840 lines
23 KiB
C++
840 lines
23 KiB
C++
/*
|
|
* This program source code file is part of KICAD, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2016-2018 CERN
|
|
* Copyright (C) 2020 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <connectivity/connectivity_algo.h>
|
|
#include <progress_reporter.h>
|
|
#include <geometry/geometry_utils.h>
|
|
#include <board_commit.h>
|
|
|
|
#include <wx/log.h>
|
|
|
|
#include <thread>
|
|
#include <mutex>
|
|
#include <algorithm>
|
|
#include <future>
|
|
|
|
#ifdef PROFILE
|
|
#include <profile.h>
|
|
#endif
|
|
|
|
|
|
bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem )
|
|
{
|
|
markItemNetAsDirty( aItem );
|
|
|
|
switch( aItem->Type() )
|
|
{
|
|
case PCB_FOOTPRINT_T:
|
|
for( PAD* pad : static_cast<FOOTPRINT*>( aItem )->Pads() )
|
|
{
|
|
m_itemMap[pad].MarkItemsAsInvalid();
|
|
m_itemMap.erase( pad );
|
|
}
|
|
|
|
m_itemList.SetDirty( true );
|
|
break;
|
|
|
|
case PCB_PAD_T:
|
|
m_itemMap[aItem].MarkItemsAsInvalid();
|
|
m_itemMap.erase( aItem );
|
|
m_itemList.SetDirty( true );
|
|
break;
|
|
|
|
case PCB_TRACE_T:
|
|
case PCB_ARC_T:
|
|
m_itemMap[aItem].MarkItemsAsInvalid();
|
|
m_itemMap.erase( aItem );
|
|
m_itemList.SetDirty( true );
|
|
break;
|
|
|
|
case PCB_VIA_T:
|
|
m_itemMap[aItem].MarkItemsAsInvalid();
|
|
m_itemMap.erase( aItem );
|
|
m_itemList.SetDirty( true );
|
|
break;
|
|
|
|
case PCB_ZONE_T:
|
|
m_itemMap[aItem].MarkItemsAsInvalid();
|
|
m_itemMap.erase ( aItem );
|
|
m_itemList.SetDirty( true );
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// Once we delete an item, it may connect between lists, so mark both as potentially invalid
|
|
m_itemList.SetHasInvalid( true );
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem )
|
|
{
|
|
if( aItem->IsConnected() )
|
|
{
|
|
auto citem = static_cast<const BOARD_CONNECTED_ITEM*>( aItem );
|
|
MarkNetAsDirty( citem->GetNetCode() );
|
|
}
|
|
else
|
|
{
|
|
if( aItem->Type() == PCB_FOOTPRINT_T )
|
|
{
|
|
const FOOTPRINT* footprint = static_cast<const FOOTPRINT*>( aItem );
|
|
|
|
for( PAD* pad : footprint->Pads() )
|
|
MarkNetAsDirty( pad->GetNetCode() );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem )
|
|
{
|
|
if( !aItem->IsOnCopperLayer() )
|
|
return false;
|
|
|
|
switch( aItem->Type() )
|
|
{
|
|
case PCB_NETINFO_T:
|
|
MarkNetAsDirty( static_cast<NETINFO_ITEM*>( aItem )->GetNetCode() );
|
|
break;
|
|
|
|
case PCB_FOOTPRINT_T:
|
|
{
|
|
if( static_cast<FOOTPRINT*>( aItem )->GetAttributes() & FP_JUST_ADDED )
|
|
return false;
|
|
|
|
for( PAD* pad : static_cast<FOOTPRINT*>( aItem )->Pads() )
|
|
{
|
|
if( m_itemMap.find( pad ) != m_itemMap.end() )
|
|
return false;
|
|
|
|
add( m_itemList, pad );
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case PCB_PAD_T:
|
|
{
|
|
if( FOOTPRINT* fp = dynamic_cast<FOOTPRINT*>( aItem->GetParentFootprint() ) )
|
|
{
|
|
if( fp->GetAttributes() & FP_JUST_ADDED )
