kicad/pcbnew/convert_shape_list_to_polyg...

1195 lines
41 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2015 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <trigo.h>
#include <macros.h>
#include <math/vector2d.h>
#include <pcb_shape.h>
#include <footprint.h>
#include <pad.h>
#include <base_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/shape_poly_set.h>
#include <geometry/geometry_utils.h>
#include <convert_shape_list_to_polygon.h>
#include <wx/log.h>
/**
* Flag to enable debug tracing for the board outline creation
*
* Use "KICAD_BOARD_OUTLINE" to enable.
*
* @ingroup trace_env_vars
*/
const wxChar* traceBoardOutline = wxT( "KICAD_BOARD_OUTLINE" );
/**
* Function close_enough
* is a local and tunable method of qualifying the proximity of two points.
*
* @param aLeft is the first point
* @param aRight is the second point
* @param aLimit is a measure of proximity that the caller knows about.
* @return bool - true if the two points are close enough, else false.
*/
bool close_enough( VECTOR2I aLeft, VECTOR2I aRight, unsigned aLimit )
{
return ( aLeft - aRight ).SquaredEuclideanNorm() <= SEG::Square( aLimit );
}
/**
* Function closer_to_first
* Local method which qualifies whether the start or end point of a segment is closest to a point.
*
* @param aRef is the reference point
* @param aFirst is the first point
* @param aSecond is the second point
* @return bool - true if the first point is closest to the reference, otherwise false.
*/
bool closer_to_first( VECTOR2I aRef, VECTOR2I aFirst, VECTOR2I aSecond )
{
return ( aRef - aFirst ).SquaredEuclideanNorm() < ( aRef - aSecond ).SquaredEuclideanNorm();
}
/**
* Searches for a PCB_SHAPE matching a given end point or start point in a list.
* @param aShape The starting shape.
* @param aPoint The starting or ending point to search for.
* @param aList The list to remove from.
* @param aLimit is the distance from \a aPoint that still constitutes a valid find.
* @return PCB_SHAPE* - The first PCB_SHAPE that has a start or end point matching
* aPoint, otherwise NULL if none.
*/
static PCB_SHAPE* findNext( PCB_SHAPE* aShape, const VECTOR2I& aPoint,
const std::vector<PCB_SHAPE*>& aList, unsigned aLimit )
{
// Look for an unused, exact hit
for( PCB_SHAPE* graphic : aList )
{
if( graphic == aShape || ( graphic->GetFlags() & SKIP_STRUCT ) != 0 )
continue;
if( aPoint == graphic->GetStart() || aPoint == graphic->GetEnd() )
return graphic;
}
// Search again for anything that's close, even something already used. (The latter is
// important for error reporting.)
VECTOR2I pt( aPoint );
SEG::ecoord closest_dist_sq = SEG::Square( aLimit );
PCB_SHAPE* closest_graphic = nullptr;
SEG::ecoord d_sq;
for( PCB_SHAPE* graphic : aList )
{
if( graphic == aShape )
continue;
d_sq = ( pt - graphic->GetStart() ).SquaredEuclideanNorm();
if( d_sq < closest_dist_sq )
{
closest_dist_sq = d_sq;
closest_graphic = graphic;
}
d_sq = ( pt - graphic->GetEnd() ).SquaredEuclideanNorm();
if( d_sq < closest_dist_sq )
{
closest_dist_sq = d_sq;
closest_graphic = graphic;
}
}
return closest_graphic; // Note: will be nullptr if nothing within aLimit
}
bool isCopperOutside( const FOOTPRINT* aFootprint, SHAPE_POLY_SET& aShape )
{
bool padOutside = false;
for( PAD* pad : aFootprint->Pads() )
{
SHAPE_POLY_SET poly = aShape.CloneDropTriangulation();
poly.BooleanIntersection( *pad->GetEffectivePolygon(), SHAPE_POLY_SET::PM_FAST );
if( poly.OutlineCount() == 0 )
{
VECTOR2I padPos = pad->GetPosition();
wxLogTrace( traceBoardOutline, wxT( "Tested pad (%d, %d): outside" ),
padPos.x, padPos.y );
padOutside = true;
break;
}
VECTOR2I padPos = pad->GetPosition();
wxLogTrace( traceBoardOutline, wxT( "Tested pad (%d, %d): not outside" ),
padPos.x, padPos.y );
}
return padOutside;
}
/**
* Function ConvertOutlineToPolygon
* Build a polygon (with holes) from a PCB_SHAPE list, which is expected to be a closed main
* outline with perhaps closed inner outlines. These closed inner outlines are considered as
* holes in the main outline.
