318 lines
9.2 KiB
C++
318 lines
9.2 KiB
C++
/*
|
|
* KiRouter - a push-and-(sometimes-)shove PCB router
|
|
*
|
|
* Copyright (C) 2013-2014 CERN
|
|
* Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors.
|
|
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <core/optional.h>
|
|
|
|
#include <geometry/shape_line_chain.h>
|
|
|
|
#include "pns_walkaround.h"
|
|
#include "pns_optimizer.h"
|
|
#include "pns_utils.h"
|
|
#include "pns_router.h"
|
|
#include "pns_debug_decorator.h"
|
|
|
|
namespace PNS {
|
|
|
|
void WALKAROUND::start( const LINE& aInitialPath )
|
|
{
|
|
m_iteration = 0;
|
|
m_iterationLimit = 50;
|
|
}
|
|
|
|
|
|
NODE::OPT_OBSTACLE WALKAROUND::nearestObstacle( const LINE& aPath )
|
|
{
|
|
NODE::OPT_OBSTACLE obs = m_world->NearestObstacle(
|
|
&aPath, m_itemMask, m_restrictedSet.empty() ? nullptr : &m_restrictedSet );
|
|
|
|
if( m_restrictedSet.empty() )
|
|
return obs;
|
|
|
|
else if( obs && m_restrictedSet.find ( obs->m_item ) != m_restrictedSet.end() )
|
|
return obs;
|
|
|
|
return NODE::OPT_OBSTACLE();
|
|
}
|
|
|
|
|
|
WALKAROUND::WALKAROUND_STATUS WALKAROUND::singleStep( LINE& aPath, bool aWindingDirection )
|
|
{
|
|
OPT<OBSTACLE>& current_obs =
|
|
aWindingDirection ? m_currentObstacle[0] : m_currentObstacle[1];
|
|
|
|
if( !current_obs )
|
|
return DONE;
|
|
|
|
VECTOR2I initialLast = aPath.CPoint( -1 );
|
|
|
|
SHAPE_LINE_CHAIN path_walk;
|
|
|
|
bool s_cw = aPath.Walkaround( current_obs->m_hull, path_walk, aWindingDirection );
|
|
|
|
PNS_DBG( Dbg(), BeginGroup, "hull/walk" );
|
|
char name[128];
|
|
snprintf( name, sizeof( name ), "hull-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration );
|
|
PNS_DBG( Dbg(), AddLine, current_obs->m_hull, RED, 1, name );
|
|
snprintf( name, sizeof( name ), "path-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration );
|
|
PNS_DBG( Dbg(), AddLine, aPath.CLine(), GREEN, 1, name );
|
|
snprintf( name, sizeof( name ), "result-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration );
|
|
PNS_DBG( Dbg(), AddLine, path_walk, BLUE, 10000, name );
|
|
PNS_DBG( Dbg(), Message, wxString::Format( "Stat cw %d", !!s_cw ) );
|
|
PNS_DBGN( Dbg(), EndGroup );
|
|
|
|
path_walk.Simplify();
|
|
aPath.SetShape( path_walk );
|
|
|
|
// If the end of the line is inside an obstacle, additional walkaround iterations are not
|
|
// going to help. Exit now to prevent pegging the iteration limiter and causing lag.
|
|
if( current_obs && current_obs->m_hull.PointInside( initialLast ) &&
|
|
!current_obs->m_hull.PointOnEdge( initialLast ) )
|
|
{
|
|
return ALMOST_DONE;
|
|
}
|
|
|
|
current_obs = nearestObstacle( LINE( aPath, path_walk ) );
|
|
|
|
return IN_PROGRESS;
|
|
}
|
|
|
|
|
|
const WALKAROUND::RESULT WALKAROUND::Route( const LINE& aInitialPath )
|
|
{
|
|
LINE path_cw( aInitialPath ), path_ccw( aInitialPath );
|
|
WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS;
|
|
SHAPE_LINE_CHAIN best_path;
|
|
RESULT result;
|
|
|
|
// special case for via-in-the-middle-of-track placement
|
|
if( aInitialPath.PointCount() <= 1 )
|
|
{
|
|
if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(),
|
|
m_itemMask ) )
|
|
return RESULT( STUCK, STUCK );
|
|
|
|
return RESULT( DONE, DONE, aInitialPath, aInitialPath );
|
|
}
|
|
|
|
start( aInitialPath );
|
|
|
|
m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath );
|
|
m_recursiveBlockageCount = 0;
|
|
|
|
result.lineCw = aInitialPath;
|
|
result.lineCcw = aInitialPath;
|
|
|
|
if( m_forceWinding )
|
|
{
|
|
s_cw = m_forceCw ? IN_PROGRESS : STUCK;
|
|
s_ccw = m_forceCw ? STUCK : IN_PROGRESS;
|
|
m_forceSingleDirection = true;
|
|
}
|
|
else
|
|
{
|
|
m_forceSingleDirection = false;
|
|
}
|
|
|
|
// In some situations, there isn't a trivial path (or even a path at all). Hitting the
|
|
// iteration limit causes lag, so we can exit out early if the walkaround path gets very long
|
|
// compared with the initial path. If the length exceeds the initial length times this factor,
|
|
// fail out.
