineCorner())
break;
current = jt->NextSegment( current );
prevReversed = (jt->GetPos() == (scanDirection ? current->GetSeg().b : current->GetSeg().a ));
}
}
PNS_LINE *PNS_NODE::AssembleLine(PNS_SEGMENT *aSeg, const OptJoint& a, const OptJoint& b)
{
const int MaxVerts = 1024;
VECTOR2I corners [ MaxVerts + 1 ];
PNS_SEGMENT *segs [ MaxVerts + 1 ];
PNS_LINE *pl = new PNS_LINE;
int i_start = MaxVerts/2, i_end = i_start + 1;
pl->SetWidth( aSeg->GetWidth() );
pl->SetLayers( aSeg->GetLayers() );
pl->SetNet ( aSeg->GetNet() );
pl->SetOwner(this);
//pl->LinkSegment(aSeg);
followLine (aSeg, false, i_start, MaxVerts, corners, segs );
followLine (aSeg, true, i_end, MaxVerts, corners, segs );
int clip_start = -1, clip_end = -1;
for(int i = i_start+1 ; i < i_end ; i++)
{
const VECTOR2I &p = corners[i];
if (a && (p == a->GetPos() || p == b->GetPos() ) )
{
clip_start = std::min(clip_start, i);
clip_end = std::max(clip_end, i);
}
pl->GetLine().Append(p);
if(segs[i-1] != segs[i])
pl->LinkSegment(segs[i]);
}
return pl;
}
void PNS_NODE::FindLineEnds (PNS_LINE *aLine, PNS_JOINT& a, PNS_JOINT& b )
{
a = *FindJoint(aLine->GetCLine().CPoint(0), aLine->GetLayers().Start(), aLine->GetNet());
b = *FindJoint(aLine->GetCLine().CPoint(-1), aLine->GetLayers().Start(), aLine->GetNet());
}
int PNS_NODE::FindLinesBetweenJoints( PNS_JOINT& a, PNS_JOINT& b, vector<PNS_LINE *> &aLines )
{
BOOST_FOREACH(PNS_ITEM *item, a.GetLinkList())
{
if(item->GetKind() == PNS_ITEM::SEGMENT)
{
PNS_SEGMENT *seg = static_cast<PNS_SEGMENT*>(item);
PNS_LINE *line = AssembleLine(seg);
PNS_JOINT j_start, j_end;
FindLineEnds( line, j_start, j_end );
if( (j_start == a && j_end == b )|| (j_end == a && j_start == b))
aLines.push_back(line);
else
delete line;
}
}
return 0;
}
const PNS_NODE::OptJoint PNS_NODE::FindJoint(const VECTOR2I &aPos, int aLayer, int aNet )
{
PNS_JOINT::HashTag tag;
tag.net = aNet;
tag.pos = aPos;
JointMap::iterator f = m_joints.find(tag), end = m_joints.end();
if(f == end && !isRoot())
{
end = m_root->m_joints.end();
f = m_root->m_joints.find(tag); //m_root->FindJoint(aPos, aLayer, aNet);
}
if(f == end)
return OptJoint();
while (f != end)
{
if(f->second.GetLayers().Overlaps(aLayer))
return f->second;
++f;
}
return OptJoint();
}
PNS_JOINT& PNS_NODE::touchJoint( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers, int aNet )
{
PNS_JOINT::HashTag tag;
tag.pos = aPos;
tag.net = aNet;
// try to find the joint in this node.
JointMap::iterator f = m_joints.find(tag);
pair<JointMap::iterator, JointMap::iterator> range;
// not found and we are not root? find in the root and copy results here.