* @param aShapeList the initial list of SHAPEs (only lines, circles and arcs).
* @param aPolygons will contain the complex polygon.
* @param aErrorMax is the max error distance when polygonizing a curve (internal units)
* @param aChainingEpsilon is the max error distance when polygonizing a curve (internal units)
* @param aAllowDisjoint indicates multiple top-level outlines are allowed
* @param aErrorHandler = an optional error handler
*/
bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SET& aPolygons,
int aErrorMax, int aChainingEpsilon, bool aAllowDisjoint,
OUTLINE_ERROR_HANDLER* aErrorHandler )
{
if( aShapeList.size() == 0 )
return true;
bool selfIntersecting = false;
wxString msg;
PCB_SHAPE* graphic = nullptr;
std::set<PCB_SHAPE*> startCandidates( aShapeList.begin(), aShapeList.end() );
// Keep a list of where the various shapes came from so after doing our combined-polygon
// tests we can still report errors against the individual graphic items.
std::map<std::pair<VECTOR2I, VECTOR2I>, PCB_SHAPE*> shapeOwners;
auto fetchOwner =
[&]( const SEG& seg ) -> PCB_SHAPE*
{
auto it = shapeOwners.find( std::make_pair( seg.A, seg.B ) );
return it == shapeOwners.end() ? nullptr : it->second;
};
PCB_SHAPE* prevGraphic = nullptr;
VECTOR2I prevPt;
std::vector<SHAPE_LINE_CHAIN> contours;
for( PCB_SHAPE* shape : startCandidates )
shape->ClearFlags( SKIP_STRUCT );
while( startCandidates.size() )
{
graphic = (PCB_SHAPE*) *startCandidates.begin();
graphic->SetFlags( SKIP_STRUCT );
startCandidates.erase( startCandidates.begin() );
contours.emplace_back();
SHAPE_LINE_CHAIN& currContour = contours.back();
bool firstPt = true;
// Circles, rects and polygons are closed shapes unto themselves (and do not combine
// with other shapes), so process them separately.
if( graphic->GetShape() == SHAPE_T::POLY )
{
EDA_ANGLE orientation = ANGLE_0;
VECTOR2I offset = VECTOR2I( 0, 0 );
if( graphic->GetParentFootprint() )
{
orientation = graphic->GetParentFootprint()->GetOrientation();
offset = graphic->GetParentFootprint()->GetPosition();
}
for( auto it = graphic->GetPolyShape().CIterate(); it; it++ )
{
VECTOR2I pt = *it;
RotatePoint( pt, orientation );
pt += offset;
currContour.Append( pt );
if( firstPt )
firstPt = false;
else
shapeOwners[ std::make_pair( prevPt, pt ) ] = graphic;
prevPt = pt;
}
currContour.SetClosed( true );
}
else if( graphic->GetShape() == SHAPE_T::CIRCLE )
{
// make a circle by segments;
VECTOR2I center = graphic->GetCenter();
VECTOR2I start = center;
int radius = graphic->GetRadius();
int steps = GetArcToSegmentCount( radius, aErrorMax, FULL_CIRCLE );
VECTOR2I nextPt;
start.x += radius;
for( int step = 0; step < steps; ++step )
{
nextPt = start;
RotatePoint( nextPt, center, ANGLE_360 * step / steps );
currContour.Append( nextPt );
if( firstPt )
firstPt = false;
else
shapeOwners[ std::make_pair( prevPt, nextPt ) ] = graphic;
prevPt = nextPt;
}
currContour.SetClosed( true );
}
else if( graphic->GetShape() == SHAPE_T::RECT )
{
std::vector<VECTOR2I> pts = graphic->GetRectCorners();
for( const VECTOR2I& pt : pts )
{
currContour.Append( pt );
if( firstPt )
firstPt = false;
else
shapeOwners[ std::make_pair( prevPt, pt ) ] = graphic;
prevPt = pt;
}
currContour.SetClosed( true );
}
else
{
// Polygon start point. Arbitrarily chosen end of the segment and build the poly
// from here.
