kicad/pcbnew/zone.cpp

1762 lines
55 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2024 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <bitmaps.h>
#include <geometry/geometry_utils.h>
#include <geometry/shape_null.h>
#include <pcb_edit_frame.h>
#include <pcb_screen.h>
#include <board.h>
#include <board_design_settings.h>
#include <pad.h>
#include <zone.h>
#include <footprint.h>
#include <string_utils.h>
#include <math_for_graphics.h>
#include <properties/property_validators.h>
#include <settings/color_settings.h>
#include <settings/settings_manager.h>
#include <trigo.h>
#include <i18n_utility.h>
#include <mutex>
ZONE::ZONE( BOARD_ITEM_CONTAINER* aParent ) :
BOARD_CONNECTED_ITEM( aParent, PCB_ZONE_T ),
m_Poly( nullptr ),
m_teardropType( TEARDROP_TYPE::TD_NONE ),
m_isFilled( false ),
m_CornerSelection( nullptr ),
m_area( 0.0 ),
m_outlinearea( 0.0 )
{
m_Poly = new SHAPE_POLY_SET(); // Outlines
SetLocalFlags( 0 ); // flags temporary used in zone calculations
m_fillVersion = 5; // set the "old" way to build filled polygon areas (< 6.0.x)
if( GetParentFootprint() )
SetIsRuleArea( true ); // Zones living in footprints have the rule area option
if( aParent->GetBoard() )
aParent->GetBoard()->GetDesignSettings().GetDefaultZoneSettings().ExportSetting( *this );
else
ZONE_SETTINGS().ExportSetting( *this );
m_needRefill = false; // True only after edits.
}
ZONE::ZONE( const ZONE& aZone ) :
BOARD_CONNECTED_ITEM( aZone ),
m_Poly( nullptr ),
m_CornerSelection( nullptr )
{
InitDataFromSrcInCopyCtor( aZone );
}
ZONE& ZONE::operator=( const ZONE& aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
InitDataFromSrcInCopyCtor( aOther );
return *this;
}
ZONE::~ZONE()
{
delete m_Poly;
delete m_CornerSelection;
if( BOARD* board = GetBoard() )
board->IncrementTimeStamp();
}
void ZONE::InitDataFromSrcInCopyCtor( const ZONE& aZone )
{
// members are expected non initialize in this.
// InitDataFromSrcInCopyCtor() is expected to be called only from a copy constructor.
// Copy only useful EDA_ITEM flags:
m_flags = aZone.m_flags;
m_forceVisible = aZone.m_forceVisible;
// Replace the outlines for aZone outlines.
delete m_Poly;
m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly );
m_cornerSmoothingType = aZone.m_cornerSmoothingType;
m_cornerRadius = aZone.m_cornerRadius;
m_zoneName = aZone.m_zoneName;
m_priority = aZone.m_priority;
m_isRuleArea = aZone.m_isRuleArea;
SetLayerSet( aZone.GetLayerSet() );
m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour;
m_doNotAllowVias = aZone.m_doNotAllowVias;
m_doNotAllowTracks = aZone.m_doNotAllowTracks;
m_doNotAllowPads = aZone.m_doNotAllowPads;
m_doNotAllowFootprints = aZone.m_doNotAllowFootprints;
m_PadConnection = aZone.m_PadConnection;
m_ZoneClearance = aZone.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aZone.m_ZoneMinThickness;
m_fillVersion = aZone.m_fillVersion;
m_islandRemovalMode = aZone.m_islandRemovalMode;
m_minIslandArea = aZone.m_minIslandArea;
m_isFilled = aZone.m_isFilled;
m_needRefill = aZone.m_needRefill;
m_teardropType = aZone.m_teardropType;
m_thermalReliefGap = aZone.m_thermalReliefGap;
m_thermalReliefSpokeWidth = aZone.m_thermalReliefSpokeWidth;
m_fillMode = aZone.m_fillMode; // solid vs. hatched
m_hatchThickness = aZone.m_hatchThickness;
m_hatchGap = aZone.m_hatchGap;
m_hatchOrientation = aZone.m_hatchOrientation;
m_hatchSmoothingLevel = aZone.m_hatchSmoothingLevel;
m_hatchSmoothingValue = aZone.m_hatchSmoothingValue;
m_hatchBorderAlgorithm = aZone.m_hatchBorderAlgorithm;
m_hatchHoleMinArea = aZone.m_hatchHoleMinArea;
// For corner moving, corner index to drag, or nullptr if no selection
delete m_CornerSelection;
m_CornerSelection = nullptr;
aZone.GetLayerSet().RunOnLayers(
[&]( PCB_LAYER_ID layer )
{
std::shared_ptr<SHAPE_POLY_SET> fill = aZone.m_FilledPolysList.at( layer );
if( fill )
m_FilledPolysList[layer] = std::make_shared<SHAPE_POLY_SET>( *fill );
else
m_FilledPolysList[layer] = std::make_shared<SHAPE_POLY_SET>();
m_filledPolysHash[layer] = aZone.m_filledPolysHash.at( layer );
m_insulatedIslands[layer] = aZone.m_insulatedIslands.at( layer );
} );
m_borderStyle = aZone.m_borderStyle;
m_borderHatchPitch = aZone.m_borderHatchPitch;
m_borderHatchLines = aZone.m_borderHatchLines;
SetLocalFlags( aZone.GetLocalFlags() );
m_netinfo = aZone.m_netinfo;
m_area = aZone.m_area;
m_outlinearea = aZone.m_outlinearea;
}
EDA_ITEM* ZONE::Clone() const
{
return new ZONE( *this );
}
bool ZONE::HigherPriority( const ZONE* aOther ) const
{
// Teardrops are always higher priority than regular zones, so if one zone is a teardrop
// and the other is not, then return higher priority as the teardrop
if( ( m_teardropType == TEARDROP_TYPE::TD_NONE )
^ ( aOther->m_teardropType == TEARDROP_TYPE::TD_NONE ) )
{
return static_cast<int>( m_teardropType ) > static_cast<int>( aOther->m_teardropType );
}
if( m_priority != aOther->m_priority )
return m_priority > aOther->m_priority;
return m_Uuid > aOther->m_Uuid;
}
bool ZONE::SameNet( const ZONE* aOther ) const
{
return GetNetCode() == aOther->GetNetCode();
}
bool ZONE::UnFill()
{
bool change = false;
for( std::pair<const PCB_LAYER_ID, std::shared_ptr<SHAPE_POLY_SET>>& pair : m_FilledPolysList )
{
change |= !pair.second->IsEmpty();
m_insulatedIslands[pair.first].clear();
pair.second->RemoveAllContours();
}
m_isFilled = false;
m_fillFlags.reset();
return change;
}
bool ZONE::IsConflicting() const
{
return HasFlag( COURTYARD_CONFLICT );
}
VECTOR2I ZONE::GetPosition() const
{
return GetCornerPosition( 0 );
}
PCB_LAYER_ID ZONE::GetLayer() const
{
if( m_layerSet.count() == 1 )
return m_layerSet.UIOrder()[0];
else
return UNDEFINED_LAYER;
}
PCB_LAYER_ID ZONE::GetFirstLayer() const
{
if( m_layerSet.count() )
return m_layerSet.UIOrder()[0];
else
return UNDEFINED_LAYER;
}
