kicad/include/boost/polygon/polygon_set_data.hpp

1001 lines
40 KiB
C++

/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_SET_DATA_HPP
#define BOOST_POLYGON_POLYGON_SET_DATA_HPP
#include "polygon_45_set_data.hpp"
#include "polygon_45_set_concept.hpp"
#include "polygon_traits.hpp"
#include "detail/polygon_arbitrary_formation.hpp"
#include <iostream>
namespace boost { namespace polygon {
// utility function to round coordinate types down
// rounds down for both negative and positive numbers
// intended really for integer type T (does not make sense for float)
template <typename T>
static inline T round_down(double val) {
T rounded_val = (T)(val);
if(val < (double)rounded_val)
--rounded_val;
return rounded_val;
}
template <typename T>
static inline point_data<T> round_down(point_data<double> v) {
return point_data<T>(round_down<T>(v.x()),round_down<T>(v.y()));
}
//foward declare view
template <typename ltype, typename rtype, int op_type> class polygon_set_view;
template <typename T>
class polygon_set_data {
public:
typedef T coordinate_type;
typedef point_data<T> point_type;
typedef std::pair<point_type, point_type> edge_type;
typedef std::pair<edge_type, int> element_type;
typedef std::vector<element_type> value_type;
typedef typename value_type::const_iterator iterator_type;
typedef polygon_set_data operator_arg_type;
// default constructor
inline polygon_set_data() : data_(), dirty_(false), unsorted_(false), is_45_(true) {}
// constructor from an iterator pair over edge data
template <typename iT>
inline polygon_set_data(iT input_begin, iT input_end) : data_(), dirty_(false), unsorted_(false), is_45_(true) {
for( ; input_begin != input_end; ++input_begin) { insert(*input_begin); }
}
// copy constructor
inline polygon_set_data(const polygon_set_data& that) :
data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_), is_45_(that.is_45_) {}
// copy constructor
template <typename ltype, typename rtype, int op_type>
inline polygon_set_data(const polygon_set_view<ltype, rtype, op_type>& that);
// destructor
inline ~polygon_set_data() {}
// assignement operator
inline polygon_set_data& operator=(const polygon_set_data& that) {
if(this == &that) return *this;
data_ = that.data_;
dirty_ = that.dirty_;
unsorted_ = that.unsorted_;
is_45_ = that.is_45_;
return *this;
}
template <typename ltype, typename rtype, int op_type>
inline polygon_set_data& operator=(const polygon_set_view<ltype, rtype, op_type>& geometry) {
(*this) = geometry.value();
dirty_ = false;
unsorted_ = false;
return *this;
}
template <typename geometry_object>
inline polygon_set_data& operator=(const geometry_object& geometry) {
data_.clear();
insert(geometry);
return *this;
}
// insert iterator range
inline void insert(iterator_type input_begin, iterator_type input_end, bool is_hole = false) {
if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return;
dirty_ = true;
unsorted_ = true;
while(input_begin != input_end) {
insert(*input_begin, is_hole);
++input_begin;
}
}
// insert iterator range
template <typename iT>
inline void insert(iT input_begin, iT input_end, bool is_hole = false) {
if(input_begin == input_end) return;
for(; input_begin != input_end; ++input_begin) {
insert(*input_begin, is_hole);
}
}
template <typename geometry_type>
inline void insert(const geometry_type& geometry_object, bool is_hole = false) {
insert(geometry_object, is_hole, typename geometry_concept<geometry_type>::type());
}
template <typename polygon_type>
inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_concept ) {
insert_vertex_sequence(begin_points(polygon_object), end_points(polygon_object), winding(polygon_object), is_hole);
}
inline void insert(const polygon_set_data& ps, bool is_hole = false) {
insert(ps.data_.begin(), ps.data_.end(), is_hole);
}
template <typename polygon_45_set_type>
inline void insert(const polygon_45_set_type& ps, bool is_hole, polygon_45_set_concept) {
std::vector<polygon_45_with_holes_data<typename polygon_45_set_traits<polygon_45_set_type>::coordinate_type> > polys;
assign(polys, ps);
insert(polys.begin(), polys.end(), is_hole);
}
template <typename polygon_90_set_type>