VECTOR2I startPt = graphic->GetEnd();
prevPt = startPt;
currContour.Append( prevPt );
// do not append the other end point yet, this first 'graphic' might be an arc
for(;;)
{
switch( graphic->GetShape() )
{
case SHAPE_T::RECT:
case SHAPE_T::CIRCLE:
{
// As a non-first item, closed shapes can't be anything but self-intersecting
if( aErrorHandler )
{
wxASSERT( prevGraphic );
(*aErrorHandler)( _( "(self-intersecting)" ), prevGraphic, graphic, prevPt );
}
selfIntersecting = true;
// A closed shape will finish where it started, so no point in updating prevPt
break;
}
case SHAPE_T::SEGMENT:
{
VECTOR2I nextPt;
// Use the line segment end point furthest away from prevPt as we assume
// the other end to be ON prevPt or very close to it.
if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) )
nextPt = graphic->GetEnd();
else
nextPt = graphic->GetStart();
currContour.Append( nextPt );
shapeOwners[ std::make_pair( prevPt, nextPt ) ] = graphic;
prevPt = nextPt;
}
break;
case SHAPE_T::ARC:
// We do not support arcs in polygons, so approximate an arc with a series of
// short lines and put those line segments into the !same! PATH.
{
VECTOR2I pstart = graphic->GetStart();
VECTOR2I pend = graphic->GetEnd();
VECTOR2I pcenter = graphic->GetCenter();
EDA_ANGLE angle = -graphic->GetArcAngle();
int radius = graphic->GetRadius();
int steps = GetArcToSegmentCount( radius, aErrorMax, angle );
if( !close_enough( prevPt, pstart, aChainingEpsilon ) )
{
wxASSERT( close_enough( prevPt, graphic->GetEnd(), aChainingEpsilon ) );
angle = -angle;
std::swap( pstart, pend );
}
// Create intermediate points between start and end:
for( int step = 1; step < steps; ++step )
{
EDA_ANGLE rotation = ( angle * step ) / steps;
VECTOR2I pt = pstart;
RotatePoint( pt, pcenter, rotation );
currContour.Append( pt );
shapeOwners[ std::make_pair( prevPt, pt ) ] = graphic;
prevPt = pt;
}
// Append the last arc end point
currContour.Append( pend );
shapeOwners[ std::make_pair( prevPt, pend ) ] = graphic;
prevPt = pend;
}
break;
case SHAPE_T::BEZIER:
// We do not support Bezier curves in polygons, so approximate with a series
// of short lines and put those line segments into the !same! PATH.
{
VECTOR2I nextPt;
bool reverse = false;
// Use the end point furthest away from prevPt as we assume the other
// end to be ON prevPt or very close to it.
if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) )
{
nextPt = graphic->GetEnd();
}
else
{
nextPt = graphic->GetStart();
reverse = true;
}
// Ensure the approximated Bezier shape is built
// a good value is between (Bezier curve width / 2) and (Bezier curve width)
// ( and at least 0.05 mm to avoid very small segments)
int min_segm_lenght = std::max( pcbIUScale.mmToIU( 0.05 ), graphic->GetWidth() );
graphic->RebuildBezierToSegmentsPointsList( min_segm_lenght );
if( reverse )
{
for( int jj = graphic->GetBezierPoints().size()-1; jj >= 0; jj-- )
{
const VECTOR2I& pt = graphic->GetBezierPoints()[jj];
if( prevPt == pt )
continue;
currContour.Append( pt );
shapeOwners[ std::make_pair( prevPt, pt ) ] = graphic;
prevPt = pt;
}
}
else
{
for( const VECTOR2I& pt : graphic->GetBezierPoints() )
{
if( prevPt == pt )
continue;
currContour.Append( pt );
shapeOwners[ std::make_pair( prevPt, pt ) ] = graphic;
prevPt = pt;
}
}
prevPt = nextPt;
}
break;
default:
UNIMPLEMENTED_FOR( graphic->SHAPE_T_asString() );
return false;
}
// Get next closest segment.
