kicad/libs/kimath/include/geometry/shape_line_chain.h

797 lines
24 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
* Copyright (C) 2013-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef __SHAPE_LINE_CHAIN
#define __SHAPE_LINE_CHAIN
#include <clipper.hpp>
#include <geometry/seg.h>
#include <geometry/shape.h>
#include <geometry/shape_arc.h>
#include <math/vector2d.h>
/**
* SHAPE_LINE_CHAIN
*
* Represents a polyline (an zero-thickness chain of connected line segments).
* I purposedly didn't name it "polyline" to avoid confusion with the existing CPolyLine
* in pcbnew.
*
* SHAPE_LINE_CHAIN class shall not be used for polygons!
*/
class SHAPE_LINE_CHAIN : public SHAPE_LINE_CHAIN_BASE
{
private:
typedef std::vector<VECTOR2I>::iterator point_iter;
typedef std::vector<VECTOR2I>::const_iterator point_citer;
public:
/**
* Struct INTERSECTION
*
* Represents an intersection between two line segments
*/
struct INTERSECTION
{
/// segment belonging from the (this) argument of Intersect()
SEG our;
/// segment belonging from the aOther argument of Intersect()
SEG their;
/// point of intersection between our and their.
VECTOR2I p;
};
/**
* Class POINT_INSIDE_TRACKER
*
* A dynamic state checking if a point lies within polygon with a dynamically built outline (
* with each piece of the outline added by AddPolyline ()
*/
class POINT_INSIDE_TRACKER
{
public:
POINT_INSIDE_TRACKER( const VECTOR2I& aPoint );
void AddPolyline( const SHAPE_LINE_CHAIN& aPolyline );
bool IsInside();
private:
bool processVertex ( const VECTOR2I& ip, const VECTOR2I& ipNext );
VECTOR2I m_point;
VECTOR2I m_lastPoint;
VECTOR2I m_firstPoint;
bool m_finished;
int m_state;
int m_count;
};
typedef std::vector<INTERSECTION> INTERSECTIONS;
/**
* Constructor
* Initializes an empty line chain.
*/
SHAPE_LINE_CHAIN() : SHAPE_LINE_CHAIN_BASE( SH_LINE_CHAIN ), m_closed( false ), m_width( 0 )
{}
/**
* Copy Constructor
*/
SHAPE_LINE_CHAIN( const SHAPE_LINE_CHAIN& aShape )
: SHAPE_LINE_CHAIN_BASE( SH_LINE_CHAIN ),
m_points( aShape.m_points ),
m_shapes( aShape.m_shapes ),
m_arcs( aShape.m_arcs ),
m_closed( aShape.m_closed ),
m_width( aShape.m_width ),
m_bbox( aShape.m_bbox )
{}
SHAPE_LINE_CHAIN( const std::vector<int>& aV);
SHAPE_LINE_CHAIN( const std::vector<wxPoint>& aV, bool aClosed = false )
: SHAPE_LINE_CHAIN_BASE( SH_LINE_CHAIN ), m_closed( aClosed ), m_width( 0 )
{
m_points.reserve( aV.size() );
for( auto pt : aV )
m_points.emplace_back( pt.x, pt.y );
m_shapes = std::vector<ssize_t>( aV.size(), ssize_t( SHAPE_IS_PT ) );
}
SHAPE_LINE_CHAIN( const std::vector<VECTOR2I>& aV, bool aClosed = false )
: SHAPE_LINE_CHAIN_BASE( SH_LINE_CHAIN ), m_closed( aClosed ), m_width( 0 )
{
m_points = aV;
m_shapes = std::vector<ssize_t>( aV.size(), ssize_t( SHAPE_IS_PT ) );
}
SHAPE_LINE_CHAIN( const SHAPE_ARC& aArc, bool aClosed = false )
: SHAPE_LINE_CHAIN_BASE( SH_LINE_CHAIN ),
m_closed( aClosed ),
m_width( 0 )
{
m_points = aArc.ConvertToPolyline().CPoints();
m_arcs.emplace_back( aArc );
m_shapes = std::vector<ssize_t>( m_points.size(), 0 );
}
SHAPE_LINE_CHAIN( const ClipperLib::Path& aPath ) :
SHAPE_LINE_CHAIN_BASE( SH_LINE_CHAIN ),
m_closed( true ),
m_width( 0 )
{
m_points.reserve( aPath.size() );
m_shapes = std::vector<ssize_t>( aPath.size(), ssize_t( SHAPE_IS_PT ) );
for( const auto& point : aPath )
m_points.emplace_back( point.X, point.Y );
}
virtual ~SHAPE_LINE_CHAIN()
{}
SHAPE_LINE_CHAIN& operator=(const SHAPE_LINE_CHAIN&) = default;
SHAPE* Clone() const override;
/**
* Function Clear()
* Removes all points from the line chain.