|
|
return false;
|
|
}
|
|
|
|
if( m_itemMap.find( aItem ) != m_itemMap.end() )
|
|
return false;
|
|
|
|
add( m_itemList, static_cast<PAD*>( aItem ) );
|
|
break;
|
|
}
|
|
|
|
case PCB_TRACE_T:
|
|
if( m_itemMap.find( aItem ) != m_itemMap.end() )
|
|
return false;
|
|
|
|
add( m_itemList, static_cast<PCB_TRACK*>( aItem ) );
|
|
break;
|
|
|
|
case PCB_ARC_T:
|
|
if( m_itemMap.find( aItem ) != m_itemMap.end() )
|
|
return false;
|
|
|
|
add( m_itemList, static_cast<PCB_ARC*>( aItem ) );
|
|
break;
|
|
|
|
case PCB_VIA_T:
|
|
if( m_itemMap.find( aItem ) != m_itemMap.end() )
|
|
return false;
|
|
|
|
add( m_itemList, static_cast<PCB_VIA*>( aItem ) );
|
|
break;
|
|
|
|
case PCB_ZONE_T:
|
|
{
|
|
ZONE* zone = static_cast<ZONE*>( aItem );
|
|
|
|
if( m_itemMap.find( aItem ) != m_itemMap.end() )
|
|
return false;
|
|
|
|
m_itemMap[zone] = ITEM_MAP_ENTRY();
|
|
|
|
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
|
|
{
|
|
for( CN_ITEM* zitem : m_itemList.Add( zone, layer ) )
|
|
m_itemMap[zone].Link( zitem );
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
markItemNetAsDirty( aItem );
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void CN_CONNECTIVITY_ALGO::searchConnections()
|
|
{
|
|
#ifdef PROFILE
|
|
PROF_COUNTER garbage_collection( "garbage-collection" );
|
|
#endif
|
|
std::vector<CN_ITEM*> garbage;
|
|
garbage.reserve( 1024 );
|
|
|
|
m_itemList.RemoveInvalidItems( garbage );
|
|
|
|
for( auto item : garbage )
|
|
delete item;
|
|
|
|
#ifdef PROFILE
|
|
garbage_collection.Show();
|
|
PROF_COUNTER search_basic( "search-basic" );
|
|
#endif
|
|
|
|
std::vector<CN_ITEM*> dirtyItems;
|
|
std::copy_if( m_itemList.begin(), m_itemList.end(), std::back_inserter( dirtyItems ),
|
|
[] ( CN_ITEM* aItem )
|
|
{
|
|
return aItem->Dirty();
|
|
} );
|
|
|
|
if( m_progressReporter )
|
|
{
|
|
m_progressReporter->SetMaxProgress( dirtyItems.size() );
|
|
|
|
if( !m_progressReporter->KeepRefreshing() )
|
|
return;
|
|
}
|
|
|
|
if( m_itemList.IsDirty() )
|
|
{
|
|
size_t parallelThreadCount = std::min<size_t>( std::thread::hardware_concurrency(),
|
|
( dirtyItems.size() + 7 ) / 8 );
|
|
|
|
std::atomic<size_t> nextItem( 0 );
|
|
std::vector<std::future<size_t>> returns( parallelThreadCount );
|
|
|
|
auto conn_lambda =
|
|
[&nextItem, &dirtyItems]( CN_LIST* aItemList,
|
|
PROGRESS_REPORTER* aReporter) -> size_t
|
|
{
|
|
for( size_t i = nextItem++; i < dirtyItems.size(); i = nextItem++ )
|
|
{
|
|
CN_VISITOR visitor( dirtyItems[i] );
|
|
aItemList->FindNearby( dirtyItems[i], visitor );
|
|
|
|
if( aReporter )
|
|
{
|
|
if( aReporter->IsCancelled() )
|
|
break;
|
|
else
|
|
aReporter->AdvanceProgress();
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
};
|
|
|
|
if( parallelThreadCount <= 1 )
|
|
conn_lambda( &m_itemList, m_progressReporter );
|
|
else
|
|
{
|
|
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
