kicad/pcbnew/autorouter/ar_autoplacer.cpp

979 lines
29 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com>
*
* Copyright (C) 1992-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <confirm.h>
#include <pcbnew.h>
#include <pcb_edit_frame.h>
#include <widgets/msgpanel.h>
#include <board.h>
#include <footprint.h>
#include <pcb_shape.h>
#include <pad.h>
#include <board_commit.h>
#include <connectivity/connectivity_data.h>
#include <progress_reporter.h>
#include "ar_autoplacer.h"
#include "ar_matrix.h"
#include <memory>
#include <ratsnest/ratsnest_data.h>
#define AR_GAIN 16
#define AR_KEEPOUT_MARGIN 500
#define AR_ABORT_PLACEMENT -1
#define STEP_AR_MM 1.0
/* Bits characterizing cell */
#define CELL_IS_EMPTY 0x00
#define CELL_IS_HOLE 0x01 /* a conducting hole or obstacle */
#define CELL_IS_MODULE 0x02 /* auto placement occupied by a footprint */
#define CELL_IS_EDGE 0x20 /* Area and auto-placement: limiting cell contour (Board, Zone) */
#define CELL_IS_FRIEND 0x40 /* Area and auto-placement: cell part of the net */
#define CELL_IS_ZONE 0x80 /* Area and auto-placement: cell available */
/* Penalty (cost) for CntRot90 and CntRot180:
* CntRot90 and CntRot180 are from 0 (rotation allowed) to 10 (rotation not allowed)
*/
static const double OrientationPenalty[11] =
{
2.0, // CntRot = 0 rotation prohibited
1.9, // CntRot = 1
1.8, // CntRot = 2
1.7, // CntRot = 3
1.6, // CntRot = 4
1.5, // CntRot = 5
1.4, // CntRot = 5
1.3, // CntRot = 7
1.2, // CntRot = 8
1.1, // CntRot = 9
1.0 // CntRot = 10 rotation authorized, no penalty
};
AR_AUTOPLACER::AR_AUTOPLACER( BOARD* aBoard )
{
m_board = aBoard;
m_connectivity = std::make_unique<CONNECTIVITY_DATA>( );
for( FOOTPRINT* footprint : m_board->Footprints() )
m_connectivity->Add( footprint );
m_gridSize = Millimeter2iu( STEP_AR_MM );
m_progressReporter = nullptr;
m_refreshCallback = nullptr;
m_minCost = 0.0;
}
void AR_AUTOPLACER::placeFootprint( FOOTPRINT* aFootprint, bool aDoNotRecreateRatsnest,
const VECTOR2I& aPos )
{
if( !aFootprint )
return;
aFootprint->SetPosition( aPos );
m_connectivity->Update( aFootprint );
}
int AR_AUTOPLACER::genPlacementRoutingMatrix()
{
m_matrix.UnInitRoutingMatrix();
EDA_RECT bbox = m_board->GetBoardEdgesBoundingBox();
if( bbox.GetWidth() == 0 || bbox.GetHeight() == 0 )
return 0;
// Build the board shape
m_board->GetBoardPolygonOutlines( m_boardShape );
m_topFreeArea = m_boardShape;
m_bottomFreeArea = m_boardShape;
m_matrix.ComputeMatrixSize( bbox );
int nbCells = m_matrix.m_Ncols * m_matrix.m_Nrows;
// Choose the number of board sides.