inline void insert(const polygon_90_set_type& ps, bool is_hole, polygon_90_set_concept) {
std::vector<polygon_90_with_holes_data<typename polygon_90_set_traits<polygon_90_set_type>::coordinate_type> > polys;
assign(polys, ps);
insert(polys.begin(), polys.end(), is_hole);
}
template <typename polygon_type>
inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_45_concept ) {
insert(polygon_object, is_hole, polygon_concept()); }
template <typename polygon_type>
inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_90_concept ) {
insert(polygon_object, is_hole, polygon_concept()); }
template <typename polygon_with_holes_type>
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
polygon_with_holes_concept ) {
insert(polygon_with_holes_object, is_hole, polygon_concept());
for(typename polygon_with_holes_traits<polygon_with_holes_type>::iterator_holes_type itr =
begin_holes(polygon_with_holes_object);
itr != end_holes(polygon_with_holes_object); ++itr) {
insert(*itr, !is_hole, polygon_concept());
}
}
template <typename polygon_with_holes_type>
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
polygon_45_with_holes_concept ) {
insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
template <typename polygon_with_holes_type>
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
polygon_90_with_holes_concept ) {
insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
template <typename rectangle_type>
inline void insert(const rectangle_type& rectangle_object, bool is_hole, rectangle_concept ) {
polygon_90_data<coordinate_type> poly;
assign(poly, rectangle_object);
insert(poly, is_hole, polygon_concept());
}
inline void insert_clean(const element_type& edge, bool is_hole = false) {
if( ! scanline_base<coordinate_type>::is_45_degree(edge.first) &&
! scanline_base<coordinate_type>::is_horizontal(edge.first) &&
! scanline_base<coordinate_type>::is_vertical(edge.first) ) is_45_ = false;
data_.push_back(edge);
if(data_.back().first.second < data_.back().first.first) {
std::swap(data_.back().first.second, data_.back().first.first);
data_.back().second *= -1;
}
if(is_hole)
data_.back().second *= -1;
}
inline void insert(const element_type& edge, bool is_hole = false) {
insert_clean(edge, is_hole);
dirty_ = true;
unsorted_ = true;
}
template <class iT>
inline void insert_vertex_sequence(iT begin_vertex, iT end_vertex, direction_1d winding, bool is_hole) {
bool first_iteration = true;
point_type first_point;
point_type previous_point;
point_type current_point;
direction_1d winding_dir = winding;
int multiplier = winding_dir == COUNTERCLOCKWISE ? 1 : -1;
if(is_hole) multiplier *= -1;
for( ; begin_vertex != end_vertex; ++begin_vertex) {
assign(current_point, *begin_vertex);
if(first_iteration) {
first_iteration = false;
first_point = previous_point = current_point;
} else {
if(previous_point != current_point) {
element_type elem(edge_type(previous_point, current_point),
( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
insert_clean(elem);
}
}
previous_point = current_point;
}
current_point = first_point;
if(!first_iteration) {
if(previous_point != current_point) {
element_type elem(edge_type(previous_point, current_point),
( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
insert_clean(elem);
}
dirty_ = true;
unsorted_ = true;
}
}
template <typename output_container>
inline void get(output_container& output) const {
get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type());
}
// append to the container cT with polygons of three or four verticies
// slicing orientation is vertical
template <class cT>
void get_trapezoids(cT& container) const {
clean();
trapezoid_arbitrary_formation<coordinate_type> pf;
typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
std::vector<vertex_half_edge> data;
for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
}
gtlsort(data.begin(), data.end());
pf.scan(container, data.begin(), data.end());
//std::cout << "DONE FORMING POLYGONS\n";
}
// append to the container cT with polygons of three or four verticies
template <class cT>
void get_trapezoids(cT& container, orientation_2d slicing_orientation) const {
if(slicing_orientation == VERTICAL) {