|
|
{
|
|
returns[ii] = std::async( std::launch::async, conn_lambda, &m_itemList,
|
|
m_progressReporter );
|
|
}
|
|
|
|
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
|
|
{
|
|
// Here we balance returns with a 100ms timeout to allow UI updating
|
|
std::future_status status;
|
|
do
|
|
{
|
|
if( m_progressReporter )
|
|
m_progressReporter->KeepRefreshing();
|
|
|
|
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) );
|
|
} while( status != std::future_status::ready );
|
|
}
|
|
}
|
|
|
|
if( m_progressReporter )
|
|
m_progressReporter->KeepRefreshing();
|
|
}
|
|
|
|
#ifdef PROFILE
|
|
search_basic.Show();
|
|
#endif
|
|
|
|
m_itemList.ClearDirtyFlags();
|
|
}
|
|
|
|
|
|
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode )
|
|
{
|
|
constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_ARC_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_T,
|
|
PCB_FOOTPRINT_T, EOT };
|
|
constexpr KICAD_T no_zones[] = { PCB_TRACE_T, PCB_ARC_T, PCB_PAD_T, PCB_VIA_T,
|
|
PCB_FOOTPRINT_T, EOT };
|
|
|
|
if( aMode == CSM_PROPAGATE )
|
|
return SearchClusters( aMode, no_zones, -1 );
|
|
else
|
|
return SearchClusters( aMode, types, -1 );
|
|
}
|
|
|
|
|
|
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode,
|
|
const KICAD_T aTypes[],
|
|
int aSingleNet )
|
|
{
|
|
bool withinAnyNet = ( aMode != CSM_PROPAGATE );
|
|
|
|
std::deque<CN_ITEM*> Q;
|
|
std::set<CN_ITEM*> item_set;
|
|
|
|
CLUSTERS clusters;
|
|
|
|
if( m_itemList.IsDirty() )
|
|
searchConnections();
|
|
|
|
auto addToSearchList =
|
|
[&item_set, withinAnyNet, aSingleNet, aTypes]( CN_ITEM *aItem )
|
|
{
|
|
if( withinAnyNet && aItem->Net() <= 0 )
|
|
return;
|
|
|
|
if( !aItem->Valid() )
|
|
return;
|
|
|
|
if( aSingleNet >=0 && aItem->Net() != aSingleNet )
|
|
return;
|
|
|
|
bool found = false;
|
|
|
|
for( int i = 0; aTypes[i] != EOT; i++ )
|
|
{
|
|
if( aItem->Parent()->Type() == aTypes[i] )
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( !found )
|
|
return;
|
|
|
|
aItem->SetVisited( false );
|
|
|
|
item_set.insert( aItem );
|
|
};
|
|
|
|
std::for_each( m_itemList.begin(), m_itemList.end(), addToSearchList );
|
|
|
|
if( m_progressReporter && m_progressReporter->IsCancelled() )
|
|
return CLUSTERS();
|
|
|
|
while( !item_set.empty() )
|
|
{
|
|
CN_CLUSTER_PTR cluster = std::make_shared<CN_CLUSTER>();
|
|
CN_ITEM* root;
|
|
auto it = item_set.begin();
|
|
|
|
while( it != item_set.end() && (*it)->Visited() )
|
|
it = item_set.erase( item_set.begin() );
|
|
|
|
if( it == item_set.end() )
|
|
break;
|
|
|
|
root = *it;
|
|
root->SetVisited( true );
|
|
|
|
Q.clear();
|
|
Q.push_back( root );
|
|
|
|
while( Q.size() )
|
|
{
|
|
CN_ITEM* current = Q.front();
|
|
|
|
Q.pop_front();
|
|
cluster->Add( current );
|
|
|
|
for( auto n : current->ConnectedItems() )
|
|
{
|
|
if( withinAnyNet && n->Net() != root->Net() )
|
|
continue;
|
|
|
|
if( !n->Visited() && n->Valid() )