m_matrix.m_RoutingLayersCount = 2;
m_matrix.InitRoutingMatrix();
m_matrix.m_routeLayerBottom = B_Cu;
m_matrix.m_routeLayerTop = F_Cu;
// Fill (mark) the cells inside the board:
fillMatrix();
// Other obstacles can be added here:
for( auto drawing : m_board->Drawings() )
{
switch( drawing->Type() )
{
case PCB_SHAPE_T:
if( drawing->GetLayer() != Edge_Cuts )
{
m_matrix.TraceSegmentPcb( (PCB_SHAPE*) drawing, CELL_IS_HOLE | CELL_IS_EDGE,
m_matrix.m_GridRouting, AR_MATRIX::WRITE_CELL );
}
break;
default:
break;
}
}
// Initialize top layer. to the same value as the bottom layer
if( m_matrix.m_BoardSide[AR_SIDE_TOP] )
memcpy( m_matrix.m_BoardSide[AR_SIDE_TOP], m_matrix.m_BoardSide[AR_SIDE_BOTTOM],
nbCells * sizeof(AR_MATRIX::MATRIX_CELL) );
return 1;
}
bool AR_AUTOPLACER::fillMatrix()
{
std::vector <int> x_coordinates;
bool success = true;
int step = m_matrix.m_GridRouting;
VECTOR2I coord_orgin = m_matrix.GetBrdCoordOrigin(); // Board coordinate of matruix cell (0,0)
// Create a single board outline:
SHAPE_POLY_SET brd_shape = m_boardShape;
brd_shape.Fracture( SHAPE_POLY_SET::PM_FAST );
const SHAPE_LINE_CHAIN& outline = brd_shape.Outline(0);
const BOX2I& rect = outline.BBox();
// Creates the horizontal segments
// Calculate the y limits of the area
for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += step )
{
// The row index (vertical position) of current line scan inside the placement matrix
int idy = (refy - coord_orgin.y) / step;
// Ensure we are still inside the placement matrix
if( idy >= m_matrix.m_Nrows )
break;
// Ensure we are inside the placement matrix
if( idy <= 0 )
continue;
// find all intersection points of an infinite line with polyline sides
x_coordinates.clear();
for( int v = 0; v < outline.PointCount(); v++ )
{
int seg_startX = outline.CPoint( v ).x;
int seg_startY = outline.CPoint( v ).y;
int seg_endX = outline.CPoint( v + 1 ).x;
int seg_endY = outline.CPoint( v + 1 ).y;
/* Trivial cases: skip if ref above or below the segment to test */
if( ( seg_startY > refy ) && ( seg_endY > refy ) )
continue;
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
continue;
/* at this point refy is between seg_startY and seg_endY
* see if an horizontal line at Y = refy is intersecting this segment
*/
// calculate the x position of the intersection of this segment and the
// infinite line this is more easier if we move the X,Y axis origin to
// the segment start point:
seg_endX -= seg_startX;
seg_endY -= seg_startY;
double newrefy = (double) ( refy - seg_startY );
double intersec_x;
if ( seg_endY == 0 ) // horizontal segment on the same line: skip
continue;
// Now calculate the x intersection coordinate of the horizontal line at
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the
// horizontal line at the new refy position the line slope is:
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
// and the x pos relative to the new origin is:
// intersec_x = refy/slope = refy * inv_slope
// Note: because horizontal segments are already tested and skipped, slope
// exists (seg_end_y not O)
double inv_slope = (double) seg_endX / seg_endY;
intersec_x = newrefy * inv_slope;
x_coordinates.push_back( (int) intersec_x + seg_startX );
}
// A line scan is finished: build list of segments
// Sort intersection points by increasing x value:
// So 2 consecutive points are the ends of a segment
std::sort( x_coordinates.begin(), x_coordinates.end() );
// An even number of coordinates is expected, because a segment has 2 ends.
// An if this algorithm always works, it must always find an even count.
if( ( x_coordinates.size() & 1 ) != 0 )
{
success = false;
break;
}
// Fill cells having the same Y coordinate
int iimax = x_coordinates.size() - 1;
for( int ii = 0; ii < iimax; ii += 2 )
{
int seg_start_x = x_coordinates[ii] - coord_orgin.x;
int seg_end_x = x_coordinates[ii + 1] - coord_orgin.x;
// Fill cells at y coord = idy,
// and at x cood >= seg_start_x and <= seg_end_x
