kicad/pcbnew/exporters/gerber_jobfile_writer.cpp

742 lines
24 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean_Pierre Charras <jp.charras at wanadoo.fr>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file gendrill_gerber_writer.cpp
* @brief Functions to create the Gerber job file in JSON format.
*/
#include <fctsys.h>
#include <fstream>
#include <iomanip>
#include <vector>
#include <build_version.h>
#include <pcb_edit_frame.h>
#include <plotter.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <board_stackup_manager/stackup_predefined_prms.h>
#include <gbr_metadata.h>
#include <gerber_jobfile_writer.h>
#include <pcbnew.h>
#include <pcbplot.h>
#include <reporter.h>
#include <wildcards_and_files_ext.h>
GERBER_JOBFILE_WRITER::GERBER_JOBFILE_WRITER( BOARD* aPcb, REPORTER* aReporter )
{
m_pcb = aPcb;
m_reporter = aReporter;
m_conversionUnits = 1.0 / IU_PER_MM; // Gerber units = mm
}
std::string GERBER_JOBFILE_WRITER::formatStringFromUTF32( const wxString& aText )
{
std::string fmt_text; // the text after UTF32 to UTF8 conversion
for( unsigned long letter : aText )
{
if( letter >= ' ' && letter <= 0x7F )
fmt_text += char( letter );
else
{
char buff[16];
sprintf( buff, "\\u%4.4lX", letter );
fmt_text += buff;
}
}
return fmt_text;
}
enum ONSIDE GERBER_JOBFILE_WRITER::hasSilkLayers()
{
int flag = SIDE_NONE;
for( unsigned ii = 0; ii < m_params.m_LayerId.size(); ii++ )
{
if( m_params.m_LayerId[ii] == B_SilkS )
flag |= SIDE_BOTTOM;
if( m_params.m_LayerId[ii] == F_SilkS )
flag |= SIDE_TOP;
}
return (enum ONSIDE) flag;
}
enum ONSIDE GERBER_JOBFILE_WRITER::hasSolderMasks()
{
int flag = SIDE_NONE;
for( unsigned ii = 0; ii < m_params.m_LayerId.size(); ii++ )
{
if( m_params.m_LayerId[ii] == B_Mask )
flag |= SIDE_BOTTOM;
if( m_params.m_LayerId[ii] == F_Mask )
flag |= SIDE_TOP;
}
return (enum ONSIDE) flag;
}
const char* GERBER_JOBFILE_WRITER::sideKeyValue( enum ONSIDE aValue )
{
// return the key associated to sides used for some layers
// "No, TopOnly, BotOnly or Both"
const char* value = nullptr;
switch( aValue )
{
case SIDE_NONE:
value = "No";
break;
case SIDE_TOP:
value = "TopOnly";
break;
case SIDE_BOTTOM:
value = "BotOnly";
break;
case SIDE_BOTH:
value = "Both";
break;
}
return value;
}
bool GERBER_JOBFILE_WRITER::CreateJobFile( const wxString& aFullFilename )
{
bool success;
wxString msg;
success = WriteJSONJobFile( aFullFilename );
if( !success )
{
if( m_reporter )
{
msg.Printf( _( "Unable to create job file \"%s\"" ), aFullFilename );
m_reporter->Report( msg, RPT_SEVERITY_ERROR );
}
}
else if( m_reporter )
{
msg.Printf( _( "Create Gerber job file \"%s\"" ), aFullFilename );
m_reporter->Report( msg, RPT_SEVERITY_ACTION );
}
return success;
}
void GERBER_JOBFILE_WRITER::addJSONHeader()
{
wxString text;
m_json["Header"] = {
{
"GenerationSoftware",
{
{ "Vendor", "KiCad" },
{ "Application", "Pcbnew" },
{ "Version", GetBuildVersion() }
}
},
{
// The attribute value must conform to the full version of the ISO 8601
// date and time format, including time and time zone.
"CreationDate", GbrMakeCreationDateAttributeString( GBR_NC_STRING_FORMAT_GBRJOB )
}
};
}
bool GERBER_JOBFILE_WRITER::WriteJSONJobFile( const wxString& aFullFilename )
{
// Note: in Gerber job file, dimensions are in mm, and are floating numbers
std::ofstream file( aFullFilename.ToUTF8() );
LOCALE_IO dummy;
m_json = json( {} );
// output the job file header
addJSONHeader();
// Add the General Specs
addJSONGeneralSpecs();
// Job file support a few design rules:
addJSONDesignRules();
// output the gerber file list:
addJSONFilesAttributes();
// output the board stackup:
addJSONMaterialStackup();
file << std::setw( 2 ) << m_json << std::endl;
return true;
}
double GERBER_JOBFILE_WRITER::mapValue( double aUiValue )
{
// A helper function to convert aUiValue in Json units (mm) and to have
// 4 digits in Json in mantissa when using %g to print it
// i.e. displays values truncated in 0.1 microns.