|
|
{
|
|
n->SetVisited( true );
|
|
Q.push_back( n );
|
|
}
|
|
}
|
|
}
|
|
|
|
clusters.push_back( cluster );
|
|
}
|
|
|
|
if( m_progressReporter && m_progressReporter->IsCancelled() )
|
|
return CLUSTERS();
|
|
|
|
std::sort( clusters.begin(), clusters.end(),
|
|
[]( CN_CLUSTER_PTR a, CN_CLUSTER_PTR b )
|
|
{
|
|
return a->OriginNet() < b->OriginNet();
|
|
} );
|
|
|
|
return clusters;
|
|
}
|
|
|
|
|
|
void reportProgress( PROGRESS_REPORTER* aReporter, int aCount, int aSize, int aDelta )
|
|
{
|
|
if( aReporter && ( ( aCount % aDelta ) == 0 || aCount == aSize - 1 ) )
|
|
{
|
|
aReporter->SetCurrentProgress( (double) aCount / (double) aSize );
|
|
aReporter->KeepRefreshing( false );
|
|
}
|
|
}
|
|
|
|
|
|
void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard, PROGRESS_REPORTER* aReporter )
|
|
{
|
|
int delta = 200; // Number of additions between 2 calls to the progress bar
|
|
int ii = 0;
|
|
int size = 0;
|
|
|
|
size += aBoard->Zones().size();
|
|
size += aBoard->Tracks().size();
|
|
|
|
for( FOOTPRINT* footprint : aBoard->Footprints() )
|
|
size += footprint->Pads().size();
|
|
|
|
size *= 2; // Our caller us gets the other half of the progress bar
|
|
|
|
delta = std::max( delta, size / 10 );
|
|
|
|
for( ZONE* zone : aBoard->Zones() )
|
|
{
|
|
Add( zone );
|
|
reportProgress( aReporter, ii++, size, delta );
|
|
}
|
|
|
|
for( PCB_TRACK* tv : aBoard->Tracks() )
|
|
{
|
|
Add( tv );
|
|
reportProgress( aReporter, ii++, size, delta );
|
|
}
|
|
|
|
for( FOOTPRINT* footprint : aBoard->Footprints() )
|
|
{
|
|
for( PAD* pad : footprint->Pads() )
|
|
{
|
|
Add( pad );
|
|
reportProgress( aReporter, ii++, size, delta );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CN_CONNECTIVITY_ALGO::Build( const std::vector<BOARD_ITEM*>& aItems )
|
|
{
|
|
for( auto item : aItems )
|
|
{
|
|
switch( item->Type() )
|
|
{
|
|
case PCB_TRACE_T:
|
|
case PCB_ARC_T:
|
|
case PCB_VIA_T:
|
|
case PCB_PAD_T:
|
|
Add( item );
|
|
break;
|
|
|
|
case PCB_FOOTPRINT_T:
|
|
for( PAD* pad : static_cast<FOOTPRINT*>( item )->Pads() )
|
|
Add( pad );
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CN_CONNECTIVITY_ALGO::propagateConnections( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode )
|
|
{
|
|
bool skipConflicts = ( aMode == PROPAGATE_MODE::SKIP_CONFLICTS );
|
|
|
|
wxLogTrace( "CN", "propagateConnections: propagate skip conflicts? %d", skipConflicts );
|
|
|
|
for( const auto& cluster : m_connClusters )
|
|
{
|
|
if( skipConflicts && cluster->IsConflicting() )
|
|
{
|
|
wxLogTrace( "CN", "Conflicting nets in cluster %p; skipping update", cluster.get() );
|
|
}
|
|
else if( cluster->IsOrphaned() )
|
|
{
|
|
wxLogTrace( "CN", "Skipping orphaned cluster %p [net: %s]", cluster.get(),
|
|
(const char*) cluster->OriginNetName().c_str() );
|
|
}
|
|
else if( cluster->HasValidNet() )
|
|
{
|
|
if( cluster->IsConflicting() )