PCB_SHAPE* nextGraphic = findNext( graphic, prevPt, aShapeList, aChainingEpsilon );
if( nextGraphic && !( nextGraphic->GetFlags() & SKIP_STRUCT ) )
{
prevGraphic = graphic;
graphic = nextGraphic;
graphic->SetFlags( SKIP_STRUCT );
startCandidates.erase( graphic );
continue;
}
// Finished, or ran into trouble...
if( close_enough( startPt, prevPt, aChainingEpsilon ) )
{
currContour.SetClosed( true );
break;
}
else if( nextGraphic ) // encountered already-used segment, but not at the start
{
if( aErrorHandler )
(*aErrorHandler)( _( "(self-intersecting)" ), graphic, nextGraphic, prevPt );
break;
}
else // encountered discontinuity
{
if( aErrorHandler )
(*aErrorHandler)( _( "(not a closed shape)" ), graphic, nullptr, prevPt );
break;
}
}
}
}
for( const SHAPE_LINE_CHAIN& contour : contours )
{
if( !contour.IsClosed() )
return false;
}
// First, collect the parents of each contour
//
std::map<int, std::vector<int>> contourToParentIndexesMap;
for( size_t ii = 0; ii < contours.size(); ++ii )
{
VECTOR2I firstPt = contours[ii].GetPoint( 0 );
std::vector<int> parents;
for( size_t jj = 0; jj < contours.size(); ++jj )
{
if( jj == ii )
continue;
const SHAPE_LINE_CHAIN& parentCandidate = contours[jj];
if( parentCandidate.PointInside( firstPt ) )
parents.push_back( jj );
}
contourToParentIndexesMap[ii] = parents;
}
// Next add those that are top-level outlines to the SHAPE_POLY_SET
//
std::map<int, int> contourToOutlineIdxMap;
for( const auto& [ contourIndex, parentIndexes ] : contourToParentIndexesMap )
{
if( parentIndexes.size() %2 == 0 )
{
// Even number of parents; top-level outline
if( !aAllowDisjoint && !aPolygons.IsEmpty() )
{
if( aErrorHandler )
{
BOARD_ITEM* a = fetchOwner( aPolygons.Outline( 0 ).GetSegment( 0 ) );
BOARD_ITEM* b = fetchOwner( contours[ contourIndex ].GetSegment( 0 ) );
if( a && b )
{
(*aErrorHandler)( _( "(multiple board outlines not supported)" ), a, b,
contours[ contourIndex ].GetPoint( 0 ) );
}
}
return false;
}
aPolygons.AddOutline( contours[ contourIndex ] );
contourToOutlineIdxMap[ contourIndex ] = aPolygons.OutlineCount() - 1;
}
}
// And finally add the holes
//
for( const auto& [ contourIndex, parentIndexes ] : contourToParentIndexesMap )
{
if( parentIndexes.size() %2 == 1 )
{
// Odd number of parents; we're a hole in the parent which has one fewer parents
// than we have.
const SHAPE_LINE_CHAIN& hole = contours[ contourIndex ];
for( int parentContourIdx : parentIndexes )
{
if( contourToParentIndexesMap[ parentContourIdx ].size() == parentIndexes.size() - 1 )
{
int outlineIdx = contourToOutlineIdxMap[ parentContourIdx ];
aPolygons.AddHole( hole, outlineIdx );
break;
}
}
}
}
// All of the silliness that follows is to work around the segment iterator while checking
// for collisions.
// TODO: Implement proper segment and point iterators that follow std
for( auto seg1 = aPolygons.IterateSegmentsWithHoles(); seg1; seg1++ )
{
auto seg2 = seg1;
for( ++seg2; seg2; seg2++ )
{
// Check for exact overlapping segments.
if( *seg1 == *seg2 || ( ( *seg1 ).A == ( *seg2 ).B && ( *seg1 ).B == ( *seg2 ).A ) )
{
if( aErrorHandler )
{
BOARD_ITEM* a = fetchOwner( *seg1 );
BOARD_ITEM* b = fetchOwner( *seg2 );
if( a && b )
(*aErrorHandler)( _( "(self-intersecting)" ), a, b, ( *seg1 ).A );
}
selfIntersecting = true;
}
if( OPT_VECTOR2I pt = seg1.Get().Intersect( seg2.Get(), true ) )
{
if( aErrorHandler )
{
BOARD_ITEM* a = fetchOwner( *seg1 );
BOARD_ITEM* b = fetchOwner( *seg2 );
if( a && b )
(*aErrorHandler)( _( "(self-intersecting)" ), a, b, *pt );
}
selfIntersecting = true;
}
}
}
return !selfIntersecting;
}
#include <board.h>
#include <collectors.h>
/* This function is used to extract a board outlines (3D view, automatic zones build ...)