// This is enough for a Json file
char buffer[128];
sprintf( buffer, "%.4f", aUiValue * m_conversionUnits );
long double output;
sscanf( buffer, "%Lg", &output );
return output;
}
void GERBER_JOBFILE_WRITER::addJSONGeneralSpecs()
{
m_json["GeneralSpecs"] = json( {} );
m_json["GeneralSpecs"]["ProjectId"] = json( {} );
// Creates the ProjectId. Format is (from Gerber file format doc):
// ProjectId,<project id>,<project GUID>,<revision id>*%
// <project id> is the name of the project, restricted to basic ASCII symbols only,
// and comma not accepted
// All illegal chars will be replaced by underscore
// Rem: <project id> accepts only ASCII 7 code (only basic ASCII codes are allowed in gerber files).
//
// <project GUID> is a string which is an unique id of a project.
// However Kicad does not handle such a project GUID, so it is built from the board name
wxFileName fn = m_pcb->GetFileName();
wxString msg = fn.GetFullName();
// Build a <project GUID>, from the board name
wxString guid = GbrMakeProjectGUIDfromString( msg );
// build the <project id> string: this is the board short filename (without ext)
// and all non ASCII chars are replaced by '_', to be compatible with .gbr files.
msg = fn.GetName();
// build the <rec> string. All non ASCII chars and comma are replaced by '_'
wxString rev = m_pcb->GetTitleBlock().GetRevision();
if( rev.IsEmpty() )
rev = wxT( "rev?" );
m_json["GeneralSpecs"]["ProjectId"]["Name"] = msg.ToAscii();
m_json["GeneralSpecs"]["ProjectId"]["GUID"] = guid;
m_json["GeneralSpecs"]["ProjectId"]["Revision"] = rev.ToAscii();
// output the bord size in mm:
EDA_RECT brect = m_pcb->GetBoardEdgesBoundingBox();
m_json["GeneralSpecs"]["Size"]["X"] = mapValue( brect.GetWidth() );
m_json["GeneralSpecs"]["Size"]["Y"] = mapValue( brect.GetHeight() );
// Add some data to the JSON header, GeneralSpecs:
// number of copper layers
m_json["GeneralSpecs"]["LayerNumber"] = m_pcb->GetCopperLayerCount();
// Board thickness
m_json["GeneralSpecs"]["BoardThickness"] =
mapValue( m_pcb->GetDesignSettings().GetBoardThickness() );
// Copper finish
BOARD_STACKUP brd_stackup = m_pcb->GetDesignSettings().GetStackupDescriptor();
if( !brd_stackup.m_FinishType.IsEmpty() )
m_json["GeneralSpecs"]["Finish"] = brd_stackup.m_FinishType;
if( brd_stackup.m_CastellatedPads )
m_json["GeneralSpecs"]["Castellated"] = true;
if( brd_stackup.m_EdgePlating )
m_json["GeneralSpecs"]["EdgePlating"] = true;
if( brd_stackup.m_EdgeConnectorConstraints )
{
m_json["GeneralSpecs"]["EdgeConnector"] = true;
m_json["GeneralSpecs"]["EdgeConnectorBevelled"] =
( brd_stackup.m_EdgeConnectorConstraints == BS_EDGE_CONNECTOR_BEVELLED );
}
#if 0 // Not yet in use
/* The board type according to IPC-2221. There are six primary board types:
- Type 1 - Single-sided
- Type 2 - Double-sided
- Type 3 - Multilayer, TH components only
- Type 4 - Multilayer, with TH, blind and/or buried vias.