for( int idx = seg_start_x / step; idx < m_matrix.m_Ncols; idx++ )
{
if( idx * step > seg_end_x )
break;
if( idx * step >= seg_start_x )
m_matrix.SetCell( idy, idx, AR_SIDE_BOTTOM, CELL_IS_ZONE );
}
}
} // End examine segments in one area
return success;
}
void AR_AUTOPLACER::rotateFootprint( FOOTPRINT* aFootprint, double angle, bool incremental )
{
if( aFootprint == nullptr )
return;
if( incremental )
aFootprint->SetOrientation( aFootprint->GetOrientation() + angle );
else
aFootprint->SetOrientation( angle );
m_board->GetConnectivity()->Update( aFootprint );
}
void AR_AUTOPLACER::addFpBody( const VECTOR2I& aStart, const VECTOR2I& aEnd, LSET aLayerMask )
{
// Add a polygonal shape (rectangle) to m_fpAreaFront and/or m_fpAreaBack
if( aLayerMask[ F_Cu ] )
{
m_fpAreaTop.NewOutline();
m_fpAreaTop.Append( aStart.x, aStart.y );
m_fpAreaTop.Append( aEnd.x, aStart.y );
m_fpAreaTop.Append( aEnd.x, aEnd.y );
m_fpAreaTop.Append( aStart.x, aEnd.y );
}
if( aLayerMask[ B_Cu ] )
{
m_fpAreaBottom.NewOutline();
m_fpAreaBottom.Append( aStart.x, aStart.y );
m_fpAreaBottom.Append( aEnd.x, aStart.y );
m_fpAreaBottom.Append( aEnd.x, aEnd.y );
m_fpAreaBottom.Append( aStart.x, aEnd.y );
}
}
void AR_AUTOPLACER::addPad( PAD* aPad, int aClearance )
{
// Add a polygonal shape (rectangle) to m_fpAreaFront and/or m_fpAreaBack
EDA_RECT bbox = aPad->GetBoundingBox();
bbox.Inflate( aClearance );
if( aPad->IsOnLayer( F_Cu ) )
{
m_fpAreaTop.NewOutline();
m_fpAreaTop.Append( bbox.GetLeft(), bbox.GetTop() );
m_fpAreaTop.Append( bbox.GetRight(), bbox.GetTop() );
m_fpAreaTop.Append( bbox.GetRight(), bbox.GetBottom() );
m_fpAreaTop.Append( bbox.GetLeft(), bbox.GetBottom() );
}
if( aPad->IsOnLayer( B_Cu ) )
{
m_fpAreaBottom.NewOutline();
m_fpAreaBottom.Append( bbox.GetLeft(), bbox.GetTop() );
m_fpAreaBottom.Append( bbox.GetRight(), bbox.GetTop() );
m_fpAreaBottom.Append( bbox.GetRight(), bbox.GetBottom() );
m_fpAreaBottom.Append( bbox.GetLeft(), bbox.GetBottom() );
}
}
void AR_AUTOPLACER::buildFpAreas( FOOTPRINT* aFootprint, int aFpClearance )
{
m_fpAreaTop.RemoveAllContours();
m_fpAreaBottom.RemoveAllContours();
aFootprint->BuildPolyCourtyards();
m_fpAreaTop = aFootprint->GetPolyCourtyard( F_CrtYd );
m_fpAreaBottom = aFootprint->GetPolyCourtyard( B_CrtYd );
LSET layerMask;
if( aFootprint->GetLayer() == F_Cu )
layerMask.set( F_Cu );
if( aFootprint->GetLayer() == B_Cu )
layerMask.set( B_Cu );
EDA_RECT fpBBox = aFootprint->GetBoundingBox();
fpBBox.Inflate( ( m_matrix.m_GridRouting / 2 ) + aFpClearance );
// Add a minimal area to the fp area:
addFpBody( fpBBox.GetOrigin(), fpBBox.GetEnd(), layerMask );
// Trace pads + clearance areas.
for( PAD* pad : aFootprint->Pads() )
{
int margin = (m_matrix.m_GridRouting / 2) + pad->GetOwnClearance( pad->GetLayer() );
addPad( pad, margin );
}
}
void AR_AUTOPLACER::genModuleOnRoutingMatrix( FOOTPRINT* Module )
{
int ox, oy, fx, fy;
LSET layerMask;
EDA_RECT fpBBox = Module->GetBoundingBox();
fpBBox.Inflate( m_matrix.m_GridRouting / 2 );
ox = fpBBox.GetX();
fx = fpBBox.GetRight();
oy = fpBBox.GetY();
fy = fpBBox.GetBottom();
if( ox < m_matrix.m_BrdBox.GetX() )
ox = m_matrix.m_BrdBox.GetX();
if( ox > m_matrix.m_BrdBox.GetRight() )
ox = m_matrix.m_BrdBox.GetRight();
if( fx < m_matrix.m_BrdBox.GetX() )
fx = m_matrix.m_BrdBox.GetX();
if( fx > m_matrix.m_BrdBox.GetRight() )
fx = m_matrix.m_BrdBox.GetRight();
if( oy < m_matrix.m_BrdBox.GetY() )
oy = m_matrix.m_BrdBox.GetY();
if( oy > m_matrix.m_BrdBox.GetBottom() )
oy = m_matrix.m_BrdBox.GetBottom();
if( fy < m_matrix.m_BrdBox.GetY() )
fy = m_matrix.m_BrdBox.GetY();
if( fy > m_matrix.m_BrdBox.GetBottom() )
fy = m_matrix.m_BrdBox.GetBottom();
if( Module->GetLayer() == F_Cu )
layerMask.set( F_Cu );
if( Module->GetLayer() == B_Cu )
layerMask.set( B_Cu );
m_matrix.TraceFilledRectangle( ox, oy, fx, fy, layerMask,
CELL_IS_MODULE, AR_MATRIX::WRITE_OR_CELL );
// Trace pads + clearance areas.