get_trapezoids(container);
} else {
polygon_set_data<T> ps(*this);
ps.transform(axis_transformation(axis_transformation::SWAP_XY));
cT result;
ps.get_trapezoids(result);
for(typename cT::iterator itr = result.begin(); itr != result.end(); ++itr) {
::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY));
}
container.insert(container.end(), result.begin(), result.end());
}
}
// equivalence operator
inline bool operator==(const polygon_set_data& p) const {
clean();
p.clean();
return data_ == p.data_;
}
// inequivalence operator
inline bool operator!=(const polygon_set_data& p) const {
return !((*this) == p);
}
// get iterator to begin vertex data
inline iterator_type begin() const {
return data_.begin();
}
// get iterator to end vertex data
inline iterator_type end() const {
return data_.end();
}
const value_type& value() const {
return data_;
}
// clear the contents of the polygon_set_data
inline void clear() { data_.clear(); dirty_ = unsorted_ = false; }
// find out if Polygon set is empty
inline bool empty() const { return data_.empty(); }
// get the Polygon set size in vertices
inline std::size_t size() const { clean(); return data_.size(); }
// get the current Polygon set capacity in vertices
inline std::size_t capacity() const { return data_.capacity(); }
// reserve size of polygon set in vertices
inline void reserve(std::size_t size) { return data_.reserve(size); }
// find out if Polygon set is sorted
inline bool sorted() const { return !unsorted_; }
// find out if Polygon set is clean
inline bool dirty() const { return dirty_; }
void clean() const;
void sort() const{
if(unsorted_) {
gtlsort(data_.begin(), data_.end());
unsorted_ = false;
}
}
template <typename input_iterator_type>
void set(input_iterator_type input_begin, input_iterator_type input_end) {
clear();
insert(input_begin, input_end);
dirty_ = true;
unsorted_ = true;
}
void set(const value_type& value) {
data_ = value;
dirty_ = true;
unsorted_ = true;
}
template <typename rectangle_type>
bool extents(rectangle_type& rect) {
clean();
if(empty()) return false;
bool first_iteration = true;
for(iterator_type itr = begin();
itr != end(); ++itr) {
rectangle_type edge_box;
set_points(edge_box, (*itr).first.first, (*itr).first.second);
if(first_iteration)
rect = edge_box;
else
encompass(rect, edge_box);
first_iteration = false;
}
return true;
}
inline polygon_set_data&
resize(coordinate_type resizing, bool corner_fill_arc = false, unsigned int num_circle_segments=0);
template <typename transform_type>
inline polygon_set_data&
transform(const transform_type& tr) {
std::vector<polygon_with_holes_data<T> > polys;
get(polys);
clear();
for(std::size_t i = 0 ; i < polys.size(); ++i) {
::boost::polygon::transform(polys[i], tr);
insert(polys[i]);
}
unsorted_ = true;
dirty_ = true;
return *this;
}
inline polygon_set_data&
scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
::boost::polygon::scale_up((*itr).first.first, factor);
::boost::polygon::scale_up((*itr).first.second, factor);
}
return *this;
}
inline polygon_set_data&
scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
::boost::polygon::scale_down((*itr).first.first, factor);
::boost::polygon::scale_down((*itr).first.second, factor);
}
unsorted_ = true;
dirty_ = true;
return *this;
}
template <typename scaling_type>
inline polygon_set_data& scale(polygon_set_data& polygon_set,
const scaling_type& scaling) {
for(typename value_type::iterator itr = begin(); itr != end(); ++itr) {
::boost::polygon::scale((*itr).first.first, scaling);
::boost::polygon::scale((*itr).first.second, scaling);
}
unsorted_ = true;
dirty_ = true;
return *this;
}
static inline void compute_offset_edge(point_data<long double>& pt1, point_data<long double>& pt2,
const point_data<long double>& prev_pt,
const point_data<long double>& current_pt,
long double distance, int multiplier) {
long double dx = current_pt.x() - prev_pt.x();
long double dy = current_pt.y() - prev_pt.y();
long double edge_length = std::sqrt(dx*dx + dy*dy);
long double dnx = dy;
long double dny = -dx;
dnx = dnx * (long double)distance / edge_length;
dny = dny * (long double)distance / edge_length;