- Type 5 - Multilayer metal-core board, TH components only
- Type 6 - Multilayer metal-core
*/
m_json["GeneralSpecs"]["IPC-2221-Type"] = 4;
/* Via protection: key words:
Ia Tented - Single-sided
Ib Tented - Double-sided
IIa Tented and Covered - Single-sided
IIb Tented and Covered - Double-sided
IIIa Plugged - Single-sided
IIIb Plugged - Double-sided
IVa Plugged and Covered - Single-sided
IVb Plugged and Covered - Double-sided
V Filled (fully plugged)
VI Filled and Covered
VIII Filled and Capped
None...No protection
*/
m_json["GeneralSpecs"]["ViaProtection"] = "Ib";
#endif
}
void GERBER_JOBFILE_WRITER::addJSONFilesAttributes()
{
// Add the Files Attributes section in JSON format to m_JSONbuffer
m_json["FilesAttributes"] = json::array();
for( unsigned ii = 0; ii < m_params.m_GerberFileList.GetCount(); ii++ )
{
wxString& name = m_params.m_GerberFileList[ii];
PCB_LAYER_ID layer = m_params.m_LayerId[ii];
wxString gbr_layer_id;
bool skip_file = false; // true to skip files which should not be in job file
const char* polarity = "Positive";
json file_json;
if( layer <= B_Cu )
{
gbr_layer_id = "Copper,L";
if( layer == B_Cu )
gbr_layer_id << m_pcb->GetCopperLayerCount();
else
gbr_layer_id << layer + 1;
gbr_layer_id << ",";
if( layer == B_Cu )
gbr_layer_id << "Bot";
else if( layer == F_Cu )
gbr_layer_id << "Top";
else
gbr_layer_id << "Inr";
}
else
{
switch( layer )
{
case B_Adhes:
gbr_layer_id = "Glue,Bot";
break;
case F_Adhes:
gbr_layer_id = "Glue,Top";
break;
case B_Paste:
gbr_layer_id = "SolderPaste,Bot";
break;
case F_Paste:
gbr_layer_id = "SolderPaste,Top";
break;
case B_SilkS:
gbr_layer_id = "Legend,Bot";
break;
case F_SilkS:
gbr_layer_id = "Legend,Top";
break;
case B_Mask:
gbr_layer_id = "SolderMask,Bot";
polarity = "Negative";
break;
case F_Mask:
gbr_layer_id = "SolderMask,Top";
polarity = "Negative";
break;
case Edge_Cuts:
gbr_layer_id = "Profile";
break;
case B_Fab:
gbr_layer_id = "AssemblyDrawing,Bot";
break;
case F_Fab:
gbr_layer_id = "AssemblyDrawing,Top";
break;
case Dwgs_User:
case Cmts_User:
case Eco1_User:
case Eco2_User:
case Margin:
case B_CrtYd:
case F_CrtYd:
skip_file = true;
break;
default:
skip_file = true;
m_reporter->Report( "Unexpected layer id in job file", RPT_SEVERITY_ERROR );
break;
}
}
if( !skip_file )
{
// name can contain non ASCII7 chars.
// Ensure the name is JSON compatible.
std::string strname = formatStringFromUTF32( name );
file_json["Path"] = strname.c_str();
file_json["FileFunction"] = gbr_layer_id;
file_json["FilePolarity"] = polarity;
m_json["FilesAttributes"] += file_json;
}
}
}
void GERBER_JOBFILE_WRITER::addJSONDesignRules()
{
// Add the Design Rules section in JSON format to m_JSONbuffer
// Job file support a few design rules:
const BOARD_DESIGN_SETTINGS& dsnSettings = m_pcb->GetDesignSettings();
NETCLASS defaultNC = *dsnSettings.GetDefault();
int minclearanceOuter = defaultNC.GetClearance();
bool hasInnerLayers = m_pcb->GetCopperLayerCount() > 2;
// Search a smaller clearance in other net classes, if any.
for( const std::pair<wxString, NETCLASSPTR>& entry : dsnSettings.m_NetClasses )
minclearanceOuter = std::min( minclearanceOuter, entry.second->GetClearance() );
// job file knows different clearance types.
// Kicad knows only one clearance for pads and tracks
int minclearance_track2track = minclearanceOuter;
// However, pads can have a specific clearance defined for a pad or a footprint,
// and min clearance can be dependent on layers.