*/
void Clear()
{
m_points.clear();
m_arcs.clear();
m_shapes.clear();
m_closed = false;
}
/**
* Function SetClosed()
*
* Marks the line chain as closed (i.e. with a segment connecting the last point with
* the first point).
* @param aClosed: whether the line chain is to be closed or not.
*/
void SetClosed( bool aClosed )
{
m_closed = aClosed;
}
/**
* Function IsClosed()
*
* @return aClosed: true, when our line is closed.
*/
bool IsClosed() const override
{
return m_closed;
}
/**
* Sets the width of all segments in the chain
* @param aWidth width in internal units
*/
void SetWidth( int aWidth )
{
m_width = aWidth;
}
/**
* Gets the current width of the segments in the chain
* @return width in internal units
*/
int Width() const
{
return m_width;
}
/**
* Function SegmentCount()
*
* Returns number of segments in this line chain.
* @return number of segments
*/
int SegmentCount() const
{
int c = m_points.size() - 1;
if( m_closed )
c++;
return std::max( 0, c );
}
/**
* Returns the number of shapes (line segments or arcs) in this line chain.
* This is kind of like SegmentCount() but will only count arcs as 1 segment
* @return ArcCount() + the number of non-arc segments
*/
int ShapeCount() const;
/**
* Function PointCount()
*
* Returns the number of points (vertices) in this line chain
* @return number of points
*/
int PointCount() const
{
return m_points.size();
}
/**
* Function Segment()
*
* Returns a copy of the aIndex-th segment in the line chain.
* @param aIndex: index of the segment in the line chain. Negative values are counted from
* the end (i.e. -1 means the last segment in the line chain)
* @return SEG - aIndex-th segment in the line chain
*/
SEG Segment( int aIndex )
{
if( aIndex < 0 )
aIndex += SegmentCount();
if( aIndex == (int)( m_points.size() - 1 ) && m_closed )
return SEG( m_points[aIndex], m_points[0], aIndex );
else
return SEG( m_points[aIndex], m_points[aIndex + 1], aIndex );
}
/**
* Function CSegment()
*
* Returns a constant copy of the aIndex-th segment in the line chain.
* @param aIndex: index of the segment in the line chain. Negative values are counted from
* the end (i.e. -1 means the last segment in the line chain)
* @return const SEG - aIndex-th segment in the line chain
*/
const SEG CSegment( int aIndex ) const
{
if( aIndex < 0 )
aIndex += SegmentCount();
if( aIndex == (int)( m_points.size() - 1 ) && m_closed )
return SEG( const_cast<VECTOR2I&>( m_points[aIndex] ),
const_cast<VECTOR2I&>( m_points[0] ), aIndex );
else
return SEG( const_cast<VECTOR2I&>( m_points[aIndex] ),
const_cast<VECTOR2I&>( m_points[aIndex + 1] ), aIndex );
}
/**
* Returns the vertex index of the next shape in the chain, or -1 if aPoint is in the last shape
* If aPoint is the start of a segment, this will be ( aPoint + 1 ).
* If aPoint is part of an arc, this will be the index of the start of the next shape after the
* arc, in other words, the last point of the arc.
* @param aPointIndex is a vertex in the chain
* @param aForwards is true if the next shape is desired, false for previous shape
* @return the vertex index of the start of the next shape after aPoint's shape
*/
int NextShape( int aPointIndex, bool aForwards = true ) const;
int PrevShape( int aPointIndex ) const
{
return NextShape( aPointIndex, false );
}
/**
* Accessor Function to move a point to a specific location
* @param aIndex Index (wrapping) of the point to move
* @param aPos New absolute location of the point
*/
void SetPoint( int aIndex, const VECTOR2I& aPos )
{
if( aIndex < 0 )
aIndex += PointCount();
else if( aIndex >= PointCount() )
aIndex -= PointCount();
m_points[aIndex] = aPos;
if( m_shapes[aIndex] != SHAPE_IS_PT )
convertArc( m_shapes[aIndex] );
}
/**
* Function Point()
*
* Returns a const reference to a given point in the line chain.