|
|
{
|
|
wxLogTrace( "CN", "Conflicting nets in cluster %p; chose %d (%s)", cluster.get(),
|
|
cluster->OriginNet(), cluster->OriginNetName() );
|
|
}
|
|
|
|
// normal cluster: just propagate from the pads
|
|
int n_changed = 0;
|
|
|
|
for( auto item : *cluster )
|
|
{
|
|
if( item->CanChangeNet() )
|
|
{
|
|
if( item->Valid() && item->Parent()->GetNetCode() != cluster->OriginNet() )
|
|
{
|
|
MarkNetAsDirty( item->Parent()->GetNetCode() );
|
|
MarkNetAsDirty( cluster->OriginNet() );
|
|
|
|
if( aCommit )
|
|
aCommit->Modify( item->Parent() );
|
|
|
|
item->Parent()->SetNetCode( cluster->OriginNet() );
|
|
n_changed++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( n_changed )
|
|
{
|
|
wxLogTrace( "CN", "Cluster %p : net : %d %s", cluster.get(),
|
|
cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() );
|
|
}
|
|
else
|
|
wxLogTrace( "CN", "Cluster %p : nothing to propagate", cluster.get() );
|
|
}
|
|
else
|
|
{
|
|
wxLogTrace( "CN", "Cluster %p : connected to unused net", cluster.get() );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CN_CONNECTIVITY_ALGO::PropagateNets( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode )
|
|
{
|
|
m_connClusters = SearchClusters( CSM_PROPAGATE );
|
|
propagateConnections( aCommit, aMode );
|
|
}
|
|
|
|
|
|
void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE* aZone, PCB_LAYER_ID aLayer,
|
|
std::vector<int>& aIslands )
|
|
{
|
|
if( aZone->GetFilledPolysList( aLayer ).IsEmpty() )
|
|
return;
|
|
|
|
aIslands.clear();
|
|
|
|
Remove( aZone );
|
|
Add( aZone );
|
|
|
|
m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );
|
|
|
|
for( const auto& cluster : m_connClusters )
|
|
{
|
|
if( cluster->Contains( aZone ) && cluster->IsOrphaned() )
|
|
{
|
|
for( auto z : *cluster )
|
|
{
|
|
if( z->Parent() == aZone && z->Layer() == aLayer )
|
|
{
|
|
aIslands.push_back( static_cast<CN_ZONE_LAYER*>(z)->SubpolyIndex() );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
wxLogTrace( "CN", "Found %u isolated islands\n", (unsigned)aIslands.size() );
|
|
}
|
|
|
|
void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( std::vector<CN_ZONE_ISOLATED_ISLAND_LIST>& aZones )
|
|
{
|
|
for( auto& z : aZones )
|
|
{
|
|
Remove( z.m_zone );
|
|
Add( z.m_zone );
|
|
}
|
|
|
|
m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );
|
|
|
|
for( CN_ZONE_ISOLATED_ISLAND_LIST& zone : aZones )
|
|
{
|
|
for( PCB_LAYER_ID layer : zone.m_zone->GetLayerSet().Seq() )
|
|
{
|
|
if( zone.m_zone->GetFilledPolysList( layer ).IsEmpty() )
|
|
continue;
|
|
|
|
for( const CN_CLUSTER_PTR& cluster : m_connClusters )
|
|
{
|
|
if( cluster->Contains( zone.m_zone ) && cluster->IsOrphaned() )
|
|
{
|
|
for( CN_ITEM* z : *cluster )
|
|
{
|
|
if( z->Parent() == zone.m_zone && z->Layer() == layer )
|
|
{
|
|
zone.m_islands[layer].push_back(
|
|
static_cast<CN_ZONE_LAYER*>( z )->SubpolyIndex() );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters()