pt1.x(prev_pt.x() + (long double)dnx * (long double)multiplier);
pt2.x(current_pt.x() + (long double)dnx * (long double)multiplier);
pt1.y(prev_pt.y() + (long double)dny * (long double)multiplier);
pt2.y(current_pt.y() + (long double)dny * (long double)multiplier);
}
static inline void modify_pt(point_data<coordinate_type>& pt, const point_data<coordinate_type>& prev_pt,
const point_data<coordinate_type>& current_pt, const point_data<coordinate_type>& next_pt,
coordinate_type distance, coordinate_type multiplier) {
std::pair<point_data<long double>, point_data<long double> > he1, he2;
he1.first.x((long double)(prev_pt.x()));
he1.first.y((long double)(prev_pt.y()));
he1.second.x((long double)(current_pt.x()));
he1.second.y((long double)(current_pt.y()));
he2.first.x((long double)(current_pt.x()));
he2.first.y((long double)(current_pt.y()));
he2.second.x((long double)(next_pt.x()));
he2.second.y((long double)(next_pt.y()));
compute_offset_edge(he1.first, he1.second, prev_pt, current_pt, distance, multiplier);
compute_offset_edge(he2.first, he2.second, current_pt, next_pt, distance, multiplier);
typename scanline_base<long double>::compute_intersection_pack pack;
point_data<long double> rpt;
point_data<long double> bisectorpt((he1.second.x()+he2.first.x())/2,
(he1.second.y()+he2.first.y())/2);
point_data<long double> orig_pt((long double)pt.x(), (long double)pt.y());
if(euclidean_distance(bisectorpt, orig_pt) < distance/2) {
if(!pack.compute_lazy_intersection(rpt, he1, he2, true, false)) {
rpt = he1.second; //colinear offset edges use shared point
}
} else {
if(!pack.compute_lazy_intersection(rpt, he1, std::pair<point_data<long double>, point_data<long double> >(orig_pt, bisectorpt), true, false)) {
rpt = he1.second; //colinear offset edges use shared point
}
}
pt.x((coordinate_type)(std::floor(rpt.x()+0.5)));
pt.y((coordinate_type)(std::floor(rpt.y()+0.5)));
}
static void resize_poly_up(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) {
point_data<coordinate_type> first_pt = poly[0];
point_data<coordinate_type> second_pt = poly[1];
point_data<coordinate_type> prev_pt = poly[0];
point_data<coordinate_type> current_pt = poly[1];
for(std::size_t i = 2; i < poly.size()-1; ++i) {
point_data<coordinate_type> next_pt = poly[i];
modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier);
prev_pt = current_pt;
current_pt = next_pt;
}
point_data<coordinate_type> next_pt = first_pt;
modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier);
prev_pt = current_pt;
current_pt = next_pt;
next_pt = second_pt;
modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier);
poly.back() = poly.front();
}
static bool resize_poly_down(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) {
std::vector<point_data<coordinate_type> > orig_poly(poly);
rectangle_data<coordinate_type> extents_rectangle;
set_points(extents_rectangle, poly[0], poly[0]);
point_data<coordinate_type> first_pt = poly[0];
point_data<coordinate_type> second_pt = poly[1];
point_data<coordinate_type> prev_pt = poly[0];
point_data<coordinate_type> current_pt = poly[1];
encompass(extents_rectangle, current_pt);
for(std::size_t i = 2; i < poly.size()-1; ++i) {
point_data<coordinate_type> next_pt = poly[i];
encompass(extents_rectangle, next_pt);
modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier);
prev_pt = current_pt;
current_pt = next_pt;
}
if(delta(extents_rectangle, HORIZONTAL) <= std::abs(2*distance))
return false;
if(delta(extents_rectangle, VERTICAL) <= std::abs(2*distance))
return false;
point_data<coordinate_type> next_pt = first_pt;
modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier);
prev_pt = current_pt;
current_pt = next_pt;
next_pt = second_pt;
modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier);
poly.back() = poly.front();
//if the line segments formed between orignial and new points cross for an edge that edge inverts
//if all edges invert the polygon should be discarded
//if even one edge does not invert return true because the polygon is valid
bool non_inverting_edge = false;
for(std::size_t i = 1; i < poly.size(); ++i) {
std::pair<point_data<coordinate_type>, point_data<coordinate_type> >