for( PAD* pad : Module->Pads() )
{
int margin = (m_matrix.m_GridRouting / 2) + pad->GetOwnClearance( pad->GetLayer() );
m_matrix.PlacePad( pad, CELL_IS_MODULE, margin, AR_MATRIX::WRITE_OR_CELL );
}
// Trace clearance.
int margin = ( m_matrix.m_GridRouting * Module->GetPadCount() ) / AR_GAIN;
m_matrix.CreateKeepOutRectangle( ox, oy, fx, fy, margin, AR_KEEPOUT_MARGIN , layerMask );
// Build the footprint courtyard
buildFpAreas( Module, margin );
// Substract the shape to free areas
m_topFreeArea.BooleanSubtract( m_fpAreaTop, SHAPE_POLY_SET::PM_FAST );
m_bottomFreeArea.BooleanSubtract( m_fpAreaBottom, SHAPE_POLY_SET::PM_FAST );
}
int AR_AUTOPLACER::testRectangle( const EDA_RECT& aRect, int side )
{
EDA_RECT rect = aRect;
rect.Inflate( m_matrix.m_GridRouting / 2 );
VECTOR2I start = rect.GetOrigin();
VECTOR2I end = rect.GetEnd();
start -= m_matrix.m_BrdBox.GetOrigin();
end -= m_matrix.m_BrdBox.GetOrigin();
int row_min = start.y / m_matrix.m_GridRouting;
int row_max = end.y / m_matrix.m_GridRouting;
int col_min = start.x / m_matrix.m_GridRouting;
int col_max = end.x / m_matrix.m_GridRouting;
if( start.y > row_min * m_matrix.m_GridRouting )
row_min++;
if( start.x > col_min * m_matrix.m_GridRouting )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= ( m_matrix.m_Nrows - 1 ) )
row_max = m_matrix.m_Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= ( m_matrix.m_Ncols - 1 ) )
col_max = m_matrix.m_Ncols - 1;
for( int row = row_min; row <= row_max; row++ )
{
for( int col = col_min; col <= col_max; col++ )
{
unsigned int data = m_matrix.GetCell( row, col, side );
if( ( data & CELL_IS_ZONE ) == 0 )
return AR_OUT_OF_BOARD;
if( (data & CELL_IS_MODULE) )
return AR_OCCUIPED_BY_MODULE;
}
}
return AR_FREE_CELL;
}
unsigned int AR_AUTOPLACER::calculateKeepOutArea( const EDA_RECT& aRect, int side )
{
VECTOR2I start = aRect.GetOrigin();
VECTOR2I end = aRect.GetEnd();
start -= m_matrix.m_BrdBox.GetOrigin();
end -= m_matrix.m_BrdBox.GetOrigin();
int row_min = start.y / m_matrix.m_GridRouting;
int row_max = end.y / m_matrix.m_GridRouting;
int col_min = start.x / m_matrix.m_GridRouting;
int col_max = end.x / m_matrix.m_GridRouting;
if( start.y > row_min * m_matrix.m_GridRouting )
row_min++;
if( start.x > col_min * m_matrix.m_GridRouting )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= ( m_matrix.m_Nrows - 1 ) )
row_max = m_matrix.m_Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= ( m_matrix.m_Ncols - 1 ) )
col_max = m_matrix.m_Ncols - 1;
unsigned int keepOutCost = 0;
for( int row = row_min; row <= row_max; row++ )
{
for( int col = col_min; col <= col_max; col++ )
{
// m_matrix.GetDist returns the "cost" of the cell
// at position (row, col)
// in autoplace this is the cost of the cell, if it is
// inside aRect
keepOutCost += m_matrix.GetDist( row, col, side );
}
}
return keepOutCost;
}
int AR_AUTOPLACER::testFootprintOnBoard( FOOTPRINT* aFootprint, bool TstOtherSide,
const VECTOR2I& aOffset )
{