* Any closed outline inside the main outline is a hole
* All contours should be closed, i.e. valid closed polygon vertices
*/
bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aErrorMax,
int aChainingEpsilon, OUTLINE_ERROR_HANDLER* aErrorHandler )
{
PCB_TYPE_COLLECTOR items;
bool success = false;
SHAPE_POLY_SET fpHoles;
// Get all the PCB and FP shapes into 'items', then keep only those on layer == Edge_Cuts.
items.Collect( aBoard, { PCB_SHAPE_T, PCB_FP_SHAPE_T } );
for( int ii = 0; ii < items.GetCount(); ++ii )
items[ii]->ClearFlags( SKIP_STRUCT );
for( FOOTPRINT* fp : aBoard->Footprints() )
{
PCB_TYPE_COLLECTOR fpItems;
fpItems.Collect( fp, { PCB_SHAPE_T, PCB_FP_SHAPE_T } );
std::vector<PCB_SHAPE*> fpSegList;
for( int ii = 0; ii < fpItems.GetCount(); ii++ )
{
PCB_SHAPE* fpSeg = static_cast<PCB_SHAPE*>( fpItems[ii] );
if( fpSeg->GetLayer() == Edge_Cuts )
fpSegList.push_back( fpSeg );
}
if( !fpSegList.empty() )
{
SHAPE_POLY_SET fpOutlines;
success = ConvertOutlineToPolygon( fpSegList, fpOutlines, aErrorMax, aChainingEpsilon,
false,
// don't report errors here; the second pass also
// gets an opportunity to use these segments
nullptr );
// Here, we test to see if we should make holes or outlines. Holes are made if the footprint
// has copper outside of a single, closed outline. If there are multiple outlines, we assume
// that the footprint edges represent holes as we do not support multiple boards. Similarly, if
// any of the footprint pads are located outside of the edges, then the edges are holes
if( success && ( isCopperOutside( fp, fpOutlines ) || fpOutlines.OutlineCount() > 1 ) )
{
fpHoles.Append( fpOutlines );
}
else
{
// If it wasn't a closed area, or wasn't a hole, the we want to keep the fpSegs
// in contention for the board outline builds.
for( int ii = 0; ii < fpItems.GetCount(); ++ii )
fpItems[ii]->ClearFlags( SKIP_STRUCT );
}
}
}
// Make a working copy of aSegList, because the list is modified during calculations
std::vector<PCB_SHAPE*> segList;
for( int ii = 0; ii < items.GetCount(); ii++ )
{
PCB_SHAPE* seg = static_cast<PCB_SHAPE*>( items[ii] );
// Skip anything already used to generate footprint holes (above)
if( seg->GetFlags() & SKIP_STRUCT )
continue;
if( seg->GetLayer() == Edge_Cuts )
segList.push_back( seg );
}
if( segList.size() )
{
success = ConvertOutlineToPolygon( segList, aOutlines, aErrorMax, aChainingEpsilon,
true, aErrorHandler );
}
if( !success || !aOutlines.OutlineCount() )
{
// Couldn't create a valid polygon outline. Use the board edge cuts bounding box to
// create a rectangular outline, or, failing that, the bounding box of the items on
// the board.
BOX2I bbbox = aBoard->GetBoardEdgesBoundingBox();
// If null area, uses the global bounding box.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) )
bbbox = aBoard->ComputeBoundingBox();
// Ensure non null area. If happen, gives a minimal size.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) )
bbbox.Inflate( pcbIUScale.mmToIU( 1.0 ) );
aOutlines.RemoveAllContours();
aOutlines.NewOutline();
wxPoint corner;
aOutlines.Append( bbbox.GetOrigin() );
corner.x = bbbox.GetOrigin().x;
corner.y = bbbox.GetEnd().y;
aOutlines.Append( corner );
aOutlines.Append( bbbox.GetEnd() );
corner.x = bbbox.GetEnd().x;
corner.y = bbbox.GetOrigin().y;
aOutlines.Append( corner );
}
for( int ii = 0; ii < fpHoles.OutlineCount(); ++ii )
{
const VECTOR2I holePt = fpHoles.Outline( ii ).CPoint( 0 );
for( int jj = 0; jj < aOutlines.OutlineCount(); ++jj )
{
if( aOutlines.Outline( jj ).PointInside( holePt ) )
{
aOutlines.AddHole( fpHoles.Outline( ii ), jj );
break;
}
}
}
return success;
}
/**
* Get the complete bounding box of the board (including all items).
*
* The vertex numbers and segment numbers of the rectangle returned.