he1(poly[i], orig_poly[i]),
he2(poly[i-1], orig_poly[i-1]);
if(!scanline_base<coordinate_type>::intersects(he1, he2)) {
non_inverting_edge = true;
break;
}
}
return non_inverting_edge;
}
polygon_set_data&
bloat(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) {
std::list<polygon_with_holes_data<coordinate_type> > polys;
get(polys);
clear();
for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
itr != polys.end(); ++itr) {
resize_poly_up((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)1);
insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes
for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
itrh != (*itr).holes_.end(); ++itrh) {
if(resize_poly_down((*itrh).coords_, (coordinate_type)distance, (coordinate_type)1)) {
insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true);
}
}
}
return *this;
}
polygon_set_data&
shrink(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) {
std::list<polygon_with_holes_data<coordinate_type> > polys;
get(polys);
clear();
for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
itr != polys.end(); ++itr) {
if(resize_poly_down((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)-1)) {
insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes
for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
itrh != (*itr).holes_.end(); ++itrh) {
resize_poly_up((*itrh).coords_, (coordinate_type)distance, (coordinate_type)-1);
insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true);
}
}
}
return *this;
}
// TODO:: should be private
template <typename geometry_type>
inline polygon_set_data&
insert_with_resize(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc=false, unsigned int num_circle_segments=0, bool hole = false) {
return insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, typename geometry_concept<geometry_type>::type());
}
template <typename geometry_type>
inline polygon_set_data&
insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
polygon_with_holes_concept tag) {
insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, polygon_concept());
for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr =
begin_holes(poly); itr != end_holes(poly);
++itr) {
insert_with_resize_dispatch(*itr, resizing, corner_fill_arc, num_circle_segments, !hole, polygon_concept());
}
return *this;
}
template <typename geometry_type>
inline polygon_set_data&
insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
polygon_concept tag) {
if (resizing==0)
return *this;
// one dimensional used to store CCW/CW flag
//direction_1d wdir = winding(poly);
// LOW==CLOCKWISE just faster to type
// so > 0 is CCW
//int multiplier = wdir == LOW ? -1 : 1;
//std::cout<<" multiplier : "<<multiplier<<std::endl;
//if(hole) resizing *= -1;
direction_1d resize_wdir = resizing>0?COUNTERCLOCKWISE:CLOCKWISE;
typedef typename polygon_data<T>::iterator_type piterator;
piterator first, second, third, end, real_end;
real_end = end_points(poly);
third = begin_points(poly);
first = third;
if(first == real_end) return *this;
++third;
if(third == real_end) return *this;
second = end = third;
++third;
if(third == real_end) return *this;
// for 1st corner
std::vector<point_data<T> > first_pts;
std::vector<point_data<T> > all_pts;
direction_1d first_wdir = CLOCKWISE;
// for all corners
polygon_set_data<T> sizingSet;
bool sizing_sign = resizing<0;
bool prev_concave = true;
point_data<T> prev_point;
//int iCtr=0;
//insert minkofski shapes on edges and corners
do { // REAL WORK IS HERE
//first, second and third point to points in correct CCW order
// check if convex or concave case
point_data<coordinate_type> normal1( second->y()-first->y(), first->x()-second->x());
point_data<coordinate_type> normal2( third->y()-second->y(), second->x()-third->x());
double direction = normal1.x()*normal2.y()- normal2.x()*normal1.y();
bool convex = direction>0;
bool treat_as_concave = !convex;
if(sizing_sign)
treat_as_concave = convex;
point_data<double> v;
assign(v, normal1);
double s2 = (v.x()*v.x()+v.y()*v.y());
double s = sqrt(s2)/resizing;
v = point_data<double>(v.x()/s,v.y()/s);
point_data<T> curr_prev;
if (prev_concave)
//TODO missing round_down()