bool ZONE::IsOnCopperLayer() const
{
return ( m_layerSet & LSET::AllCuMask() ).count() > 0;
}
void ZONE::SetLayer( PCB_LAYER_ID aLayer )
{
SetLayerSet( LSET( aLayer ) );
}
void ZONE::SetLayerSet( LSET aLayerSet )
{
if( aLayerSet.count() == 0 )
return;
if( m_layerSet != aLayerSet )
{
SetNeedRefill( true );
UnFill();
m_FilledPolysList.clear();
m_filledPolysHash.clear();
m_insulatedIslands.clear();
aLayerSet.RunOnLayers(
[&]( PCB_LAYER_ID layer )
{
m_FilledPolysList[layer] = std::make_shared<SHAPE_POLY_SET>();
m_filledPolysHash[layer] = {};
m_insulatedIslands[layer] = {};
} );
}
m_layerSet = aLayerSet;
}
void ZONE::ViewGetLayers( int aLayers[], int& aCount ) const
{
aCount = 0;
m_layerSet.RunOnLayers(
[&]( PCB_LAYER_ID layer )
{
aLayers[ aCount++ ] = layer;
aLayers[ aCount++ ] = layer + static_cast<int>( LAYER_ZONE_START );
} );
if( IsConflicting() )
aLayers[ aCount++ ] = LAYER_CONFLICTS_SHADOW;
}
double ZONE::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
constexpr double HIDE = std::numeric_limits<double>::max();
if( !aView )
return 0;
if( !aView->IsLayerVisible( LAYER_ZONES ) )
return HIDE;
if( FOOTPRINT* parentFP = GetParentFootprint() )
{
bool flipped = parentFP->GetLayer() == B_Cu;
// Handle Render tab switches
if( !flipped && !aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) )
return HIDE;
if( flipped && !aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) )
return HIDE;
}
// Other layers are shown without any conditions
return 0.0;
}
bool ZONE::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
return m_layerSet.test( aLayer );
}
const BOX2I ZONE::GetBoundingBox() const
{
if( const BOARD* board = GetBoard() )
{
std::unordered_map<const ZONE*, BOX2I>& cache = board->m_ZoneBBoxCache;
{
std::shared_lock<std::shared_mutex> readLock( board->m_CachesMutex );
auto cacheIter = cache.find( this );
if( cacheIter != cache.end() )
return cacheIter->second;
}
BOX2I bbox = m_Poly->BBox();
{
std::unique_lock<std::shared_mutex> writeLock( board->m_CachesMutex );
cache[ this ] = bbox;
}
return bbox;
}
return m_Poly->BBox();
}
void ZONE::CacheBoundingBox()
{
// GetBoundingBox() will cache it for us, and there's no sense duplicating the somewhat tricky
// locking code.
GetBoundingBox();
}
int ZONE::GetThermalReliefGap( PAD* aPad, wxString* aSource ) const
{
if( aPad->GetLocalThermalGapOverride() == 0 )
{
if( aSource )
*aSource = _( "zone" );
return m_thermalReliefGap;
}
return aPad->GetLocalThermalGapOverride( aSource );
}
void ZONE::SetCornerRadius( unsigned int aRadius )
{
if( m_cornerRadius != aRadius )
SetNeedRefill( true );
m_cornerRadius = aRadius;
}
static SHAPE_POLY_SET g_nullPoly;
HASH_128 ZONE::GetHashValue( PCB_LAYER_ID aLayer )
{
if( !m_filledPolysHash.count( aLayer ) )
return g_nullPoly.GetHash();
else
return m_filledPolysHash.at( aLayer );
}
void ZONE::BuildHashValue( PCB_LAYER_ID aLayer )
{
if( !m_FilledPolysList.count( aLayer ) )
m_filledPolysHash[aLayer] = g_nullPoly.GetHash();
else
m_filledPolysHash[aLayer] = m_FilledPolysList.at( aLayer )->GetHash();
}
bool ZONE::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
// When looking for an "exact" hit aAccuracy will be 0 which works poorly for very thin
// lines. Give it a floor.
int accuracy = std::max( aAccuracy, pcbIUScale.mmToIU( 0.1 ) );
return HitTestForCorner( aPosition, accuracy * 2 ) || HitTestForEdge( aPosition, accuracy );
}
bool ZONE::HitTestForCorner( const VECTOR2I& refPos, int aAccuracy,
SHAPE_POLY_SET::VERTEX_INDEX* aCornerHit ) const
{
return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, aAccuracy );
}
bool ZONE::HitTestForEdge( const VECTOR2I& refPos, int aAccuracy,
SHAPE_POLY_SET::VERTEX_INDEX* aCornerHit ) const
{
return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, aAccuracy );
}
bool ZONE::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
// Calculate bounding box for zone
BOX2I bbox = GetBoundingBox();
bbox.Normalize();
BOX2I arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
if( aContained )
{
return arect.Contains( bbox );
}
else
{
// Fast test: if aBox is outside the polygon bounding box, rectangles cannot intersect
if( !arect.Intersects( bbox ) )
return false;
int count = m_Poly->TotalVertices();
for( int ii = 0; ii < count; ii++ )
{
VECTOR2I vertex = m_Poly->CVertex( ii );
VECTOR2I vertexNext = m_Poly->CVertex( ( ii + 1 ) % count );
// Test if the point is within the rect
if( arect.Contains( vertex ) )
return true;
// Test if this edge intersects the rect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
return false;
}
}
std::optional<int> ZONE::GetLocalClearance() const
{
return m_isRuleArea ? 0 : m_ZoneClearance;
}
bool ZONE::HitTestFilledArea( PCB_LAYER_ID aLayer, const VECTOR2I& aRefPos, int aAccuracy ) const
{
// Rule areas have no filled area, but it's generally nice to treat their interior as if it were
// filled so that people don't have to select them by their outline (which is min-width)
if( GetIsRuleArea() )
return m_Poly->Contains( aRefPos, -1, aAccuracy );
if( !m_FilledPolysList.count( aLayer ) )
return false;
return m_FilledPolysList.at( aLayer )->Contains( aRefPos, -1, aAccuracy );
}
bool ZONE::HitTestCutout( const VECTOR2I& aRefPos, int* aOutlineIdx, int* aHoleIdx ) const
{
// Iterate over each outline polygon in the zone and then iterate over
// each hole it has to see if the point is in it.
for( int i = 0; i < m_Poly->OutlineCount(); i++ )
{
for( int j = 0; j < m_Poly->HoleCount( i ); j++ )
{
if( m_Poly->Hole( i, j ).PointInside( aRefPos ) )
{
if( aOutlineIdx )
*aOutlineIdx = i;
if( aHoleIdx )
*aHoleIdx = j;
return true;
}
}
}
return false;
}
void ZONE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg = GetFriendlyName();
// Display Cutout instead of Outline for holes inside a zone (i.e. when num contour !=0).