* 1
* *---------------*
* |1 2|
* 0| |2
* |0 3|
* *---------------*
* 3
*/
void buildBoardBoundingBoxPoly( const BOARD* aBoard, SHAPE_POLY_SET& aOutline )
{
BOX2I bbbox = aBoard->GetBoundingBox();
SHAPE_LINE_CHAIN chain;
// If null area, uses the global bounding box.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) )
bbbox = aBoard->ComputeBoundingBox();
// Ensure non null area. If happen, gives a minimal size.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) )
bbbox.Inflate( pcbIUScale.mmToIU( 1.0 ) );
// Inflate slightly (by 1/10th the size of the box)
bbbox.Inflate( bbbox.GetWidth() / 10, bbbox.GetHeight() / 10 );
chain.Append( bbbox.GetOrigin() );
chain.Append( bbbox.GetOrigin().x, bbbox.GetEnd().y );
chain.Append( bbbox.GetEnd() );
chain.Append( bbbox.GetEnd().x, bbbox.GetOrigin().y );
chain.SetClosed( true );
aOutline.RemoveAllContours();
aOutline.AddOutline( chain );
}
VECTOR2I projectPointOnSegment( const VECTOR2I& aEndPoint, const SHAPE_POLY_SET& aOutline,
int aOutlineNum = 0 )
{
int minDistance = -1;
VECTOR2I projPoint;
for( auto it = aOutline.CIterateSegments( aOutlineNum ); it; it++ )
{
auto seg = it.Get();
int dis = seg.Distance( aEndPoint );
if( minDistance < 0 || ( dis < minDistance ) )
{
minDistance = dis;
projPoint = seg.NearestPoint( aEndPoint );
}
}
return projPoint;
}
int findEndSegments( SHAPE_LINE_CHAIN& aChain, SEG& aStartSeg, SEG& aEndSeg )
{
int foundSegs = 0;
for( int i = 0; i < aChain.SegmentCount(); i++ )
{
SEG seg = aChain.Segment( i );
bool foundA = false;
bool foundB = false;
for( int j = 0; j < aChain.SegmentCount(); j++ )
{
// Don't test the segment against itself
if( i == j )
continue;
SEG testSeg = aChain.Segment( j );
if( testSeg.Contains( seg.A ) )
foundA = true;
if( testSeg.Contains( seg.B ) )
foundB = true;
}
// This segment isn't a start or end
if( foundA && foundB )
continue;
if( foundSegs == 0 )
{
// The first segment we encounter is the "start" segment
wxLogTrace( traceBoardOutline, wxT( "Found start segment: (%d, %d)-(%d, %d)" ),
seg.A.x, seg.A.y, seg.B.x, seg.B.y );
aStartSeg = seg;
foundSegs++;
}
else
{
// Once we find both start and end, we can stop
wxLogTrace( traceBoardOutline, wxT( "Found end segment: (%d, %d)-(%d, %d)" ),
seg.A.x, seg.A.y, seg.B.x, seg.B.y );
aEndSeg = seg;
foundSegs++;
break;
}
}
return foundSegs;
}
/**
* This function is used to extract a board outline for a footprint view.
*
* Notes:
* * Incomplete outlines will be closed by joining the end of the outline onto the bounding box
* (by simply projecting the end points) and then take the area that contains the copper.
* * If all copper lies inside a closed outline, than that outline will be treated as an external
* board outline.
* * If copper is located outside a closed outline, then that outline will be treated as a hole,
* and the outer edge will be formed using the bounding box.
*/
bool BuildFootprintPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aErrorMax,
int aChainingEpsilon, OUTLINE_ERROR_HANDLER* aErrorHandler )
{
FOOTPRINT* footprint = aBoard->GetFirstFootprint();
// No footprint loaded
if( !footprint )
{
wxLogTrace( traceBoardOutline, wxT( "No footprint found on board" ) );
return false;
}
PCB_TYPE_COLLECTOR items;
SHAPE_POLY_SET outlines;
bool success = false;
// Get all the SHAPEs into 'items', then keep only those on layer == Edge_Cuts.