curr_prev = point_data<T>(first->x()+v.x(),first->y()+v.y());
else
curr_prev = prev_point;
// around concave corners - insert rectangle
// if previous corner is concave it's point info may be ignored
if ( treat_as_concave) {
std::vector<point_data<T> > pts;
pts.push_back(point_data<T>(second->x()+v.x(),second->y()+v.y()));
pts.push_back(*second);
pts.push_back(*first);
pts.push_back(point_data<T>(curr_prev));
if (first_pts.size()){
sizingSet.insert_vertex_sequence(pts.begin(),pts.end(), resize_wdir,false);
}else {
first_pts=pts;
first_wdir = resize_wdir;
}
} else {
// add either intersection_quad or pie_shape, based on corner_fill_arc option
// for convex corner (convexity depends on sign of resizing, whether we shrink or grow)
std::vector< std::vector<point_data<T> > > pts;
direction_1d winding;
winding = convex?COUNTERCLOCKWISE:CLOCKWISE;
if (make_resizing_vertex_list(pts, curr_prev, prev_concave, *first, *second, *third, resizing
, num_circle_segments, corner_fill_arc))
{
if (first_pts.size()) {
for (unsigned int i=0; i<pts.size(); i++) {
sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
}
} else {
first_pts = pts[0];
first_wdir = resize_wdir;
for (unsigned int i=1; i<pts.size(); i++) {
sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
}
}
prev_point = curr_prev;
} else {
treat_as_concave = true;
}
}
prev_concave = treat_as_concave;
first = second;
second = third;
++third;
if(third == real_end) {
third = begin_points(poly);
if(*second == *third) {
++third; //skip first point if it is duplicate of last point
}
}
} while(second != end);
// handle insertion of first point
if (!prev_concave) {
first_pts[first_pts.size()-1]=prev_point;
}
sizingSet.insert_vertex_sequence(first_pts.begin(),first_pts.end(),first_wdir,false);
polygon_set_data<coordinate_type> tmp;
//insert original shape
tmp.insert(poly, false, polygon_concept());
if((resizing < 0) ^ hole) tmp -= sizingSet;
else tmp += sizingSet;
//tmp.clean();
insert(tmp, hole);
return (*this);
}
inline polygon_set_data&
interact(const polygon_set_data& that);
inline bool downcast(polygon_45_set_data<coordinate_type>& result) const {
if(!is_45_) return false;
for(iterator_type itr = begin(); itr != end(); ++itr) {
const element_type& elem = *itr;
int count = elem.second;
int rise = 1; //up sloping 45
if(scanline_base<coordinate_type>::is_horizontal(elem.first)) rise = 0;
else if(scanline_base<coordinate_type>::is_vertical(elem.first)) rise = 2;
else {
if(!scanline_base<coordinate_type>::is_45_degree(elem.first)) {
is_45_ = false;
return false; //consider throwing because is_45_ has be be wrong
}
if(elem.first.first.y() > elem.first.second.y()) rise = -1; //down sloping 45
}
typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex(elem.first.first, rise, count);
result.insert(vertex);
typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex2(elem.first.second, rise, -count);
result.insert(vertex2);
}
return true;
}
inline GEOMETRY_CONCEPT_ID concept_downcast() const {
typedef typename coordinate_traits<coordinate_type>::coordinate_difference delta_type;
bool is_45 = false;
for(iterator_type itr = begin(); itr != end(); ++itr) {
const element_type& elem = *itr;
delta_type h_delta = euclidean_distance(elem.first.first, elem.first.second, HORIZONTAL);
delta_type v_delta = euclidean_distance(elem.first.first, elem.first.second, VERTICAL);
if(h_delta != 0 || v_delta != 0) {
//neither delta is zero and the edge is not MANHATTAN
if(v_delta != h_delta && v_delta != -h_delta) return POLYGON_SET_CONCEPT;
else is_45 = true;
}
}
if(is_45) return POLYGON_45_SET_CONCEPT;
return POLYGON_90_SET_CONCEPT;
}
private:
mutable value_type data_;
mutable bool dirty_;
mutable bool unsorted_;
mutable bool is_45_;
private:
//functions
template <typename output_container>
void get_dispatch(output_container& output, polygon_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container, typename concept_type>
void get_fracture(output_container& container, bool fracture_holes, concept_type ) const {
clean();
polygon_arbitrary_formation<coordinate_type> pf(fracture_holes);
typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
std::vector<vertex_half_edge> data;