|
|
{
|
|
m_ratsnestClusters = SearchClusters( CSM_RATSNEST );
|
|
return m_ratsnestClusters;
|
|
}
|
|
|
|
|
|
void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet )
|
|
{
|
|
if( aNet < 0 )
|
|
return;
|
|
|
|
if( (int) m_dirtyNets.size() <= aNet )
|
|
{
|
|
int lastNet = m_dirtyNets.size() - 1;
|
|
|
|
if( lastNet < 0 )
|
|
lastNet = 0;
|
|
|
|
m_dirtyNets.resize( aNet + 1 );
|
|
|
|
for( int i = lastNet; i < aNet + 1; i++ )
|
|
m_dirtyNets[i] = true;
|
|
}
|
|
|
|
m_dirtyNets[aNet] = true;
|
|
}
|
|
|
|
|
|
void CN_VISITOR::checkZoneItemConnection( CN_ZONE_LAYER* aZoneLayer, CN_ITEM* aItem )
|
|
{
|
|
if( aZoneLayer->Net() != aItem->Net() && !aItem->CanChangeNet() )
|
|
return;
|
|
|
|
if( !aZoneLayer->BBox().Intersects( aItem->BBox() ) )
|
|
return;
|
|
|
|
int accuracy = 0;
|
|
|
|
if( aItem->Parent()->Type() == PCB_VIA_T
|
|
|| aItem->Parent()->Type() == PCB_TRACE_T
|
|
|| aItem->Parent()->Type() == PCB_ARC_T )
|
|
{
|
|
accuracy = ( static_cast<PCB_TRACK*>( aItem->Parent() )->GetWidth() + 1 ) / 2;
|
|
}
|
|
|
|
for( int i = 0; i < aItem->AnchorCount(); ++i )
|
|
{
|
|
if( aZoneLayer->ContainsPoint( aItem->GetAnchor( i ), accuracy ) )
|
|
{
|
|
aZoneLayer->Connect( aItem );
|
|
aItem->Connect( aZoneLayer );
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CN_VISITOR::checkZoneZoneConnection( CN_ZONE_LAYER* aZoneLayerA, CN_ZONE_LAYER* aZoneLayerB )
|
|
{
|
|
const ZONE* zoneA = static_cast<const ZONE*>( aZoneLayerA->Parent() );
|
|
const ZONE* zoneB = static_cast<const ZONE*>( aZoneLayerB->Parent() );
|
|
|
|
if( aZoneLayerA->Layer() != aZoneLayerB->Layer() )
|
|
return;
|
|
|
|
if( aZoneLayerB->Net() != aZoneLayerA->Net() )
|
|
return; // we only test zones belonging to the same net
|
|
|
|
const BOX2I& boxA = aZoneLayerA->BBox();
|
|
const BOX2I& boxB = aZoneLayerB->BBox();
|
|
|
|
int radiusA = 0;
|
|
int radiusB = 0;
|
|
|
|
if( zoneA->GetFilledPolysUseThickness() )
|
|
radiusA = ( zoneA->GetMinThickness() + 1 ) / 2;
|
|
|
|
if( zoneB->GetFilledPolysUseThickness() )
|
|
radiusB = ( zoneB->GetMinThickness() + 1 ) / 2;
|
|
|
|
PCB_LAYER_ID layer = static_cast<PCB_LAYER_ID>( aZoneLayerA->Layer() );
|
|
|
|
const SHAPE_LINE_CHAIN& outline =
|
|
zoneA->GetFilledPolysList( layer ).COutline( aZoneLayerA->SubpolyIndex() );
|
|
|
|
for( int i = 0; i < outline.PointCount(); i++ )
|
|
{
|
|
if( !boxB.Contains( outline.CPoint( i ) ) )
|
|
continue;
|
|
|
|
if( aZoneLayerB->ContainsPoint( outline.CPoint( i ), radiusA ) )
|
|
{
|
|
aZoneLayerA->Connect( aZoneLayerB );
|
|
aZoneLayerB->Connect( aZoneLayerA );
|
|
return;
|
|
}
|
|
}
|
|
|
|
const SHAPE_LINE_CHAIN& outline2 =
|
|
zoneB->GetFilledPolysList( layer ).COutline( aZoneLayerB->SubpolyIndex() );
|
|
|
|
for( int i = 0; i < outline2.PointCount(); i++ )
|
|
{
|
|
if( !boxA.Contains( outline2.CPoint( i ) ) )
|
|
continue;
|
|
|
|