items.Collect( aBoard, { PCB_SHAPE_T, PCB_FP_SHAPE_T } );
// Make a working copy of aSegList, because the list is modified during calculations
std::vector<PCB_SHAPE*> segList;
for( int ii = 0; ii < items.GetCount(); ii++ )
{
if( items[ii]->GetLayer() == Edge_Cuts )
segList.push_back( static_cast<PCB_SHAPE*>( items[ii] ) );
}
if( !segList.empty() )
{
success = ConvertOutlineToPolygon( segList, outlines, aErrorMax, aChainingEpsilon,
true, aErrorHandler );
}
// A closed outline was found on Edge_Cuts
if( success )
{
wxLogTrace( traceBoardOutline, wxT( "Closed outline found" ) );
// If copper is outside a closed polygon, treat it as a hole
// If there are multiple outlines in the footprint, they are also holes
if( isCopperOutside( footprint, outlines ) || outlines.OutlineCount() > 1 )
{
wxLogTrace( traceBoardOutline, wxT( "Treating outline as a hole" ) );
buildBoardBoundingBoxPoly( aBoard, aOutlines );
// Copy all outlines from the conversion as holes into the new outline
for( int i = 0; i < outlines.OutlineCount(); i++ )
{
SHAPE_LINE_CHAIN& out = outlines.Outline( i );
if( out.IsClosed() )
aOutlines.AddHole( out, -1 );
for( int j = 0; j < outlines.HoleCount( i ); j++ )
{
SHAPE_LINE_CHAIN& hole = outlines.Hole( i, j );
if( hole.IsClosed() )
aOutlines.AddHole( hole, -1 );
}
}
}
// If all copper is inside, then the computed outline is the board outline
else
{
wxLogTrace( traceBoardOutline, wxT( "Treating outline as board edge" ) );
aOutlines = outlines;
}
return true;
}
// No board outlines were found, so use the bounding box
else if( outlines.OutlineCount() == 0 )
{
wxLogTrace( traceBoardOutline, wxT( "Using footprint bounding box" ) );
buildBoardBoundingBoxPoly( aBoard, aOutlines );
return true;
}
// There is an outline present, but it is not closed
else
{
wxLogTrace( traceBoardOutline, wxT( "Trying to build outline" ) );
std::vector<SHAPE_LINE_CHAIN> closedChains;
std::vector<SHAPE_LINE_CHAIN> openChains;
// The ConvertOutlineToPolygon function returns only one main outline and the rest as
// holes, so we promote the holes and process them
openChains.push_back( outlines.Outline( 0 ) );
for( int j = 0; j < outlines.HoleCount( 0 ); j++ )
{
SHAPE_LINE_CHAIN hole = outlines.Hole( 0, j );
if( hole.IsClosed() )
{
wxLogTrace( traceBoardOutline, wxT( "Found closed hole" ) );
closedChains.push_back( hole );
}
else
{
wxLogTrace( traceBoardOutline, wxT( "Found open hole" ) );
openChains.push_back( hole );
}
}
SHAPE_POLY_SET bbox;
buildBoardBoundingBoxPoly( aBoard, bbox );
// Treat the open polys as the board edge
SHAPE_LINE_CHAIN chain = openChains[0];
SHAPE_LINE_CHAIN rect = bbox.Outline( 0 );
// We know the outline chain is open, so set to non-closed to get better segment count
chain.SetClosed( false );
SEG startSeg;
SEG endSeg;
// The two possible board outlines
SHAPE_LINE_CHAIN upper;
SHAPE_LINE_CHAIN lower;
findEndSegments( chain, startSeg, endSeg );
if( chain.SegmentCount() == 0 )
{
// Something is wrong, bail out with the overall footprint bounding box
wxLogTrace( traceBoardOutline, wxT( "No line segments in provided outline" ) );
aOutlines = bbox;
return true;
}
else if( chain.SegmentCount() == 1 )
{
// This case means there is only 1 line segment making up the edge cuts of the
// footprint, so we just need to use it to cut the bounding box in half.