if(f == m_joints.end() && !isRoot())
{
range = m_root->m_joints.equal_range(tag);
for( f = range.first; f != range.second; ++f)
m_joints.insert( *f );
}
// now insert and combine overlapping joints
PNS_JOINT jt (aPos, aLayers, aNet);
bool merged;
do
{
merged = false;
range = m_joints.equal_range(tag);
if(range.first == m_joints.end())
break;
for(f = range.first; f != range.second; ++f)
{
if(aLayers.Overlaps (f->second.GetLayers()))
{
jt.Merge(f->second);
m_joints.erase(f);
merged = true;
break;
}
}
} while (merged);
return m_joints.insert ( TagJointPair(tag, jt) )->second;
}
void PNS_JOINT::Dump() const
{
printf("joint layers %d-%d, net %d, pos %s, links: %d\n", m_layers.Start(), m_layers.End(), m_tag.net, m_tag.pos.Format().c_str(), LinkCount() );
}
void PNS_NODE::linkJoint( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers, int aNet, PNS_ITEM *aWhere )
{
PNS_JOINT& jt = touchJoint( aPos, aLayers, aNet );
jt.Link(aWhere);
}
void PNS_NODE::unlinkJoint( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers, int aNet, PNS_ITEM *aWhere )
{
// fixme: remove dangling joints
PNS_JOINT& jt = touchJoint( aPos, aLayers, aNet );
jt.Unlink(aWhere);
}
void PNS_NODE::Dump(bool aLong)
{
#if 0
boost::unordered_set<PNS_SEGMENT *> all_segs;
SHAPE_INDEX_LIST<PNS_ITEM *>::iterator i;
for(i = m_items.begin(); i != m_items.end() ; i++)
{
if((*i)->GetKind() == PNS_ITEM::SEGMENT)
all_segs.insert(static_cast<PNS_SEGMENT*>(*i));
}
if(!isRoot())
for(i = m_root->m_items.begin(); i != m_root->m_items.end() ; i++)
{
if((*i)->GetKind() == PNS_ITEM::SEGMENT && !overrides(*i))
all_segs.insert(static_cast<PNS_SEGMENT*>(*i));
}
JointMap::iterator j;
if(aLong)
for(j=m_joints.begin(); j!=m_joints.end(); ++j)
{
printf("joint : %s, links : %d\n", j->second.GetPos().Format().c_str(), j->second.LinkCount());
PNS_JOINT::LinkedItems::const_iterator k;
for(k = j->second.GetLinkList().begin(); k != j->second.GetLinkList().end(); ++k)
{
const PNS_ITEM *item = *k;
switch(item->GetKind())
{
case PNS_ITEM::SEGMENT:
{
const PNS_SEGMENT *seg = static_cast<const PNS_SEGMENT *>(item);
printf(" -> seg %s %s\n", seg->GetSeg().a.Format().c_str(), seg->GetSeg().b.Format().c_str());
break;
}
default:
break;
}
}
}
int lines_count = 0;
while(!all_segs.empty())
{
PNS_SEGMENT *s = *all_segs.begin();
PNS_LINE *l = AssembleLine(s);
PNS_LINE::LinkedSegments* seg_refs = l->GetLinkedSegments();
if(aLong)
printf("Line: %s, net %d ", l->GetLine().Format().c_str(), l->GetNet() );
for(vector<PNS_SEGMENT *>::iterator j = seg_refs->begin(); j != seg_refs->end(); ++j)
{
printf("%s ", (*j)->GetSeg().a.Format().c_str() );
if(j+1 == seg_refs->end())
printf("%s\n", (*j)->GetSeg().b.Format().c_str() );
all_segs.erase(*j);
}
lines_count++;
}
printf("Local joints: %d, lines : %d \n", m_joints.size(), lines_count);
#endif
}
void PNS_NODE::GetUpdatedItems( ItemVector& aRemoved, ItemVector& aAdded)
{
aRemoved.reserve(m_override.size());
aAdded.reserve(m_index->Size());
if(isRoot ())
return;
BOOST_FOREACH(PNS_ITEM *item, m_override)
aRemoved.push_back(item);
for(PNS_INDEX::ItemSet::iterator i = m_index->begin(); i!=m_index->end(); ++i)
aAdded.push_back(*i);
}
void PNS_NODE::releaseChildren ()
{
// copy the kids as the PNS_NODE destructor erases the item from the parent node.
vector<PNS_NODE *> kids = m_children;
BOOST_FOREACH(PNS_NODE *node, kids)
{
node->releaseChildren();
delete node;
}
}
void PNS_NODE::Commit( PNS_NODE *aNode )
{
if(aNode->isRoot())
return;
BOOST_FOREACH( PNS_ITEM *item, aNode->m_override )
Remove(item);
for(PNS_INDEX::ItemSet::iterator i = aNode->m_index->begin(); i!= aNode ->m_index->end(); ++i)
Add(*i);
releaseChildren();
}
void PNS_NODE::KillChildren()
{
assert (isRoot());
releaseChildren();
}
void PNS_NODE::AllItemsInNet ( int aNet, std::list<PNS_ITEM *>& aItems)
{
PNS_INDEX::NetItemsList* l_cur = m_index->GetItemsForNet ( aNet );
if(!l_cur)
return;
std::copy(aItems.begin(), l_cur->begin(), l_cur->end() );
if( !isRoot () )
{
PNS_INDEX::NetItemsList* l_root = m_root->m_index->GetItemsForNet ( aNet );
for(PNS_INDEX::NetItemsList::iterator i = l_root->begin(); i!= l_root->end(); ++i)
if( !overrides( *i ))
aItems.push_back(*i);
}
}