if( aZoneLayerA->ContainsPoint( outline2.CPoint( i ), radiusB ) )
|
|
{
|
|
aZoneLayerA->Connect( aZoneLayerB );
|
|
aZoneLayerB->Connect( aZoneLayerA );
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool CN_VISITOR::operator()( CN_ITEM* aCandidate )
|
|
{
|
|
const BOARD_CONNECTED_ITEM* parentA = aCandidate->Parent();
|
|
const BOARD_CONNECTED_ITEM* parentB = m_item->Parent();
|
|
|
|
if( !aCandidate->Valid() || !m_item->Valid() )
|
|
return true;
|
|
|
|
if( parentA == parentB )
|
|
return true;
|
|
|
|
if( !( parentA->GetLayerSet() & parentB->GetLayerSet() ).any() )
|
|
return true;
|
|
|
|
// If both m_item and aCandidate are marked dirty, they will both be searched
|
|
// Since we are reciprocal in our connection, we arbitrarily pick one of the connections
|
|
// to conduct the expensive search
|
|
if( aCandidate->Dirty() && aCandidate < m_item )
|
|
return true;
|
|
|
|
// We should handle zone-zone connection separately
|
|
if ( parentA->Type() == PCB_ZONE_T && parentB->Type() == PCB_ZONE_T )
|
|
{
|
|
checkZoneZoneConnection( static_cast<CN_ZONE_LAYER*>( m_item ),
|
|
static_cast<CN_ZONE_LAYER*>( aCandidate ) );
|
|
return true;
|
|
}
|
|
|
|
if( parentA->Type() == PCB_ZONE_T )
|
|
{
|
|
checkZoneItemConnection( static_cast<CN_ZONE_LAYER*>( aCandidate ), m_item );
|
|
return true;
|
|
}
|
|
|
|
if( parentB->Type() == PCB_ZONE_T )
|
|
{
|
|
checkZoneItemConnection( static_cast<CN_ZONE_LAYER*>( m_item ), aCandidate );
|
|
return true;
|
|
}
|
|
|
|
int accuracyA = 0;
|
|
int accuracyB = 0;
|
|
|
|
if( parentA->Type() == PCB_VIA_T
|
|
|| parentA->Type() == PCB_TRACE_T
|
|
|| parentA->Type() == PCB_ARC_T)
|
|
accuracyA = ( static_cast<const PCB_TRACK*>( parentA )->GetWidth() + 1 ) / 2;
|
|
|
|
if( parentB->Type() == PCB_VIA_T
|
|
|| parentB->Type() == PCB_TRACE_T
|
|
|| parentB->Type() == PCB_ARC_T )
|
|
accuracyB = ( static_cast<const PCB_TRACK*>( parentB )->GetWidth() + 1 ) / 2;
|
|
|
|
// Items do not necessarily have reciprocity as we only check for anchors
|
|
// therefore, we check HitTest both directions A->B & B->A
|
|
for( int i = 0; i < aCandidate->AnchorCount(); ++i )
|
|
{
|
|
if( parentB->HitTest( wxPoint( aCandidate->GetAnchor( i ) ), accuracyA ) )
|
|
{
|
|
m_item->Connect( aCandidate );
|
|
aCandidate->Connect( m_item );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
for( int i = 0; i < m_item->AnchorCount(); ++i )
|
|
{
|
|
if( parentA->HitTest( wxPoint( m_item->GetAnchor( i ) ), accuracyB ) )
|
|
{
|
|
m_item->Connect( aCandidate );
|
|
aCandidate->Connect( m_item );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
|
|
void CN_CONNECTIVITY_ALGO::Clear()
|
|
{
|
|
m_ratsnestClusters.clear();
|
|
m_connClusters.clear();
|
|
m_itemMap.clear();
|
|
m_itemList.Clear();
|
|
|
|
}
|
|
|
|
void CN_CONNECTIVITY_ALGO::SetProgressReporter( PROGRESS_REPORTER* aReporter )
|
|
{
|
|
m_progressReporter = aReporter;
|
|
}
|