* @param aIndex index of the point
* @return const reference to the point
*/
const VECTOR2I& CPoint( int aIndex ) const
{
if( aIndex < 0 )
aIndex += PointCount();
else if( aIndex >= PointCount() )
aIndex -= PointCount();
return m_points[aIndex];
}
const std::vector<VECTOR2I>& CPoints() const
{
return m_points;
}
/**
* Returns the last point in the line chain.
*/
const VECTOR2I& CLastPoint() const
{
return m_points[PointCount() - 1];
}
/**
* @return the vector of stored arcs
*/
const std::vector<SHAPE_ARC>& CArcs() const
{
return m_arcs;
}
/**
* @return the vector of values indicating shape type and location
*/
const std::vector<ssize_t>& CShapes() const
{
return m_shapes;
}
/// @copydoc SHAPE::BBox()
const BOX2I BBox( int aClearance = 0 ) const override
{
BOX2I bbox;
bbox.Compute( m_points );
if( aClearance != 0 || m_width != 0 )
bbox.Inflate( aClearance + m_width );
return bbox;
}
void GenerateBBoxCache()
{
m_bbox.Compute( m_points );
if( m_width != 0 )
m_bbox.Inflate( m_width );
}
const BOX2I BBoxFromCache() const
{
return m_bbox;
}
/**
* Function Distance()
*
* Computes the minimum distance between the line chain and a point aP.
* @param aP the point
* @return minimum distance.
*/
int Distance( const VECTOR2I& aP, bool aOutlineOnly = false ) const;
/**
* Function Reverse()
*
* Reverses point order in the line chain.
* @return line chain with reversed point order (original A-B-C-D: returned D-C-B-A)
*/
const SHAPE_LINE_CHAIN Reverse() const;
/**
* Function Length()
*
* Returns length of the line chain in Euclidean metric.
* @return length of the line chain
*/
long long int Length() const;
/**
* Function Append()
*
* Appends a new point at the end of the line chain.
* @param aX is X coordinate of the new point
* @param aY is Y coordinate of the new point
* @param aAllowDuplication = true to append the new point
* even it is the same as the last entered point
* false (default) to skip it if it is the same as the last entered point
*/
void Append( int aX, int aY, bool aAllowDuplication = false )
{
VECTOR2I v( aX, aY );
Append( v, aAllowDuplication );
}
/**
* Function Append()
*
* Appends a new point at the end of the line chain.
* @param aP the new point
* @param aAllowDuplication = true to append the new point
* even it is the same as the last entered point
* false (default) to skip it if it is the same as the last entered point
*/
void Append( const VECTOR2I& aP, bool aAllowDuplication = false )
{
if( m_points.size() == 0 )
m_bbox = BOX2I( aP, VECTOR2I( 0, 0 ) );
if( m_points.size() == 0 || aAllowDuplication || CPoint( -1 ) != aP )
{
m_points.push_back( aP );
m_shapes.push_back( ssize_t( SHAPE_IS_PT ) );
m_bbox.Merge( aP );
}
}
/**
* Function Append()
*
* Appends another line chain at the end.
* @param aOtherLine the line chain to be appended.
*/
void Append( const SHAPE_LINE_CHAIN& aOtherLine );
void Append( const SHAPE_ARC& aArc );
void Insert( size_t aVertex, const VECTOR2I& aP );
void Insert( size_t aVertex, const SHAPE_ARC& aArc );
/**
* Function Replace()
*
* Replaces points with indices in range [start_index, end_index] with a single point aP.
* @param aStartIndex start of the point range to be replaced (inclusive)
* @param aEndIndex end of the point range to be replaced (inclusive)
* @param aP replacement point
*/
void Replace( int aStartIndex, int aEndIndex, const VECTOR2I& aP );
/**
* Function Replace()
*
* Replaces points with indices in range [start_index, end_index] with the points from line
* chain aLine.
* @param aStartIndex start of the point range to be replaced (inclusive)
* @param aEndIndex end of the point range to be replaced (inclusive)
* @param aLine replacement line chain.
*/
void Replace( int aStartIndex, int aEndIndex, const SHAPE_LINE_CHAIN& aLine );
/**
* Function Remove()
*
* Removes the range of points [start_index, end_index] from the line chain.