// Check whether the selected corner is in a hole; i.e., in any contour but the first one.
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
msg << wxT( " " ) << _( "Cutout" );
aList.emplace_back( _( "Type" ), msg );
if( GetIsRuleArea() )
{
msg.Empty();
if( GetDoNotAllowVias() )
AccumulateDescription( msg, _( "No vias" ) );
if( GetDoNotAllowTracks() )
AccumulateDescription( msg, _( "No tracks" ) );
if( GetDoNotAllowPads() )
AccumulateDescription( msg, _( "No pads" ) );
if( GetDoNotAllowCopperPour() )
AccumulateDescription( msg, _( "No copper zones" ) );
if( GetDoNotAllowFootprints() )
AccumulateDescription( msg, _( "No footprints" ) );
if( !msg.IsEmpty() )
aList.emplace_back( _( "Restrictions" ), msg );
}
else if( IsOnCopperLayer() )
{
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME )
{
aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) );
aList.emplace_back( _( "Resolved Netclass" ),
UnescapeString( GetEffectiveNetClass()->GetName() ) );
}
// Display priority level
aList.emplace_back( _( "Priority" ),
wxString::Format( wxT( "%d" ), GetAssignedPriority() ) );
}
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME )
{
if( IsLocked() )
aList.emplace_back( _( "Status" ), _( "Locked" ) );
}
LSEQ layers = m_layerSet.Seq();
wxString layerDesc;
if( layers.size() == 1 )
{
layerDesc.Printf( _( "%s" ), GetBoard()->GetLayerName( layers[0] ) );
}
else if (layers.size() == 2 )
{
layerDesc.Printf( _( "%s and %s" ),
GetBoard()->GetLayerName( layers[0] ),
GetBoard()->GetLayerName( layers[1] ) );
}
else if (layers.size() == 3 )
{
layerDesc.Printf( _( "%s, %s and %s" ),
GetBoard()->GetLayerName( layers[0] ),
GetBoard()->GetLayerName( layers[1] ),
GetBoard()->GetLayerName( layers[2] ) );
}
else if( layers.size() > 3 )
{
layerDesc.Printf( _( "%s, %s and %d more" ),
GetBoard()->GetLayerName( layers[0] ),
GetBoard()->GetLayerName( layers[1] ),
static_cast<int>( layers.size() - 2 ) );
}
aList.emplace_back( _( "Layer" ), layerDesc );
if( !m_zoneName.empty() )
aList.emplace_back( _( "Name" ), m_zoneName );
switch( m_fillMode )
{
case ZONE_FILL_MODE::POLYGONS: msg = _( "Solid" ); break;
case ZONE_FILL_MODE::HATCH_PATTERN: msg = _( "Hatched" ); break;
default: msg = _( "Unknown" ); break;
}
aList.emplace_back( _( "Fill Mode" ), msg );
aList.emplace_back( _( "Filled Area" ),
aFrame->MessageTextFromValue( m_area, true, EDA_DATA_TYPE::AREA ) );
wxString source;
int clearance = GetOwnClearance( UNDEFINED_LAYER, &source );
if( !source.IsEmpty() )
{
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ),
aFrame->MessageTextFromValue( clearance ) ),
wxString::Format( _( "(from %s)" ),
source ) );
}
if( !m_FilledPolysList.empty() )
{
int count = 0;
for( std::pair<const PCB_LAYER_ID, std::shared_ptr<SHAPE_POLY_SET>>& ii: m_FilledPolysList )
count += ii.second->TotalVertices();
aList.emplace_back( _( "Corner Count" ), wxString::Format( wxT( "%d" ), count ) );
}
}
void ZONE::Move( const VECTOR2I& offset )
{
/* move outlines */
m_Poly->Move( offset );
HatchBorder();
/* move fills */
for( std::pair<const PCB_LAYER_ID, std::shared_ptr<SHAPE_POLY_SET>>& pair : m_FilledPolysList )
pair.second->Move( offset );
/*
* move boundingbox cache
*
* While the cache will get nuked at the conclusion of the operation, we use it for some
* things (such as drawing the parent group) during the move.
*/
if( GetBoard() )
{
auto it = GetBoard()->m_ZoneBBoxCache.find( this );
if( it != GetBoard()->m_ZoneBBoxCache.end() )
it->second.Move( offset );
}
}
wxString ZONE::GetFriendlyName() const
{
if( GetIsRuleArea() )
return _( "Rule Area" );
else if( IsTeardropArea() )
return _( "Teardrop Area" );
else if( IsOnCopperLayer() )
return _( "Copper Zone" );
else
return _( "Non-copper Zone" );
}
void ZONE::MoveEdge( const VECTOR2I& offset, int aEdge )
{
int next_corner;
if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) )
{
m_Poly->SetVertex( aEdge, m_Poly->CVertex( aEdge ) + VECTOR2I( offset ) );
m_Poly->SetVertex( next_corner, m_Poly->CVertex( next_corner ) + VECTOR2I( offset ) );
HatchBorder();
SetNeedRefill( true );
}
}
void ZONE::Rotate( const VECTOR2I& aCentre, const EDA_ANGLE& aAngle )
{
m_Poly->Rotate( aAngle, aCentre );
HatchBorder();
/* rotate filled areas: */
for( std::pair<const PCB_LAYER_ID, std::shared_ptr<SHAPE_POLY_SET>>& pair : m_FilledPolysList )
pair.second->Rotate( aAngle, aCentre );
}
void ZONE::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
{
Mirror( aCentre, aFlipLeftRight );
std::map<PCB_LAYER_ID, SHAPE_POLY_SET> fillsCopy;
for( auto& [oldLayer, shapePtr] : m_FilledPolysList )
{
fillsCopy[oldLayer] = *shapePtr;
}
SetLayerSet( FlipLayerMask( GetLayerSet(), GetBoard()->GetCopperLayerCount() ) );
for( auto& [oldLayer, shape] : fillsCopy )
{
PCB_LAYER_ID newLayer = FlipLayer( oldLayer, GetBoard()->GetCopperLayerCount() );
SetFilledPolysList( newLayer, shape );
}
}
void ZONE::Mirror( const VECTOR2I& aMirrorRef, bool aMirrorLeftRight )
{
m_Poly->Mirror( aMirrorLeftRight, !aMirrorLeftRight, aMirrorRef );
HatchBorder();
for( std::pair<const PCB_LAYER_ID, std::shared_ptr<SHAPE_POLY_SET>>& pair : m_FilledPolysList )
pair.second->Mirror( aMirrorLeftRight, !aMirrorLeftRight, aMirrorRef );
}
void ZONE::RemoveCutout( int aOutlineIdx, int aHoleIdx )
{
// Ensure the requested cutout is valid
if( m_Poly->OutlineCount() < aOutlineIdx || m_Poly->HoleCount( aOutlineIdx ) < aHoleIdx )
return;
SHAPE_POLY_SET cutPoly( m_Poly->Hole( aOutlineIdx, aHoleIdx ) );
// Add the cutout back to the zone
m_Poly->BooleanAdd( cutPoly, SHAPE_POLY_SET::PM_FAST );
SetNeedRefill( true );
}
void ZONE::AddPolygon( const SHAPE_LINE_CHAIN& aPolygon )
{
wxASSERT( aPolygon.IsClosed() );
// Add the outline as a new polygon in the polygon set
if( m_Poly->OutlineCount() == 0 )
m_Poly->AddOutline( aPolygon );
else
m_Poly->AddHole( aPolygon );
SetNeedRefill( true );
}
void ZONE::AddPolygon( std::vector<VECTOR2I>& aPolygon )
{
if( aPolygon.empty() )
return;
SHAPE_LINE_CHAIN outline;
// Create an outline and populate it with the points of aPolygon
for( const VECTOR2I& pt : aPolygon )
outline.Append( pt );
outline.SetClosed( true );
AddPolygon( outline );
}
bool ZONE::AppendCorner( VECTOR2I aPosition, int aHoleIdx, bool aAllowDuplication )
{
// Ensure the main outline exists:
if( m_Poly->OutlineCount() == 0 )
m_Poly->NewOutline();
// If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx.