for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
}
gtlsort(data.begin(), data.end());
pf.scan(container, data.begin(), data.end());
}
};
struct polygon_set_concept;
template <typename T>
struct geometry_concept<polygon_set_data<T> > {
typedef polygon_set_concept type;
};
// template <typename T>
// inline double compute_area(point_data<T>& a, point_data<T>& b, point_data<T>& c) {
// return (double)(b.x()-a.x())*(double)(c.y()-a.y())- (double)(c.x()-a.x())*(double)(b.y()-a.y());
// }
template <typename T>
inline int make_resizing_vertex_list(std::vector<std::vector<point_data< T> > >& return_points,
point_data<T>& curr_prev, bool ignore_prev_point,
point_data< T> start, point_data<T> middle, point_data< T> end,
double sizing_distance, unsigned int num_circle_segments, bool corner_fill_arc) {
// handle the case of adding an intersection point
point_data<double> dn1( middle.y()-start.y(), start.x()-middle.x());
double size = sizing_distance/sqrt( dn1.x()*dn1.x()+dn1.y()*dn1.y());
dn1 = point_data<double>( dn1.x()*size, dn1.y()* size);
point_data<double> dn2( end.y()-middle.y(), middle.x()-end.x());
size = sizing_distance/sqrt( dn2.x()*dn2.x()+dn2.y()*dn2.y());
dn2 = point_data<double>( dn2.x()*size, dn2.y()* size);
point_data<double> start_offset((start.x()+dn1.x()),(start.y()+dn1.y()));
point_data<double> mid1_offset((middle.x()+dn1.x()),(middle.y()+dn1.y()));
point_data<double> end_offset((end.x()+dn2.x()),(end.y()+dn2.y()));
point_data<double> mid2_offset((middle.x()+dn2.x()),(middle.y()+dn2.y()));
if (ignore_prev_point)
curr_prev = round_down<T>(start_offset);
if (corner_fill_arc) {
std::vector<point_data< T> > return_points1;
return_points.push_back(return_points1);
std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
return_points_back.push_back(round_down<T>(mid1_offset));
return_points_back.push_back(middle);
return_points_back.push_back(start);
return_points_back.push_back(curr_prev);
point_data<double> dmid(middle.x(),middle.y());
return_points.push_back(return_points1);
int num = make_arc(return_points[return_points.size()-1],mid1_offset,mid2_offset,dmid,sizing_distance,num_circle_segments);
curr_prev = round_down<T>(mid2_offset);
return num;
}
std::pair<point_data<double>,point_data<double> > he1(start_offset,mid1_offset);
std::pair<point_data<double>,point_data<double> > he2(mid2_offset ,end_offset);
//typedef typename high_precision_type<double>::type high_precision;
point_data<T> intersect;
typename scanline_base<T>::compute_intersection_pack pack;
bool res = pack.compute_intersection(intersect,he1,he2,true);
if( res ) {
std::vector<point_data< T> > return_points1;
return_points.push_back(return_points1);
std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
return_points_back.push_back(intersect);
return_points_back.push_back(middle);
return_points_back.push_back(start);
return_points_back.push_back(curr_prev);
//double d1= compute_area(intersect,middle,start);
//double d2= compute_area(start,curr_prev,intersect);
curr_prev = intersect;
return return_points.size();
}
return 0;
}
// this routine should take in start and end point s.t. end point is CCW from start
// it sould make a pie slice polygon that is an intersection of that arc
// with an ngon segments approximation of the circle centered at center with radius r
// point start is gauaranteed to be on the segmentation
// returnPoints will start with the first point after start
// returnPoints vector may be empty
template <typename T>
inline int make_arc(std::vector<point_data< T> >& return_points,
point_data< double> start, point_data< double> end,
point_data< double> center, double r, unsigned int num_circle_segments) {
const double our_pi=3.1415926535897932384626433832795028841971;
// derive start and end angles
double ps = atan2(start.y()-center.y(), start.x()-center.x());
double pe = atan2(end.y()-center.y(), end.x()-center.x());
if (ps < 0.0)
ps += 2.0 * our_pi;
if (pe <= 0.0)
pe += 2.0 * our_pi;
if (ps >= 2.0 * our_pi)
ps -= 2.0 * our_pi;
while (pe <= ps)
pe += 2.0 * our_pi;
double delta_angle = (2.0 * our_pi) / (double)num_circle_segments;
if ( start==end) // full circle?