int side = AR_SIDE_TOP;
int otherside = AR_SIDE_BOTTOM;
if( aFootprint->GetLayer() == B_Cu )
{
side = AR_SIDE_BOTTOM; otherside = AR_SIDE_TOP;
}
EDA_RECT fpBBox = aFootprint->GetBoundingBox( false, false );
fpBBox.Move( -1*aOffset );
buildFpAreas( aFootprint, 0 );
int diag = //testModuleByPolygon( aFootprint, side, aOffset );
testRectangle( fpBBox, side );
if( diag != AR_FREE_CELL )
return diag;
if( TstOtherSide )
{
diag = //testModuleByPolygon( aFootprint, otherside, aOffset );
testRectangle( fpBBox, otherside );
if( diag != AR_FREE_CELL )
return diag;
}
int marge = ( m_matrix.m_GridRouting * aFootprint->GetPadCount() ) / AR_GAIN;
fpBBox.Inflate( marge );
return calculateKeepOutArea( fpBBox, side );
}
int AR_AUTOPLACER::getOptimalFPPlacement( FOOTPRINT* aFootprint )
{
int error = 1;
VECTOR2I lastPosOK;
double min_cost, curr_cost, Score;
bool testOtherSide;
lastPosOK = m_matrix.m_BrdBox.GetOrigin();
VECTOR2I fpPos = aFootprint->GetPosition();
EDA_RECT fpBBox = aFootprint->GetBoundingBox( false, false );
// Move fpBBox to have the footprint position at (0,0)
fpBBox.Move( -fpPos );
VECTOR2I fpBBoxOrg = fpBBox.GetOrigin();
// Calculate the limit of the footprint position, relative to the routing matrix area
VECTOR2I xylimit = m_matrix.m_BrdBox.GetEnd() - fpBBox.GetEnd();
VECTOR2I initialPos = m_matrix.m_BrdBox.GetOrigin() - fpBBoxOrg;
// Stay on grid.
initialPos.x -= initialPos.x % m_matrix.m_GridRouting;
initialPos.y -= initialPos.y % m_matrix.m_GridRouting;
m_curPosition = initialPos;
VECTOR2I fpOffset = fpPos - m_curPosition;
// Examine pads, and set testOtherSide to true if a footprint has at least 1 pad through.
testOtherSide = false;
if( m_matrix.m_RoutingLayersCount > 1 )
{
LSET other( aFootprint->GetLayer() == B_Cu ? F_Cu : B_Cu );
for( PAD* pad : aFootprint->Pads() )
{
if( !( pad->GetLayerSet() & other ).any() )
continue;
testOtherSide = true;
break;
}
}
fpBBox.SetOrigin( fpBBoxOrg + m_curPosition );
min_cost = -1.0;
// m_frame->SetStatusText( wxT( "Score ??, pos ??" ) );
for( ; m_curPosition.x < xylimit.x; m_curPosition.x += m_matrix.m_GridRouting )
{
m_curPosition.y = initialPos.y;
for( ; m_curPosition.y < xylimit.y; m_curPosition.y += m_matrix.m_GridRouting )
{
fpBBox.SetOrigin( fpBBoxOrg + m_curPosition );
fpOffset = fpPos - m_curPosition;
int keepOutCost = testFootprintOnBoard( aFootprint, testOtherSide, fpOffset );
if( keepOutCost >= 0 ) // i.e. if the footprint can be put here
{
error = 0;
// m_frame->build_ratsnest_footprint( aFootprint ); // fixme
curr_cost = computePlacementRatsnestCost( aFootprint, fpOffset );
Score = curr_cost + keepOutCost;
if( (min_cost >= Score ) || (min_cost < 0 ) )
{
lastPosOK = m_curPosition;
min_cost = Score;
wxString msg;
/* msg.Printf( wxT( "Score %g, pos %s, %s" ),
min_cost,
GetChars( ::CoordinateToString( LastPosOK.x ) ),
GetChars( ::CoordinateToString( LastPosOK.y ) ) );
m_frame->SetStatusText( msg );*/
}
}
}
}
// Regeneration of the modified variable.