// (remember: the index of the first hole is 0)
// Return error if it does not exist.
if( aHoleIdx >= m_Poly->HoleCount( 0 ) )
return false;
m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication );
SetNeedRefill( true );
return true;
}
wxString ZONE::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const
{
LSEQ layers = m_layerSet.Seq();
wxString layerDesc;
if( layers.size() == 1 )
{
layerDesc.Printf( _( "on %s" ), GetBoard()->GetLayerName( layers[0] ) );
}
else if (layers.size() == 2 )
{
layerDesc.Printf( _( "on %s and %s" ),
GetBoard()->GetLayerName( layers[0] ),
GetBoard()->GetLayerName( layers[1] ) );
}
else if (layers.size() == 3 )
{
layerDesc.Printf( _( "on %s, %s and %s" ),
GetBoard()->GetLayerName( layers[0] ),
GetBoard()->GetLayerName( layers[1] ),
GetBoard()->GetLayerName( layers[2] ) );
}
else if( layers.size() > 3 )
{
layerDesc.Printf( _( "on %s, %s and %zu more" ),
GetBoard()->GetLayerName( layers[0] ),
GetBoard()->GetLayerName( layers[1] ),
layers.size() - 2 );
}
// Check whether the selected contour is a hole (contour index > 0)
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
{
if( GetIsRuleArea() )
return wxString::Format( _( "Rule Area Cutout %s" ), layerDesc );
else
return wxString::Format( _( "Zone Cutout %s" ), layerDesc );
}
else
{
if( GetIsRuleArea() )
return wxString::Format( _( "Rule Area %s" ), layerDesc );
else
return wxString::Format( _( "Zone %s %s" ), GetNetnameMsg(), layerDesc );
}
}
int ZONE::GetBorderHatchPitch() const
{
return m_borderHatchPitch;
}
void ZONE::SetBorderDisplayStyle( ZONE_BORDER_DISPLAY_STYLE aBorderHatchStyle,
int aBorderHatchPitch, bool aRebuildBorderHatch )
{
aBorderHatchPitch = std::max( aBorderHatchPitch,
pcbIUScale.mmToIU( ZONE_BORDER_HATCH_MINDIST_MM ) );
aBorderHatchPitch = std::min( aBorderHatchPitch,
pcbIUScale.mmToIU( ZONE_BORDER_HATCH_MAXDIST_MM ) );
SetBorderHatchPitch( aBorderHatchPitch );
m_borderStyle = aBorderHatchStyle;
if( aRebuildBorderHatch )
HatchBorder();
}
void ZONE::SetBorderHatchPitch( int aPitch )
{
m_borderHatchPitch = aPitch;
}
void ZONE::UnHatchBorder()
{
m_borderHatchLines.clear();
}
// Creates hatch lines inside the outline of the complex polygon
// sort function used in ::HatchBorder to sort points by descending VECTOR2I.x values
bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst )
{
return tst.x < ref.x;
}
void ZONE::HatchBorder()
{
UnHatchBorder();
if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::NO_HATCH
|| m_borderHatchPitch == 0
|| m_Poly->IsEmpty() )
{
return;
}
// define range for hatch lines
int min_x = m_Poly->CVertex( 0 ).x;
int max_x = m_Poly->CVertex( 0 ).x;
int min_y = m_Poly->CVertex( 0 ).y;
int max_y = m_Poly->CVertex( 0 ).y;
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ )
{
if( iterator->x < min_x )
min_x = iterator->x;
if( iterator->x > max_x )
max_x = iterator->x;
if( iterator->y < min_y )
min_y = iterator->y;
if( iterator->y > max_y )
max_y = iterator->y;
}
// Calculate spacing between 2 hatch lines
int spacing;
if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_EDGE )
spacing = m_borderHatchPitch;
else
spacing = m_borderHatchPitch * 2;
// set the "length" of hatch lines (the length on horizontal axis)
int hatch_line_len = m_borderHatchPitch;
// To have a better look, give a slope depending on the layer
int layer = GetFirstLayer();
std::vector<int> slope_flags;
if( IsTeardropArea() )
slope_flags = { 1, -1 };
else if( layer & 1 )
slope_flags = { 1 };
else
slope_flags = { -1 };
for( int slope_flag : slope_flags )
{
double slope = 0.707106 * slope_flag; // 45 degrees slope
int64_t max_a, min_a;
if( slope_flag == 1 )
{
max_a = KiROUND( max_y - slope * min_x );
min_a = KiROUND( min_y - slope * max_x );
}
else
{
max_a = KiROUND( max_y - slope * max_x );
min_a = KiROUND( min_y - slope * min_x );
}
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number,
// for a better look of hatches on a multilayer board
int offset = (layer * 7) / 8;
min_a += offset;
// loop through hatch lines
std::vector<VECTOR2I> pointbuffer;
pointbuffer.reserve( 256 );
for( int64_t a = min_a; a < max_a; a += spacing )
{
pointbuffer.clear();
// Iterate through all vertices
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ )
{
const SEG seg = *iterator;
double x, y;
if( FindLineSegmentIntersection( a, slope, seg.A.x, seg.A.y, seg.B.x, seg.B.y, x, y ) )
pointbuffer.emplace_back( KiROUND( x ), KiROUND( y ) );
}
// sort points in order of descending x (if more than 2) to
// ensure the starting point and the ending point of the same segment
// are stored one just after the other.