// Search for a minimal pad clearance:
int minPadClearanceOuter = defaultNC.GetClearance();
int minPadClearanceInner = defaultNC.GetClearance();
for( MODULE* module : m_pcb->Modules() )
{
for( auto& pad : module->Pads() )
{
if( ( pad->GetLayerSet() & LSET::InternalCuMask() ).any() )
minPadClearanceInner = std::min( minPadClearanceInner, pad->GetClearance() );
if( ( pad->GetLayerSet() & LSET::ExternalCuMask() ).any() )
minPadClearanceOuter = std::min( minPadClearanceOuter, pad->GetClearance() );
}
}
m_json["DesignRules"] = { {
{ "Layers", "Outer" },
{ "PadToPad", mapValue( minPadClearanceOuter ) },
{ "PadToTrack", mapValue( minPadClearanceOuter ) },
{ "TrackToTrack", mapValue( minclearance_track2track ) }
} };
// Until this is changed in Kicad, use the same value for internal tracks
int minclearanceInner = minclearanceOuter;
// Output the minimal track width
int mintrackWidthOuter = INT_MAX;
int mintrackWidthInner = INT_MAX;
for( TRACK* track : m_pcb->Tracks() )
{
if( track->Type() == PCB_VIA_T )
continue;
if( track->GetLayer() == B_Cu || track->GetLayer() == F_Cu )
mintrackWidthOuter = std::min( mintrackWidthOuter, track->GetWidth() );
else
mintrackWidthInner = std::min( mintrackWidthInner, track->GetWidth() );
}
if( mintrackWidthOuter != INT_MAX )
m_json["DesignRules"][0]["MinLineWidth"] = mapValue( mintrackWidthOuter );
// Output the minimal zone to xx clearance
// Note: zones can have a zone clearance set to 0
// if happens, the actual zone clearance is the clearance of its class
minclearanceOuter = INT_MAX;
minclearanceInner = INT_MAX;
for( int ii = 0; ii < m_pcb->GetAreaCount(); ii++ )
{
ZONE_CONTAINER* zone = m_pcb->GetArea( ii );
if( zone->GetIsKeepout() || !zone->IsOnCopperLayer() )
continue;
int zclerance = zone->GetClearance();
if( zone->GetLayer() == B_Cu || zone->GetLayer() == F_Cu )
minclearanceOuter = std::min( minclearanceOuter, zclerance );
else
minclearanceInner = std::min( minclearanceInner, zclerance );
}
if( minclearanceOuter != INT_MAX )
m_json["DesignRules"][0]["TrackToRegion"] = mapValue( minclearanceOuter );
if( minclearanceOuter != INT_MAX )
m_json["DesignRules"][0]["RegionToRegion"] = mapValue( minclearanceOuter );
if( hasInnerLayers )
{
m_json["DesignRules"] += json( {
{ "Layers", "Inner" },
{ "PadToPad", mapValue( minPadClearanceInner ) },
{ "PadToTrack", mapValue( minPadClearanceInner ) },
{ "TrackToTrack", mapValue( minclearance_track2track ) }
} );
if( mintrackWidthInner != INT_MAX )
m_json["DesignRules"][1]["MinLineWidth"] = mapValue( mintrackWidthInner );
if( minclearanceInner != INT_MAX )
m_json["DesignRules"][1]["TrackToRegion"] = mapValue( minclearanceInner );
if( minclearanceInner != INT_MAX )
m_json["DesignRules"][1]["RegionToRegion"] = mapValue( minclearanceInner );
}
}
void GERBER_JOBFILE_WRITER::addJSONMaterialStackup()
{
// Add the Material Stackup section in JSON format to m_JSONbuffer
m_json["MaterialStackup"] = json::array();
// Build the candidates list:
LSET maskLayer;
BOARD_STACKUP brd_stackup = m_pcb->GetDesignSettings().GetStackupDescriptor();
// Ensure brd_stackup is up to date (i.e. no change made by SynchronizeWithBoard() )
bool uptodate = not brd_stackup.SynchronizeWithBoard( &m_pcb->GetDesignSettings() );
if( !uptodate && m_pcb->GetDesignSettings().m_HasStackup )
m_reporter->Report( _( "Board stackup settings not up to date\n"
"Please fix the stackup" ),
RPT_SEVERITY_ERROR );
PCB_LAYER_ID last_copper_layer = F_Cu;
// Generate the list (top to bottom):
for( int ii = 0; ii < brd_stackup.GetCount(); ++ii )
{
BOARD_STACKUP_ITEM* item = brd_stackup.GetStackupLayer( ii );
int sub_layer_count =
item->GetType() == BS_ITEM_TYPE_DIELECTRIC ? item->GetSublayersCount() : 1;
for( int sub_idx = 0; sub_idx < sub_layer_count; sub_idx++ )
{
// layer thickness is always in mm
double thickness = mapValue( item->GetThickness( sub_idx ) );
wxString layer_type;
std::string layer_name; // for comment
json layer_json;
switch( item->GetType() )
{
case BS_ITEM_TYPE_COPPER:
layer_type = "Copper";
layer_name = formatStringFromUTF32( m_pcb->GetLayerName( item->GetBrdLayerId() ) );
last_copper_layer = item->GetBrdLayerId();
break;
case BS_ITEM_TYPE_SILKSCREEN:
layer_type = "Legend";
layer_name = formatStringFromUTF32( item->GetTypeName() );
break;
case BS_ITEM_TYPE_SOLDERMASK:
layer_type = "SolderMask";
layer_name = formatStringFromUTF32( item->GetTypeName() );
break;
case BS_ITEM_TYPE_SOLDERPASTE:
layer_type = "SolderPaste";
layer_name = formatStringFromUTF32( item->GetTypeName() );
break;
case BS_ITEM_TYPE_DIELECTRIC:
layer_type = "Dielectric";
// The option core or prepreg is not added here, as it creates constraints
// in build process, not necessary wanted.