m_curPosition = lastPosOK;
m_minCost = min_cost;
return error;
}
const PAD* AR_AUTOPLACER::nearestPad( FOOTPRINT* aRefFP, PAD* aRefPad, const VECTOR2I& aOffset )
{
const PAD* nearest = nullptr;
int64_t nearestDist = INT64_MAX;
for( FOOTPRINT* footprint : m_board->Footprints() )
{
if ( footprint == aRefFP )
continue;
if( !m_matrix.m_BrdBox.Contains( footprint->GetPosition() ) )
continue;
for( PAD* pad: footprint->Pads() )
{
if( pad->GetNetCode() != aRefPad->GetNetCode() || pad->GetNetCode() <= 0 )
continue;
auto dist = ( VECTOR2I( aRefPad->GetPosition() - aOffset ) -
VECTOR2I( pad->GetPosition() ) ).EuclideanNorm();
if ( dist < nearestDist )
{
nearestDist = dist;
nearest = pad;
}
}
}
return nearest;
}
double AR_AUTOPLACER::computePlacementRatsnestCost( FOOTPRINT* aFootprint, const VECTOR2I& aOffset )
{
double curr_cost;
VECTOR2I start; // start point of a ratsnest
VECTOR2I end; // end point of a ratsnest
int dx, dy;
curr_cost = 0;
for( PAD* pad : aFootprint->Pads() )
{
const PAD* nearest = nearestPad( aFootprint, pad, aOffset );
if( !nearest )
continue;
start = VECTOR2I( pad->GetPosition() ) - VECTOR2I(aOffset);
end = VECTOR2I( nearest->GetPosition() );
//m_overlay->SetIsStroke( true );
//m_overlay->SetStrokeColor( COLOR4D(0.0, 1.0, 0.0, 1.0) );
//m_overlay->Line( start, end );
// Cost of the ratsnest.
dx = end.x - start.x;
dy = end.y - start.y;
dx = abs( dx );
dy = abs( dy );
// ttry to have always dx >= dy to calculate the cost of the ratsnest
if( dx < dy )
std::swap( dx, dy );
// Cost of the connection = length + penalty due to the slope
// dx is the biggest length relative to the X or Y axis
// the penalty is max for 45 degrees ratsnests,
// and 0 for horizontal or vertical ratsnests.
// For Horizontal and Vertical ratsnests, dy = 0;
double conn_cost = hypot( dx, dy * 2.0 );
curr_cost += conn_cost; // Total cost = sum of costs of each connection
}
return curr_cost;
}
// Sort routines
static bool sortFootprintsByComplexity( FOOTPRINT* ref, FOOTPRINT* compare )
{
double ff1, ff2;
ff1 = ref->GetArea() * ref->GetPadCount();
ff2 = compare->GetArea() * compare->GetPadCount();
return ff2 < ff1;
}
static bool sortFootprintsByRatsnestSize( FOOTPRINT* ref, FOOTPRINT* compare )
{
double ff1, ff2;
ff1 = ref->GetArea() * ref->GetFlag();
ff2 = compare->GetArea() * compare->GetFlag();
return ff2 < ff1;
}
FOOTPRINT* AR_AUTOPLACER::pickFootprint()
{
std::vector<FOOTPRINT*> fpList;
for( FOOTPRINT* footprint : m_board->Footprints() )
fpList.push_back( footprint );
sort( fpList.begin(), fpList.end(), sortFootprintsByComplexity );
for( unsigned kk = 0; kk < fpList.size(); kk++ )
{
FOOTPRINT* footprint = fpList[kk];
footprint->SetFlag( 0 );
if( !footprint->NeedsPlaced() )
continue;
m_connectivity->Update( footprint );
}
m_connectivity->RecalculateRatsnest();
for( unsigned kk = 0; kk < fpList.size(); kk++ )
{
FOOTPRINT* footprint = fpList[kk];
auto edges = m_connectivity->GetRatsnestForComponent( footprint, true );
footprint->SetFlag( edges.size() ) ;
}
sort( fpList.begin(), fpList.end(), sortFootprintsByRatsnestSize );
// Search for "best" footprint.