if( pointbuffer.size() > 2 )
sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX );
// creates lines or short segments inside the complex polygon
for( size_t ip = 0; ip + 1 < pointbuffer.size(); ip += 2 )
{
int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x;
// Push only one line for diagonal hatch,
// or for small lines < twice the line length
// else push 2 small lines
if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_FULL
|| std::abs( dx ) < 2 * hatch_line_len )
{
m_borderHatchLines.emplace_back( SEG( pointbuffer[ip], pointbuffer[ ip + 1] ) );
}
else
{
double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y;
slope = dy / dx;
if( dx > 0 )
dx = hatch_line_len;
else
dx = -hatch_line_len;
int x1 = KiROUND( pointbuffer[ip].x + dx );
int x2 = KiROUND( pointbuffer[ip + 1].x - dx );
int y1 = KiROUND( pointbuffer[ip].y + dx * slope );
int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope );
m_borderHatchLines.emplace_back( SEG( pointbuffer[ip].x, pointbuffer[ip].y,
x1, y1 ) );
m_borderHatchLines.emplace_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y,
x2, y2 ) );
}
}
}
}
}
int ZONE::GetDefaultHatchPitch()
{
return pcbIUScale.mmToIU( ZONE_BORDER_HATCH_DIST_MM );
}
BITMAPS ZONE::GetMenuImage() const
{
return BITMAPS::add_zone;
}
void ZONE::swapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_ZONE_T );
std::swap( *static_cast<ZONE*>( this ), *static_cast<ZONE*>( aImage) );
}
void ZONE::CacheTriangulation( PCB_LAYER_ID aLayer )
{
if( aLayer == UNDEFINED_LAYER )
{
for( auto& [ layer, poly ] : m_FilledPolysList )
poly->CacheTriangulation();
m_Poly->CacheTriangulation( false );
}
else
{
if( m_FilledPolysList.count( aLayer ) )
m_FilledPolysList[ aLayer ]->CacheTriangulation();
}
}
bool ZONE::IsIsland( PCB_LAYER_ID aLayer, int aPolyIdx ) const
{
if( GetNetCode() < 1 )
return true;
if( !m_insulatedIslands.count( aLayer ) )
return false;
return m_insulatedIslands.at( aLayer ).count( aPolyIdx );
}
void ZONE::GetInteractingZones( PCB_LAYER_ID aLayer, std::vector<ZONE*>* aSameNetCollidingZones,
std::vector<ZONE*>* aOtherNetIntersectingZones ) const
{
int epsilon = pcbIUScale.mmToIU( 0.001 );
BOX2I bbox = GetBoundingBox();
bbox.Inflate( epsilon );
for( ZONE* candidate : GetBoard()->Zones() )
{
if( candidate == this )
continue;
if( !candidate->GetLayerSet().test( aLayer ) )
continue;
if( candidate->GetIsRuleArea() || candidate->IsTeardropArea() )
continue;
if( !candidate->GetBoundingBox().Intersects( bbox ) )
continue;
if( candidate->GetNetCode() == GetNetCode() )
{
if( m_Poly->Collide( candidate->m_Poly ) )
aSameNetCollidingZones->push_back( candidate );
}
else
{
aOtherNetIntersectingZones->push_back( candidate );
}
}
}
bool ZONE::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET* aBoardOutline,
SHAPE_POLY_SET* aSmoothedPolyWithApron ) const
{
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations will not like it ...
return false;
// Processing of arc shapes in zones is not yet supported because Clipper can't do boolean
// operations on them. The poly outline must be converted to segments first.
SHAPE_POLY_SET flattened = m_Poly->CloneDropTriangulation();
flattened.ClearArcs();
if( GetIsRuleArea() )
{
// We like keepouts just the way they are....
aSmoothedPoly = flattened;
return true;
}
const BOARD* board = GetBoard();
int maxError = ARC_HIGH_DEF;
bool keepExternalFillets = false;
bool smooth_requested = m_cornerSmoothingType == ZONE_SETTINGS::SMOOTHING_CHAMFER
|| m_cornerSmoothingType == ZONE_SETTINGS::SMOOTHING_FILLET;
if( IsTeardropArea() )
{
// We use teardrop shapes with no smoothing; these shapes are already optimized
smooth_requested = false;
}
if( board )
{
BOARD_DESIGN_SETTINGS& bds = board->GetDesignSettings();
maxError = bds.m_MaxError;
keepExternalFillets = bds.m_ZoneKeepExternalFillets;
}
auto smooth = [&]( SHAPE_POLY_SET& aPoly )
{
if( !smooth_requested )
return;
switch( m_cornerSmoothingType )
{
case ZONE_SETTINGS::SMOOTHING_CHAMFER:
aPoly = aPoly.Chamfer( (int) m_cornerRadius );
break;
case ZONE_SETTINGS::SMOOTHING_FILLET:
{
aPoly = aPoly.Fillet( (int) m_cornerRadius, maxError );
break;
}
default:
break;
}
};
SHAPE_POLY_SET* maxExtents = &flattened;
SHAPE_POLY_SET withFillets;
aSmoothedPoly = flattened;
// Should external fillets (that is, those applied to concave corners) be kept? While it
// seems safer to never have copper extend outside the zone outline, 5.1.x and prior did
// indeed fill them so we leave the mode available.
if( keepExternalFillets && smooth_requested )
{
withFillets = flattened;
smooth( withFillets );
withFillets.BooleanAdd( flattened, SHAPE_POLY_SET::PM_FAST );
maxExtents = &withFillets;
}
// We now add in the areas of any same-net, intersecting zones. This keeps us from smoothing
// corners at an intersection (which often produces undesired divots between the intersecting
// zones -- see #2752).
//
// After smoothing, we'll subtract back out everything outside of our zone.
std::vector<ZONE*> sameNetCollidingZones;
std::vector<ZONE*> diffNetIntersectingZones;
GetInteractingZones( aLayer, &sameNetCollidingZones, &diffNetIntersectingZones );
for( ZONE* sameNetZone : sameNetCollidingZones )
{
BOX2I sameNetBoundingBox = sameNetZone->GetBoundingBox();
// Note: a two-pass algorithm could use sameNetZone's actual fill instead of its outline.
// This would obviate the need for the below wrinkles, in addition to fixing both issues
// in #16095.
// (And we wouldn't need to collect all the diffNetIntersectingZones either.)