* @param aStartIndex start of the point range to be replaced (inclusive)
* @param aEndIndex end of the point range to be replaced (inclusive)
*/
void Remove( int aStartIndex, int aEndIndex );
/**
* Function Remove()
* removes the aIndex-th point from the line chain.
* @param aIndex is the index of the point to be removed.
*/
void Remove( int aIndex )
{
Remove( aIndex, aIndex );
}
/**
* Removes the shape at the given index from the line chain.
* If the given index is inside an arc, the entire arc will be removed.
* Otherwise this is equivalent to Remove( aPointIndex ).
* @param aPointIndex is the index of the point to remove
*/
void RemoveShape( int aPointIndex );
/**
* Function Split()
*
* Inserts the point aP belonging to one of the our segments, splitting the adjacent segment
* in two.
* @param aP the point to be inserted
* @return index of the newly inserted point (or a negative value if aP does not lie on
* our line)
*/
int Split( const VECTOR2I& aP );
/**
* Function Find()
*
* Searches for point aP.
* @param aP the point to be looked for
* @return index of the correspoinding point in the line chain or negative when not found.
*/
int Find( const VECTOR2I& aP ) const;
/**
* Function FindSegment()
*
* Searches for segment containing point aP.
* @param aP the point to be looked for
* @return index of the correspoinding segment in the line chain or negative when not found.
*/
int FindSegment( const VECTOR2I& aP ) const;
/**
* Function Slice()
*
* Returns a subset of this line chain containing the [start_index, end_index] range of points.
* @param aStartIndex start of the point range to be returned (inclusive)
* @param aEndIndex end of the point range to be returned (inclusive)
* @return cut line chain.
*/
const SHAPE_LINE_CHAIN Slice( int aStartIndex, int aEndIndex = -1 ) const;
struct compareOriginDistance
{
compareOriginDistance( const VECTOR2I& aOrigin ):
m_origin( aOrigin )
{}
bool operator()( const INTERSECTION& aA, const INTERSECTION& aB )
{
return ( m_origin - aA.p ).EuclideanNorm() < ( m_origin - aB.p ).EuclideanNorm();
}
VECTOR2I m_origin;
};
bool Intersects( const SHAPE_LINE_CHAIN& aChain ) const;
/**
* Function Intersect()
*
* Finds all intersection points between our line chain and the segment aSeg.
* @param aSeg the segment chain to find intersections with
* @param aIp reference to a vector to store found intersections. Intersection points are
* sorted with increasing distances from point aSeg.a.
* @return number of intersections found
*/
int Intersect( const SEG& aSeg, INTERSECTIONS& aIp ) const;
/**
* Function Intersect()
*
* Finds all intersection points between our line chain and the line chain aChain.
* @param aChain the line chain to find intersections with
* @param aIp reference to a vector to store found intersections. Intersection points are
* sorted with increasing path lengths from the starting point of aChain.
* @return number of intersections found
*/
int Intersect( const SHAPE_LINE_CHAIN& aChain, INTERSECTIONS& aIp ) const;
/**
* Function PathLength()
*
* Computes the walk path length from the beginning of the line chain and the point aP
* belonging to our line.
* @return: path length in Euclidean metric or -1 if aP does not belong to the line chain.
*/
int PathLength( const VECTOR2I& aP ) const;
/**
* Function CheckClearance()
*
* Checks if point aP is closer to (or on) an edge or vertex of the line chain.
* @param aP point to check
* @param aDist distance in internal units
* @return true if the point is equal to or closer than aDist to the line chain.
*/
bool CheckClearance( const VECTOR2I& aP, const int aDist) const;
/**
* Function SelfIntersecting()
*
* Checks if the line chain is self-intersecting.
* @return (optional) first found self-intersection point.
*/
const OPT<INTERSECTION> SelfIntersecting() const;
/**
* Function Simplify()
*
* Simplifies the line chain by removing colinear adjacent segments and duplicate vertices.
* @param aRemoveColinear controsl the removal of colinear adjacent segments
* @return reference to self.
*/
SHAPE_LINE_CHAIN& Simplify( bool aRemoveColinear = true );
/**
* Converts an arc to only a point chain by removing the arc and references
*
* @param aArcIndex index of the arc to convert to points
*/
void convertArc( ssize_t aArcIndex );
/**
* Creates a new Clipper path from the SHAPE_LINE_CHAIN in a given orientation
*/
ClipperLib::Path convertToClipper( bool aRequiredOrientation ) const;
/**
* Find the segment nearest the given point.