if( sub_layer_count > 1 )
{
layer_name =
formatStringFromUTF32( wxString::Format( "dielectric layer %d - %d/%d",
item->GetDielectricLayerId(), sub_idx + 1, sub_layer_count ) );
}
else
layer_name = formatStringFromUTF32( wxString::Format(
"dielectric layer %d", item->GetDielectricLayerId() ) );
break;
default:
break;
}
layer_json["Type"] = layer_type;
if( item->IsColorEditable() && uptodate )
{
if( IsPrmSpecified( item->GetColor() ) )
{
wxString colorName = item->GetColor();
if( colorName.StartsWith( "#" ) ) // This is a user defined color.
{
// In job file a color can be given by its RGB values (0...255)
wxColor color( colorName );
colorName.Printf( "R%dG%dB%d", color.Red(), color.Green(), color.Blue() );
}
layer_json["Color"] = colorName;
}
}
if( item->IsThicknessEditable() && uptodate )
layer_json["Thickness"] = thickness;
if( item->GetType() == BS_ITEM_TYPE_DIELECTRIC )
{
if( item->HasMaterialValue() )
{
layer_json["Material"] = item->GetMaterial( sub_idx );
// These constrains are only written if the board has impedance controlled tracks.
// If the board is not impedance controlled, they are useless.
// Do not add constrains that create more expensive boards.
if( brd_stackup.m_HasDielectricConstrains )
{
// Generate Epsilon R if > 1.0 (value <= 1.0 means not specified: it is not
// a possible value
if( item->GetEpsilonR() > 1.0 )
layer_json["DielectricConstant"] = item->FormatEpsilonR( sub_idx );
// Generate LossTangent > 0.0 (value <= 0.0 means not specified: it is not
// a possible value
if( item->GetLossTangent() > 0.0 )
layer_json["LossTangent"] = item->FormatLossTangent( sub_idx );
}
}
PCB_LAYER_ID next_copper_layer = ( PCB_LAYER_ID )( last_copper_layer + 1 );
// If the next_copper_layer is the last copper layer, the next layer id is B_Cu
if( next_copper_layer >= m_pcb->GetCopperLayerCount() - 1 )
next_copper_layer = B_Cu;
wxString subLayerName;
if( sub_layer_count > 1 )
subLayerName.Printf( " (%d/%d)", sub_idx + 1, sub_layer_count );
wxString name = wxString::Format( "%s/%s%s",
formatStringFromUTF32( m_pcb->GetLayerName( last_copper_layer ) ),
formatStringFromUTF32( m_pcb->GetLayerName( next_copper_layer ) ),
subLayerName );
layer_json["Name"] = name;
// Add a comment ("Notes"):
wxString note;
note << wxString::Format( "Type: %s", layer_name.c_str() );
note << wxString::Format( " (from %s to %s)",
formatStringFromUTF32( m_pcb->GetLayerName( last_copper_layer ) ),
formatStringFromUTF32( m_pcb->GetLayerName( next_copper_layer ) ) );
layer_json["Notes"] = note;
}
else if( item->GetType() == BS_ITEM_TYPE_SOLDERMASK
|| item->GetType() == BS_ITEM_TYPE_SILKSCREEN )
{
if( item->HasMaterialValue() )
{
layer_json["Material"] = item->GetMaterial();
// These constrains are only written if the board has impedance controlled tracks.
// If the board is not impedance controlled, they are useless.
// Do not add constrains that create more expensive boards.
if( brd_stackup.m_HasDielectricConstrains )
{
// Generate Epsilon R if > 1.0 (value <= 1.0 means not specified: it is not
// a possible value
if( item->GetEpsilonR() > 1.0 )
layer_json["DielectricConstant"] = item->FormatEpsilonR();
// Generate LossTangent > 0.0 (value <= 0.0 means not specified: it is not
// a possible value
if( item->GetLossTangent() > 0.0 )
layer_json["LossTangent"] = item->FormatLossTangent();
}
}
layer_json["Name"] = layer_name.c_str();
}
else
{
layer_json["Name"] = layer_name.c_str();
}
m_json["MaterialStackup"].insert( m_json["MaterialStackup"].end(), layer_json );
}
}
}