SHAPE_POLY_SET sameNetPoly = sameNetZone->Outline()->CloneDropTriangulation();
SHAPE_POLY_SET diffNetPoly;
// Of course there's always a wrinkle. The same-net intersecting zone *might* get knocked
// out along the border by a higher-priority, different-net zone. #12797
for( ZONE* diffNetZone : diffNetIntersectingZones )
{
if( diffNetZone->HigherPriority( sameNetZone )
&& diffNetZone->GetBoundingBox().Intersects( sameNetBoundingBox ) )
{
diffNetPoly.BooleanAdd( *diffNetZone->Outline(), SHAPE_POLY_SET::PM_FAST );
}
}
// Second wrinkle. After unioning the higher priority, different net zones together, we
// need to check to see if they completely enclose our zone. If they do, then we need to
// treat the enclosed zone as isolated, not connected to the outer zone. #13915
bool isolated = false;
if( diffNetPoly.OutlineCount() )
{
SHAPE_POLY_SET thisPoly = Outline()->CloneDropTriangulation();
thisPoly.BooleanSubtract( diffNetPoly, SHAPE_POLY_SET::PM_FAST );
isolated = thisPoly.OutlineCount() == 0;
}
if( !isolated )
{
sameNetPoly.ClearArcs();
aSmoothedPoly.BooleanAdd( sameNetPoly, SHAPE_POLY_SET::PM_FAST );
}
}
if( aBoardOutline )
aSmoothedPoly.BooleanIntersection( *aBoardOutline, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
smooth( aSmoothedPoly );
if( aSmoothedPolyWithApron )
{
SHAPE_POLY_SET poly = maxExtents->CloneDropTriangulation();
poly.Inflate( m_ZoneMinThickness, CORNER_STRATEGY::ROUND_ALL_CORNERS, maxError );
*aSmoothedPolyWithApron = aSmoothedPoly;
aSmoothedPolyWithApron->BooleanIntersection( poly, SHAPE_POLY_SET::PM_FAST );
}
aSmoothedPoly.BooleanIntersection( *maxExtents, SHAPE_POLY_SET::PM_FAST );
return true;
}
double ZONE::CalculateFilledArea()
{
m_area = 0.0;
// Iterate over each outline polygon in the zone and then iterate over
// each hole it has to compute the total area.
for( std::pair<const PCB_LAYER_ID, std::shared_ptr<SHAPE_POLY_SET>>& pair : m_FilledPolysList )
{
std::shared_ptr<SHAPE_POLY_SET>& poly = pair.second;
for( int i = 0; i < poly->OutlineCount(); i++ )
{
m_area += poly->Outline( i ).Area();
for( int j = 0; j < poly->HoleCount( i ); j++ )
m_area -= poly->Hole( i, j ).Area();
}
}
return m_area;
}
double ZONE::CalculateOutlineArea()
{
m_outlinearea = std::abs( m_Poly->Area() );
return m_outlinearea;
}
void ZONE::TransformSmoothedOutlineToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance,
int aMaxError, ERROR_LOC aErrorLoc,
SHAPE_POLY_SET* aBoardOutline ) const
{
// Creates the zone outline polygon (with holes if any)
SHAPE_POLY_SET polybuffer;
// TODO: using GetFirstLayer() means it only works for single-layer zones....
BuildSmoothedPoly( polybuffer, GetFirstLayer(), aBoardOutline );
// Calculate the polygon with clearance
// holes are linked to the main outline, so only one polygon is created.
if( aClearance )
{
const BOARD* board = GetBoard();
int maxError = ARC_HIGH_DEF;
if( board )
maxError = board->GetDesignSettings().m_MaxError;
if( aErrorLoc == ERROR_OUTSIDE )
aClearance += maxError;
polybuffer.Inflate( aClearance, CORNER_STRATEGY::ROUND_ALL_CORNERS, maxError );
}
polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST );
aBuffer.Append( polybuffer );
}
std::shared_ptr<SHAPE> ZONE::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
if( m_FilledPolysList.find( aLayer ) == m_FilledPolysList.end() )
return std::make_shared<SHAPE_NULL>();
else
return m_FilledPolysList.at( aLayer );
}
void ZONE::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance,
int aError, ERROR_LOC aErrorLoc, bool aIgnoreLineWidth ) const
{
wxASSERT_MSG( !aIgnoreLineWidth, wxT( "IgnoreLineWidth has no meaning for zones." ) );
if( !m_FilledPolysList.count( aLayer ) )
return;
if( !aClearance )
{
aBuffer.Append( *m_FilledPolysList.at( aLayer ) );
return;
}
SHAPE_POLY_SET temp_buf = m_FilledPolysList.at( aLayer )->CloneDropTriangulation();
// Rebuild filled areas only if clearance is not 0
if( aClearance > 0 || aErrorLoc == ERROR_OUTSIDE )
{
if( aErrorLoc == ERROR_OUTSIDE )
aClearance += aError;
temp_buf.InflateWithLinkedHoles( aClearance, CORNER_STRATEGY::ROUND_ALL_CORNERS, aError,
SHAPE_POLY_SET::PM_FAST );
}
aBuffer.Append( temp_buf );
}
void ZONE::TransformSolidAreasShapesToPolygon( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aBuffer ) const
{
if( m_FilledPolysList.count( aLayer ) && !m_FilledPolysList.at( aLayer )->IsEmpty() )
aBuffer.Append( *m_FilledPolysList.at( aLayer ) );
}
bool ZONE::operator==( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return false;
const ZONE& other = static_cast<const ZONE&>( aOther );
return *this == other;
}
bool ZONE::operator==( const ZONE& aOther ) const
{
if( GetIsRuleArea() != aOther.GetIsRuleArea() )
return false;
if( GetLayerSet() != aOther.GetLayerSet() )
return false;
if( GetNetCode() != aOther.GetNetCode() )
return false;
if( GetIsRuleArea() )
{
if( GetDoNotAllowCopperPour() != aOther.GetDoNotAllowCopperPour() )
return false;
if( GetDoNotAllowTracks() != aOther.GetDoNotAllowTracks() )
return false;
if( GetDoNotAllowVias() != aOther.GetDoNotAllowVias() )
return false;
if( GetDoNotAllowFootprints() != aOther.GetDoNotAllowFootprints() )
return false;
if( GetDoNotAllowPads() != aOther.GetDoNotAllowPads() )
return false;
}
else
{
if( GetAssignedPriority() != aOther.GetAssignedPriority() )
return false;