FOOTPRINT* bestFootprint = nullptr;
FOOTPRINT* altFootprint = nullptr;
for( unsigned ii = 0; ii < fpList.size(); ii++ )
{
FOOTPRINT* footprint = fpList[ii];
if( !footprint->NeedsPlaced() )
continue;
altFootprint = footprint;
if( footprint->GetFlag() == 0 )
continue;
bestFootprint = footprint;
break;
}
if( bestFootprint )
return bestFootprint;
else
return altFootprint;
}
void AR_AUTOPLACER::drawPlacementRoutingMatrix( )
{
// Draw the board free area
m_overlay->Clear();
m_overlay->SetIsFill( true );
m_overlay->SetIsStroke( false );
SHAPE_POLY_SET freeArea = m_topFreeArea;
freeArea.Fracture( SHAPE_POLY_SET::PM_FAST );
// Draw the free polygon areas, top side:
if( freeArea.OutlineCount() > 0 )
{
m_overlay->SetIsFill( true );
m_overlay->SetIsStroke( false );
m_overlay->SetFillColor( COLOR4D(0.7, 0.0, 0.1, 0.2) );
m_overlay->Polygon( freeArea );
}
freeArea = m_bottomFreeArea;
freeArea.Fracture( SHAPE_POLY_SET::PM_FAST );
// Draw the free polygon areas, bottom side:
if( freeArea.OutlineCount() > 0 )
{
m_overlay->SetFillColor( COLOR4D(0.0, 0.7, 0.0, 0.2) );
m_overlay->Polygon( freeArea );
}
}
AR_RESULT AR_AUTOPLACER::AutoplaceFootprints( std::vector<FOOTPRINT*>& aFootprints,
BOARD_COMMIT* aCommit,
bool aPlaceOffboardModules )
{
VECTOR2I memopos;
int error;
bool cancelled = false;
memopos = m_curPosition;
m_matrix.m_GridRouting = m_gridSize; //(int) m_frame->GetScreen()->GetGridSize().x;
// Ensure Board.m_GridRouting has a reasonable value:
if( m_matrix.m_GridRouting < Millimeter2iu( 0.25 ) )
m_matrix.m_GridRouting = Millimeter2iu( 0.25 );
// Compute footprint parameters used in autoplace
if( genPlacementRoutingMatrix( ) == 0 )
return AR_FAILURE;
int placedCount = 0;
for( FOOTPRINT* footprint : m_board->Footprints() )
footprint->SetNeedsPlaced( false );
std::vector<FOOTPRINT*> offboardMods;
if( aPlaceOffboardModules )
{
for( FOOTPRINT* footprint : m_board->Footprints() )
{
if( !m_matrix.m_BrdBox.Contains( footprint->GetPosition() ) )
offboardMods.push_back( footprint );
}
}
for( FOOTPRINT* footprint : aFootprints )
{
footprint->SetNeedsPlaced( true );
aCommit->Modify( footprint );
}
for( FOOTPRINT* footprint : offboardMods )
{
footprint->SetNeedsPlaced( true );
aCommit->Modify( footprint );
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
if( footprint->NeedsPlaced() ) // Erase from screen
placedCount++;
else
genModuleOnRoutingMatrix( footprint );
}
int cnt = 0;
wxString msg;
if( m_progressReporter )
{
m_progressReporter->Report( _( "Autoplacing components..." ) );
m_progressReporter->SetMaxProgress( placedCount );
}
drawPlacementRoutingMatrix();
if( m_refreshCallback )
m_refreshCallback( nullptr );
FOOTPRINT* footprint;
while( ( footprint = pickFootprint() ) != nullptr )
{
// Display some info about activity, footprint placement can take a while:
//m_frame->SetStatusText( msg );
if( m_progressReporter )
m_progressReporter->SetTitle( wxString::Format( _( "Autoplacing %s" ),
footprint->GetReference() ) );
error = getOptimalFPPlacement( footprint );
if( error == AR_ABORT_PLACEMENT )
break;
// Place footprint.
placeFootprint( footprint, true, m_curPosition );
genModuleOnRoutingMatrix( footprint );
footprint->SetIsPlaced( true );
footprint->SetNeedsPlaced( false );
drawPlacementRoutingMatrix();
if( m_refreshCallback )
m_refreshCallback( footprint );
if( m_progressReporter )
{
m_progressReporter->AdvanceProgress();
if ( !m_progressReporter->KeepRefreshing( false ) )
{
cancelled = true;
break;
}
}
cnt++;
}
m_curPosition = memopos;
m_matrix.UnInitRoutingMatrix();
return cancelled ? AR_CANCELLED : AR_COMPLETED;
}