wxLogTrace( traceBoardOutline, wxT( "Only 1 line segment in provided outline" ) );
startSeg = chain.Segment( 0 );
// Intersect with all the sides of the rectangle
OPT_VECTOR2I inter0 = startSeg.IntersectLines( rect.Segment( 0 ) );
OPT_VECTOR2I inter1 = startSeg.IntersectLines( rect.Segment( 1 ) );
OPT_VECTOR2I inter2 = startSeg.IntersectLines( rect.Segment( 2 ) );
OPT_VECTOR2I inter3 = startSeg.IntersectLines( rect.Segment( 3 ) );
if( inter0 && inter2 && !inter1 && !inter3 )
{
// Intersects the vertical rectangle sides only
wxLogTrace( traceBoardOutline, wxT( "Segment intersects only vertical bbox "
"sides" ) );
// The upper half
upper.Append( *inter0 );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( rect.GetPoint( 2 ) );
upper.Append( *inter2 );
upper.SetClosed( true );
// The lower half
lower.Append( *inter0 );
lower.Append( rect.GetPoint( 0 ) );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( *inter2 );
lower.SetClosed( true );
}
else if( inter1 && inter3 && !inter0 && !inter2 )
{
// Intersects the horizontal rectangle sides only
wxLogTrace( traceBoardOutline, wxT( "Segment intersects only horizontal bbox "
"sides" ) );
// The left half
upper.Append( *inter1 );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( rect.GetPoint( 0 ) );
upper.Append( *inter3 );
upper.SetClosed( true );
// The right half
lower.Append( *inter1 );
lower.Append( rect.GetPoint( 2 ) );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( *inter3 );
lower.SetClosed( true );
}
else
{
// Angled line segment that cuts across a corner
wxLogTrace( traceBoardOutline, wxT( "Segment intersects two perpendicular bbox "
"sides" ) );
// Figure out which actual lines are intersected, since IntersectLines assumes
// an infinite line
bool hit0 = rect.Segment( 0 ).Contains( *inter0 );
bool hit1 = rect.Segment( 1 ).Contains( *inter1 );
bool hit2 = rect.Segment( 2 ).Contains( *inter2 );
bool hit3 = rect.Segment( 3 ).Contains( *inter3 );
if( hit0 && hit1 )
{
// Cut across the upper left corner
wxLogTrace( traceBoardOutline, wxT( "Segment cuts upper left corner" ) );
// The upper half
upper.Append( *inter0 );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( *inter1 );
upper.SetClosed( true );
// The lower half
lower.Append( *inter0 );
lower.Append( rect.GetPoint( 0 ) );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( rect.GetPoint( 2 ) );
lower.Append( *inter1 );
lower.SetClosed( true );
}
else if( hit1 && hit2 )
{
// Cut across the upper right corner
wxLogTrace( traceBoardOutline, wxT( "Segment cuts upper right corner" ) );
// The upper half
upper.Append( *inter1 );
upper.Append( rect.GetPoint( 2 ) );
upper.Append( *inter2 );
upper.SetClosed( true );
// The lower half
lower.Append( *inter1 );
lower.Append( rect.GetPoint( 1 ) );
lower.Append( rect.GetPoint( 0 ) );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( *inter2 );
lower.SetClosed( true );
}
else if( hit2 && hit3 )
{
// Cut across the lower right corner
wxLogTrace( traceBoardOutline, wxT( "Segment cuts lower right corner" ) );
// The upper half
upper.Append( *inter2 );
upper.Append( rect.GetPoint( 2 ) );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( rect.GetPoint( 0 ) );
upper.Append( *inter3 );
upper.SetClosed( true );
// The bottom half
lower.Append( *inter2 );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( *inter3 );
lower.SetClosed( true );
}
else
{
// Cut across the lower left corner
wxLogTrace( traceBoardOutline, wxT( "Segment cuts upper left corner" ) );
// The upper half
upper.Append( *inter0 );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( rect.GetPoint( 2 ) );
upper.Append( rect.GetPoint( 3 ) );
upper.Append( *inter3 );
upper.SetClosed( true );
// The bottom half
lower.Append( *inter0 );
lower.Append( rect.GetPoint( 0 ) );
lower.Append( *inter3 );
lower.SetClosed( true );
}
}
}
else
{
// More than 1 segment
wxLogTrace( traceBoardOutline, wxT( "Multiple segments in outline" ) );
// Just a temporary thing
aOutlines = bbox;
return true;
}
// Figure out which is the correct outline
SHAPE_POLY_SET poly1;
SHAPE_POLY_SET poly2;
poly1.NewOutline();
poly1.Append( upper );
poly2.NewOutline();
poly2.Append( lower );
if( isCopperOutside( footprint, poly1 ) )
{
wxLogTrace( traceBoardOutline, wxT( "Using lower shape" ) );
aOutlines = poly2;
}
else
{
wxLogTrace( traceBoardOutline, wxT( "Using upper shape" ) );
aOutlines = poly1;
}
// Add all closed polys as holes to the main outline
for( SHAPE_LINE_CHAIN& closedChain : closedChains )
{
wxLogTrace( traceBoardOutline, wxT( "Adding hole to main outline" ) );
aOutlines.AddHole( closedChain, -1 );
}
return true;
}
// We really shouldn't reach this point
return false;
}