if( GetMinThickness() != aOther.GetMinThickness() )
return false;
if( GetCornerSmoothingType() != aOther.GetCornerSmoothingType() )
return false;
if( GetCornerRadius() != aOther.GetCornerRadius() )
return false;
if( GetTeardropParams() != aOther.GetTeardropParams() )
return false;
}
if( GetNumCorners() != aOther.GetNumCorners() )
return false;
for( int ii = 0; ii < GetNumCorners(); ii++ )
{
if( GetCornerPosition( ii ) != aOther.GetCornerPosition( ii ) )
return false;
}
return true;
}
double ZONE::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
const ZONE& other = static_cast<const ZONE&>( aOther );
if( GetIsRuleArea() != other.GetIsRuleArea() )
return 0.0;
double similarity = 1.0;
if( GetLayerSet() != other.GetLayerSet() )
similarity *= 0.9;
if( GetNetCode() != other.GetNetCode() )
similarity *= 0.9;
if( !GetIsRuleArea() )
{
if( GetAssignedPriority() != other.GetAssignedPriority() )
similarity *= 0.9;
if( GetMinThickness() != other.GetMinThickness() )
similarity *= 0.9;
if( GetCornerSmoothingType() != other.GetCornerSmoothingType() )
similarity *= 0.9;
if( GetCornerRadius() != other.GetCornerRadius() )
similarity *= 0.9;
if( GetTeardropParams() != other.GetTeardropParams() )
similarity *= 0.9;
}
else
{
if( GetDoNotAllowCopperPour() != other.GetDoNotAllowCopperPour() )
similarity *= 0.9;
if( GetDoNotAllowTracks() != other.GetDoNotAllowTracks() )
similarity *= 0.9;
if( GetDoNotAllowVias() != other.GetDoNotAllowVias() )
similarity *= 0.9;
if( GetDoNotAllowFootprints() != other.GetDoNotAllowFootprints() )
similarity *= 0.9;
if( GetDoNotAllowPads() != other.GetDoNotAllowPads() )
similarity *= 0.9;
}
std::vector<VECTOR2I> corners;
std::vector<VECTOR2I> otherCorners;
VECTOR2I lastCorner( 0, 0 );
for( int ii = 0; ii < GetNumCorners(); ii++ )
{
corners.push_back( lastCorner - GetCornerPosition( ii ) );
lastCorner = GetCornerPosition( ii );
}
lastCorner = VECTOR2I( 0, 0 );
for( int ii = 0; ii < other.GetNumCorners(); ii++ )
{
otherCorners.push_back( lastCorner - other.GetCornerPosition( ii ) );
lastCorner = other.GetCornerPosition( ii );
}
size_t longest = alg::longest_common_subset( corners, otherCorners );
similarity *= std::pow( 0.9, GetNumCorners() + other.GetNumCorners() - 2 * longest );
return similarity;
}
static struct ZONE_DESC
{
ZONE_DESC()
{
ENUM_MAP<PCB_LAYER_ID>& layerEnum = ENUM_MAP<PCB_LAYER_ID>::Instance();
if( layerEnum.Choices().GetCount() == 0 )
{
layerEnum.Undefined( UNDEFINED_LAYER );
for( LSEQ seq = LSET::AllLayersMask().Seq(); seq; ++seq )
layerEnum.Map( *seq, LSET::Name( *seq ) );
}
ENUM_MAP<ZONE_CONNECTION>& zcMap = ENUM_MAP<ZONE_CONNECTION>::Instance();
if( zcMap.Choices().GetCount() == 0 )
{
zcMap.Undefined( ZONE_CONNECTION::INHERITED );
zcMap.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) )
.Map( ZONE_CONNECTION::NONE, _HKI( "None" ) )
.Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) )
.Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) )
.Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) );
}
ENUM_MAP<ZONE_FILL_MODE>& zfmMap = ENUM_MAP<ZONE_FILL_MODE>::Instance();
if( zfmMap.Choices().GetCount() == 0 )
{
zfmMap.Undefined( ZONE_FILL_MODE::POLYGONS );
zfmMap.Map( ZONE_FILL_MODE::POLYGONS, _HKI( "Solid fill" ) )
.Map( ZONE_FILL_MODE::HATCH_PATTERN, _HKI( "Hatch pattern" ) );
}
ENUM_MAP<ISLAND_REMOVAL_MODE>& irmMap = ENUM_MAP<ISLAND_REMOVAL_MODE>::Instance();
if( irmMap.Choices().GetCount() == 0 )
{
irmMap.Undefined( ISLAND_REMOVAL_MODE::ALWAYS );
irmMap.Map( ISLAND_REMOVAL_MODE::ALWAYS, _HKI( "Always" ) )
.Map( ISLAND_REMOVAL_MODE::NEVER, _HKI( "Never" ) )
.Map( ISLAND_REMOVAL_MODE::AREA, _HKI( "Below area limit" ) );
}
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( ZONE );
propMgr.InheritsAfter( TYPE_HASH( ZONE ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
// Mask layer and position properties; they aren't useful in current form
auto posX = new PROPERTY<ZONE, int>( _HKI( "Position X" ), NO_SETTER( ZONE, int ),
static_cast<int ( ZONE::* )() const>( &ZONE::GetX ),
PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_X_COORD );
posX->SetIsHiddenFromPropertiesManager();
auto posY = new PROPERTY<ZONE, int>( _HKI( "Position Y" ), NO_SETTER( ZONE, int ),
static_cast<int ( ZONE::* )() const>( &ZONE::GetY ),
PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_Y_COORD );
posY->SetIsHiddenFromPropertiesManager();
propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position X" ), posX );
propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position Y" ), posY );
auto isCopperZone =
[]( INSPECTABLE* aItem ) -> bool
{
if( ZONE* zone = dynamic_cast<ZONE*>( aItem ) )
return !zone->GetIsRuleArea() && IsCopperLayer( zone->GetFirstLayer() );
return false;
};
auto isHatchedFill =
[]( INSPECTABLE* aItem ) -> bool
{
if( ZONE* zone = dynamic_cast<ZONE*>( aItem ) )
return zone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN;
return false;
};
auto isAreaBasedIslandRemoval =
[]( INSPECTABLE* aItem ) -> bool
{
if( ZONE* zone = dynamic_cast<ZONE*>( aItem ) )
return zone->GetIslandRemovalMode() == ISLAND_REMOVAL_MODE::AREA;
return false;
};
// Layer property is hidden because it only holds a single layer and zones actually use
// a layer set
propMgr.ReplaceProperty( TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ),