{
ps = delta_angle*0.5;
pe = ps + our_pi * 2.0;
double x,y;
x = center.x() + r * cos(ps);
y = center.y() + r * sin(ps);
start = point_data<double>(x,y);
end = start;
}
return_points.push_back(round_down<T>(center));
return_points.push_back(round_down<T>(start));
unsigned int i=0;
double curr_angle = ps+delta_angle;
while( curr_angle < pe - 0.01 && i < 2 * num_circle_segments) {
i++;
double x = center.x() + r * cos( curr_angle);
double y = center.y() + r * sin( curr_angle);
return_points.push_back( round_down<T>((point_data<double>(x,y))));
curr_angle+=delta_angle;
}
return_points.push_back(round_down<T>(end));
return return_points.size();
}
}// close namespace
}// close name space
#include "detail/scan_arbitrary.hpp"
namespace boost { namespace polygon {
//ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and
//polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap
template <typename coordinate_type>
class connectivity_extraction{
private:
typedef arbitrary_connectivity_extraction<coordinate_type, int> ce;
ce ce_;
unsigned int nodeCount_;
public:
inline connectivity_extraction() : ce_(), nodeCount_(0) {}
inline connectivity_extraction(const connectivity_extraction& that) : ce_(that.ce_),
nodeCount_(that.nodeCount_) {}
inline connectivity_extraction& operator=(const connectivity_extraction& that) {
ce_ = that.ce_;
nodeCount_ = that.nodeCount_; {}
return *this;
}
//insert a polygon set graph node, the value returned is the id of the graph node
inline unsigned int insert(const polygon_set_data<coordinate_type>& ps) {
ps.clean();
ce_.populateTouchSetData(ps.begin(), ps.end(), nodeCount_);
return nodeCount_++;
}
template <class GeoObjT>
inline unsigned int insert(const GeoObjT& geoObj) {
polygon_set_data<coordinate_type> ps;
ps.insert(geoObj);
return insert(ps);
}
//extract connectivity and store the edges in the graph
//graph must be indexable by graph node id and the indexed value must be a std::set of
//graph node id
template <class GraphT>
inline void extract(GraphT& graph) {
ce_.execute(graph);
}
};
template <typename T>
polygon_set_data<T>&
polygon_set_data<T>::interact(const polygon_set_data<T>& that) {
connectivity_extraction<coordinate_type> ce;
std::vector<polygon_with_holes_data<T> > polys;
get(polys);
clear();
for(std::size_t i = 0; i < polys.size(); ++i) {
ce.insert(polys[i]);
}
int id = ce.insert(that);
std::vector<std::set<int> > graph(id+1);
ce.extract(graph);
for(std::set<int>::iterator itr = graph[id].begin();
itr != graph[id].end(); ++itr) {
insert(polys[*itr]);
}
return *this;
}
}
}
#include "polygon_set_traits.hpp"
#include "detail/polygon_set_view.hpp"
#include "polygon_set_concept.hpp"
#include "detail/minkowski.hpp"
#endif