|
|
const int maxWalkDistFactor = 10;
|
|
long long lengthLimit = aInitialPath.CLine().Length() * maxWalkDistFactor;
|
|
|
|
while( m_iteration < m_iterationLimit )
|
|
{
|
|
if( s_cw != STUCK && s_cw != ALMOST_DONE )
|
|
s_cw = singleStep( path_cw, true );
|
|
|
|
if( s_ccw != STUCK && s_ccw != ALMOST_DONE )
|
|
s_ccw = singleStep( path_ccw, false );
|
|
|
|
if( s_cw != IN_PROGRESS )
|
|
{
|
|
result.lineCw = path_cw;
|
|
result.statusCw = s_cw;
|
|
}
|
|
|
|
if( s_ccw != IN_PROGRESS )
|
|
{
|
|
result.lineCcw = path_ccw;
|
|
result.statusCcw = s_ccw;
|
|
}
|
|
|
|
if( s_cw != IN_PROGRESS && s_ccw != IN_PROGRESS )
|
|
break;
|
|
|
|
// Safety valve
|
|
if( path_cw.Line().Length() > lengthLimit && path_ccw.Line().Length() > lengthLimit )
|
|
break;
|
|
|
|
m_iteration++;
|
|
}
|
|
|
|
if( s_cw == IN_PROGRESS )
|
|
{
|
|
result.lineCw = path_cw;
|
|
result.statusCw = ALMOST_DONE;
|
|
}
|
|
|
|
if( s_ccw == IN_PROGRESS )
|
|
{
|
|
result.lineCcw = path_ccw;
|
|
result.statusCcw = ALMOST_DONE;
|
|
}
|
|
|
|
if( result.lineCw.SegmentCount() < 1 || result.lineCw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) )
|
|
{
|
|
result.statusCw = STUCK;
|
|
}
|
|
|
|
if( result.lineCw.PointCount() > 0 && result.lineCw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) )
|
|
{
|
|
result.statusCw = ALMOST_DONE;
|
|
}
|
|
|
|
if( result.lineCcw.SegmentCount() < 1 ||
|
|
result.lineCcw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) )
|
|
{
|
|
result.statusCcw = STUCK;
|
|
}
|
|
|
|
if( result.lineCcw.PointCount() > 0 &&
|
|
result.lineCcw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) )
|
|
{
|
|
result.statusCcw = ALMOST_DONE;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
WALKAROUND::WALKAROUND_STATUS WALKAROUND::Route( const LINE& aInitialPath, LINE& aWalkPath,
|
|
bool aOptimize )
|
|
{
|
|
LINE path_cw( aInitialPath ), path_ccw( aInitialPath );
|
|
WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS;
|
|
SHAPE_LINE_CHAIN best_path;
|
|
|
|
// special case for via-in-the-middle-of-track placement
|
|
if( aInitialPath.PointCount() <= 1 )
|
|
{
|
|
if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(),
|
|
m_itemMask ) )
|
|
return STUCK;
|
|
|
|
aWalkPath = aInitialPath;
|
|
return DONE;
|
|
}
|
|
|
|
start( aInitialPath );
|
|
|
|
m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath );
|
|
m_recursiveBlockageCount = 0;
|
|
|
|
aWalkPath = aInitialPath;
|
|
|
|
if( m_forceWinding )
|
|
{
|
|
s_cw = m_forceCw ? IN_PROGRESS : STUCK;
|
|
s_ccw = m_forceCw ? STUCK : IN_PROGRESS;
|
|
m_forceSingleDirection = true;
|
|
}
|
|
else
|
|
{
|
|
m_forceSingleDirection = false;
|
|
}
|
|
|
|
while( m_iteration < m_iterationLimit )
|
|
{
|
|
if( path_cw.PointCount() == 0 )
|
|
s_cw = STUCK; // cw path is empty, can't continue
|
|
|
|
if( path_ccw.PointCount() == 0 )
|
|
s_ccw = STUCK; // ccw path is empty, can't continue
|
|
|
|
if( s_cw != STUCK )
|
|
s_cw = singleStep( path_cw, true );
|
|
|
|
if( s_ccw != STUCK )
|
|
s_ccw = singleStep( path_ccw, false );
|
|
|
|
if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) )
|
|
{
|
|
int len_cw = path_cw.CLine().Length();
|
|
int len_ccw = path_ccw.CLine().Length();
|
|
|
|
if( m_forceLongerPath )
|
|
aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw );
|
|
else
|
|
aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw );
|
|
|
|
break;
|
|
}
|
|
else if( s_cw == DONE && !m_forceLongerPath )
|
|
{
|
|
aWalkPath = path_cw;
|
|
break;
|
|
}
|
|
else if( s_ccw == DONE && !m_forceLongerPath )
|
|
{
|
|
aWalkPath = path_ccw;
|
|
break;
|
|
}
|
|
|
|
m_iteration++;
|
|
}
|
|
|
|
if( m_iteration == m_iterationLimit )
|
|
{
|
|
int len_cw = path_cw.CLine().Length();
|
|
int len_ccw = path_ccw.CLine().Length();
|
|
|
|
if( m_forceLongerPath )
|
|
aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw );
|
|
else
|
|
aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw );
|
|
}
|
|
|
|
aWalkPath.Line().Simplify();
|
|
|
|
if( aWalkPath.SegmentCount() < 1 )
|
|
return STUCK;
|
|
|
|
if( aWalkPath.CPoint( -1 ) != aInitialPath.CPoint( -1 ) )
|
|
return ALMOST_DONE;
|
|
|
|
if( aWalkPath.CPoint( 0 ) != aInitialPath.CPoint( 0 ) )
|
|
return STUCK;
|
|
|
|
WALKAROUND_STATUS st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK;
|
|
|
|
if( st == DONE )
|
|
{
|
|
if( aOptimize )
|
|
OPTIMIZER::Optimize( &aWalkPath, OPTIMIZER::MERGE_OBTUSE, m_world );
|
|
}
|
|
|
|
return st;
|
|
}
|
|
}
|