new PROPERTY_ENUM<ZONE, PCB_LAYER_ID>( _HKI( "Layer" ),
&ZONE::SetLayer,
&ZONE::GetLayer ) )
.SetIsHiddenFromPropertiesManager();
propMgr.OverrideAvailability( TYPE_HASH( ZONE ), TYPE_HASH( BOARD_CONNECTED_ITEM ),
_HKI( "Net" ), isCopperZone );
propMgr.OverrideAvailability( TYPE_HASH( ZONE ), TYPE_HASH( BOARD_CONNECTED_ITEM ),
_HKI( "Net Class" ), isCopperZone );
propMgr.AddProperty( new PROPERTY<ZONE, unsigned>( _HKI( "Priority" ),
&ZONE::SetAssignedPriority, &ZONE::GetAssignedPriority ) )
.SetAvailableFunc( isCopperZone );
propMgr.AddProperty( new PROPERTY<ZONE, wxString>( _HKI( "Name" ),
&ZONE::SetZoneName, &ZONE::GetZoneName ) );
const wxString groupFill = _HKI( "Fill Style" );
propMgr.AddProperty( new PROPERTY_ENUM<ZONE, ZONE_FILL_MODE>( _HKI( "Fill Mode" ),
&ZONE::SetFillMode, &ZONE::GetFillMode ),
groupFill )
.SetAvailableFunc( isCopperZone );
propMgr.AddProperty( new PROPERTY<ZONE, EDA_ANGLE>( _HKI( "Orientation" ),
&ZONE::SetHatchOrientation, &ZONE::GetHatchOrientation,
PROPERTY_DISPLAY::PT_DEGREE ),
groupFill )
.SetAvailableFunc( isCopperZone )
.SetWriteableFunc( isHatchedFill );
auto atLeastMinWidthValidator =
[]( const wxAny&& aValue, EDA_ITEM* aZone ) -> VALIDATOR_RESULT
{
int val = aValue.As<int>();
ZONE* zone = dynamic_cast<ZONE*>( aZone );
wxCHECK( zone, std::nullopt );
if( val < zone->GetMinThickness() )
{
return std::make_unique<VALIDATION_ERROR_MSG>(
_( "Cannot be less than zone minimum width" ) );
}
return std::nullopt;
};
propMgr.AddProperty( new PROPERTY<ZONE, int>( _HKI( "Hatch Width" ),
&ZONE::SetHatchThickness, &ZONE::GetHatchThickness, PROPERTY_DISPLAY::PT_SIZE ),
groupFill )
.SetAvailableFunc( isCopperZone )
.SetWriteableFunc( isHatchedFill )
.SetValidator( atLeastMinWidthValidator );
propMgr.AddProperty( new PROPERTY<ZONE, int>( _HKI( "Hatch Gap" ),
&ZONE::SetHatchGap, &ZONE::GetHatchGap, PROPERTY_DISPLAY::PT_SIZE ),
groupFill )
.SetAvailableFunc( isCopperZone )
.SetWriteableFunc( isHatchedFill )
.SetValidator( atLeastMinWidthValidator );
propMgr.AddProperty( new PROPERTY<ZONE, double>( _HKI( "Hatch Minimum Hole Ratio" ),
&ZONE::SetHatchHoleMinArea, &ZONE::GetHatchHoleMinArea ),
groupFill )
.SetAvailableFunc( isCopperZone )
.SetWriteableFunc( isHatchedFill )
.SetValidator( PROPERTY_VALIDATORS::PositiveRatioValidator );
// TODO: Smoothing effort needs to change to enum (in dialog too)
propMgr.AddProperty( new PROPERTY<ZONE, int>( _HKI( "Smoothing Effort" ),
&ZONE::SetHatchSmoothingLevel, &ZONE::GetHatchSmoothingLevel ),
groupFill )
.SetAvailableFunc( isCopperZone )
.SetWriteableFunc( isHatchedFill );
propMgr.AddProperty( new PROPERTY<ZONE, double>( _HKI( "Smoothing Amount" ),
&ZONE::SetHatchSmoothingValue, &ZONE::GetHatchSmoothingValue ),
groupFill )
.SetAvailableFunc( isCopperZone )
.SetWriteableFunc( isHatchedFill );
propMgr.AddProperty( new PROPERTY_ENUM<ZONE, ISLAND_REMOVAL_MODE>( _HKI( "Remove Islands" ),
&ZONE::SetIslandRemovalMode, &ZONE::GetIslandRemovalMode ),
groupFill )
.SetAvailableFunc( isCopperZone );
propMgr.AddProperty( new PROPERTY<ZONE, long long int>( _HKI( "Minimum Island Area" ),
&ZONE::SetMinIslandArea, &ZONE::GetMinIslandArea, PROPERTY_DISPLAY::PT_AREA ),
groupFill )
.SetAvailableFunc( isCopperZone )
.SetWriteableFunc( isAreaBasedIslandRemoval );
const wxString groupElectrical = _HKI( "Electrical" );
auto clearanceOverride = new PROPERTY<ZONE, std::optional<int>>( _HKI( "Clearance" ),
&ZONE::SetLocalClearance, &ZONE::GetLocalClearance,
PROPERTY_DISPLAY::PT_SIZE );
clearanceOverride->SetAvailableFunc( isCopperZone );
constexpr int maxClearance = pcbIUScale.mmToIU( ZONE_CLEARANCE_MAX_VALUE_MM );
clearanceOverride->SetValidator( PROPERTY_VALIDATORS::RangeIntValidator<0, maxClearance> );
auto minWidth = new PROPERTY<ZONE, int>( _HKI( "Minimum Width" ),
&ZONE::SetMinThickness, &ZONE::GetMinThickness,
PROPERTY_DISPLAY::PT_SIZE );
minWidth->SetAvailableFunc( isCopperZone );
constexpr int minMinWidth = pcbIUScale.mmToIU( ZONE_THICKNESS_MIN_VALUE_MM );
clearanceOverride->SetValidator( PROPERTY_VALIDATORS::RangeIntValidator<minMinWidth,
INT_MAX> );
auto padConnections = new PROPERTY_ENUM<ZONE, ZONE_CONNECTION>( _HKI( "Pad Connections" ),
&ZONE::SetPadConnection, &ZONE::GetPadConnection );
padConnections->SetAvailableFunc( isCopperZone );
auto thermalGap = new PROPERTY<ZONE, int>( _HKI( "Thermal Relief Gap" ),
&ZONE::SetThermalReliefGap, &ZONE::GetThermalReliefGap,
PROPERTY_DISPLAY::PT_SIZE );
thermalGap->SetAvailableFunc( isCopperZone );
thermalGap->SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator );
auto thermalSpokeWidth = new PROPERTY<ZONE, int>( _HKI( "Thermal Relief Spoke Width" ),
&ZONE::SetThermalReliefSpokeWidth, &ZONE::GetThermalReliefSpokeWidth,
PROPERTY_DISPLAY::PT_SIZE );
thermalSpokeWidth->SetAvailableFunc( isCopperZone );
thermalSpokeWidth->SetValidator( atLeastMinWidthValidator );
propMgr.AddProperty( clearanceOverride, groupElectrical );
propMgr.AddProperty( minWidth, groupElectrical );
propMgr.AddProperty( padConnections, groupElectrical );
propMgr.AddProperty( thermalGap, groupElectrical );
propMgr.AddProperty( thermalSpokeWidth, groupElectrical );
}
} _ZONE_DESC;
IMPLEMENT_ENUM_TO_WXANY( ZONE_CONNECTION )
IMPLEMENT_ENUM_TO_WXANY( ZONE_FILL_MODE )
IMPLEMENT_ENUM_TO_WXANY( ISLAND_REMOVAL_MODE )