*
* @param aP point to compare with
* @return the index of the segment closest to the point
*/
int NearestSegment( const VECTOR2I& aP ) const;
/**
* Finds a point on the line chain that is closest to point aP.
* @param aP is the point to find
* @param aAllowInternalShapePoints if false will not return points internal to an arc (i.e.
* only the arc endpoints are possible candidates)
* @return the nearest point.
*/
const VECTOR2I NearestPoint( const VECTOR2I& aP, bool aAllowInternalShapePoints = true ) const;
/**
* Finds a point on the line chain that is closest to the line defined by the points of
* segment aSeg, also returns the distance.
* @param aSeg Segment defining the line.
* @param dist reference receiving the distance to the nearest point.
* @return the nearest point.
*/
const VECTOR2I NearestPoint( const SEG& aSeg, int& dist ) const;
/// @copydoc SHAPE::Format()
const std::string Format() const override;
/// @copydoc SHAPE::Parse()
bool Parse( std::stringstream& aStream ) override;
bool operator!=( const SHAPE_LINE_CHAIN& aRhs ) const
{
if( PointCount() != aRhs.PointCount() )
return true;
for( int i = 0; i < PointCount(); i++ )
{
if( CPoint( i ) != aRhs.CPoint( i ) )
return true;
}
return false;
}
bool CompareGeometry( const SHAPE_LINE_CHAIN& aOther ) const;
void Move( const VECTOR2I& aVector ) override
{
for( auto& pt : m_points )
pt += aVector;
for( auto& arc : m_arcs )
arc.Move( aVector );
}
/**
* Mirrors the line points about y or x (or both)
* @param aX If true, mirror about the y axis (flip X coordinate)
* @param aY If true, mirror about the x axis (flip Y coordinate)
* @param aRef sets the reference point about which to mirror
*/
void Mirror( bool aX = true, bool aY = false, const VECTOR2I& aRef = { 0, 0 } );
/**
* Function Rotate
* rotates all vertices by a given angle
* @param aCenter is the rotation center
* @param aAngle rotation angle in radians
*/
void Rotate( double aAngle, const VECTOR2I& aCenter = VECTOR2I( 0, 0 ) ) override;
bool IsSolid() const override
{
return false;
}
const VECTOR2I PointAlong( int aPathLength ) const;
double Area() const;
size_t ArcCount() const
{
return m_arcs.size();
}
ssize_t ArcIndex( size_t aSegment ) const
{
if( aSegment >= m_shapes.size() )
return SHAPE_IS_PT;
return m_shapes[aSegment];
}
const SHAPE_ARC& Arc( size_t aArc ) const
{
return m_arcs[aArc];
}
bool isArc( size_t aSegment ) const
{
/**
* A segment is part of an arc except in the special case of two arcs next to each other
* but without a shared vertex. Here there is a segment between the end of the first arc
* and the start of the second arc.
*/
return ( aSegment < m_shapes.size() - 1
&& m_shapes[aSegment] != SHAPE_IS_PT
&& m_shapes[aSegment] == m_shapes[aSegment + 1] );
}
virtual const VECTOR2I GetPoint( int aIndex ) const override { return CPoint(aIndex); }
virtual const SEG GetSegment( int aIndex ) const override { return CSegment(aIndex); }
virtual size_t GetPointCount() const override { return PointCount(); }
virtual size_t GetSegmentCount() const override { return SegmentCount(); }
private:
constexpr static ssize_t SHAPE_IS_PT = -1;
/// array of vertices
std::vector<VECTOR2I> m_points;
/**
* Array of indices that refer to the index of the shape if the point is part of a larger
* shape, e.g. arc or spline.
* If the value is -1, the point is just a point.
*/
std::vector<ssize_t> m_shapes;
std::vector<SHAPE_ARC> m_arcs;
/// is the line chain closed?
bool m_closed;
/// Width of the segments (for BBox calculations in RTree)
/// TODO Adjust usage of SHAPE_LINE_CHAIN to account for where we need a width and where not
/// Alternatively, we could split the class into a LINE_CHAIN (no width) and SHAPE_LINE_CHAIN
/// that derives from SHAPE as well that does have a width. Not sure yet on the correct path.
/// TODO Note that we also have SHAPE_SIMPLE which is a closed, filled SHAPE_LINE_CHAIN.
int m_width;
/// cached bounding box
BOX2I m_bbox;
};
#endif // __SHAPE_LINE_CHAIN