kicad/utils/idftools/idf_cylinder.cpp

682 lines
18 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* This program creates an outline for a horizontal or vertically
* oriented axial or radial leaded cylinder with dimensions based
* on the user's input.
*/
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <cmath>
#include <cstdio>
#include <list>
#include <utility>
#include <clocale>
using namespace std;
void make_vcyl( bool inch, bool axial, double dia, double length,
double z, double wireDia );
void make_hcyl( bool inch, bool axial, double dia, double length,
double z, double wireDia );
void writeAxialCyl( FILE* fp, bool inch, double dia, double length, double wireDia, double pitch );
void writeRadialCyl( FILE* fp, bool inch, double dia, double length, double wireDia,
double pitch, double lead );
int main( int argc, char **argv )
{
// IDF implicitly requires the C locale
setlocale( LC_ALL, "C" );
if( argc == 1 )
{
cout << "idfcyl: This program generates an outline for a cylindrical component.\n";
cout << " The cylinder may be horizontal or vertical.\n";
cout << " A horizontal cylinder may have wires at one or both ends.\n";
cout << " A vertical cylinder may have at most one wire which may be\n";
cout << " placed on the left or right side.\n\n";
cout << "Input:\n";
cout << " Unit: mm, in (millimeters or inches)\n";
cout << " Orientation: V (vertical)\n";
cout << " Lead type: X, R (axial, radial)\n";
cout << " Diameter of body\n";
cout << " Length of body\n";
cout << " Board offset\n";
cout << " * Wire diameter\n";
cout << " * Pitch\n";
cout << " ** Wire side: L, R (left, right)\n";
cout << " *** Lead length\n";
cout << " File name (must end in *.idf)\n\n";
cout << " NOTES:\n";
cout << " * only required for horizontal orientation or\n";
cout << " vertical orientation with axial leads\n\n";
cout << " ** only required for vertical orientation with axial leads\n\n";
cout << " *** only required for horizontal orientation with radial leads\n\n";
}
char orientation = '\0';
bool inch = false; // default mm
double dia = 0.0;
double length = 0.0;
double extraZ = 0.0;
double wireDia = 0.0;
bool axial = false;
stringstream tstr;
string line;
line.clear();
while( line.compare( "mm" ) && line.compare( "in" ) )
{
cout << "* Units (mm,in): ";
line.clear();
std::getline( cin, line );
}
if( line.compare( "mm" ) )
inch = true;
line.clear();
while( line.compare( "H" ) && line.compare( "h" )
&& line.compare( "V" ) && line.compare( "v" ) )
{
cout << "* Orientation (H,V): ";
line.clear();
std::getline( cin, line );
}
if( line.compare( "H" ) && line.compare( "h" ) )
orientation = 'v';
else
orientation = 'h';
bool ok = false;
while( !ok )
{
cout << "* Axial or Radial (X,R): ";
line.clear();
std::getline( cin, line );
if( !line.compare( "x" ) || !line.compare( "X" ) )
{
axial = true;
ok = true;
}
else if( !line.compare( "r" ) || !line.compare( "R" ) )
{
axial = false;
ok = true;
}
}
// cylinder dimensions
ok = false;
while( !ok )
{
cout << "* Diameter: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
tstr >> dia;
if( !tstr.fail() && dia > 0.0 )
ok = true;
}
ok = false;
while( !ok )
{
cout << "* Length: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
tstr >> length;
if( !tstr.fail() && length > 0.0 )
ok = true;
}
ok = false;
while( !ok )
{
cout << "* Board offset: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
tstr >> extraZ;
if( !tstr.fail() && extraZ >= 0.0 )
ok = true;
}
ok = false;
while( ( axial || orientation == 'h' ) && !ok )
{
cout << "* Wire diameter: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
tstr >> wireDia;
if( !tstr.fail() && wireDia > 0.0 )
{
if( wireDia < dia )
ok = true;
else
cout << "* WARNING: wire diameter must be < cylinder diameter\n";
}
}
switch( orientation )
{
case 'v':
make_vcyl( inch, axial, dia, length, extraZ, wireDia );
break;
case 'h':
make_hcyl( inch, axial, dia, length, extraZ, wireDia );
break;
default:
break;
}
setlocale( LC_ALL, "" );
return 0;
}
void make_vcyl( bool inch, bool axial, double dia, double length,
double z, double wireDia )
{
bool ok = false;
bool left = false;
stringstream tstr;
string line;
double pitch = 0.0;
while( axial && !ok )
{
cout << "* Pitch: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
tstr >> pitch;
if( !tstr.fail() && pitch > 0.0 )
{
if( (pitch - wireDia) <= (dia / 2.0) )
{
cout << "* WARNING: Pitch must be > dia/2 + wireDia\n";
}
else
{
ok = true;
}
}
}
ok = false;
while( axial && !ok )
{
cout << "* Pin side (L,R): ";
line.clear();
std::getline( cin, line );
if( !line.compare( "l" ) || !line.compare( "L" ) )
{
left = true;
ok = true;
}
else if( !line.compare( "r" ) || !line.compare( "R" ) )
ok = true;
}
line.clear();
while( line.empty() || line.find( ".idf" ) == string::npos )
{
cout << "* File name (*.idf): ";
line.clear();
std::getline( cin, line );
}
FILE* fp = fopen( line.c_str(), "w" );
if( !fp )
{
cerr << "Could not open output file: " << line << "\n";
return;
}
fprintf( fp, "# cylindrical outline, vertical, " );
if( !axial )
fprintf( fp, "radial leads\n" );
else
fprintf( fp, "axial lead on %s\n", left ? "left" : "right" );
fprintf( fp, "# file: \"%s\"\n", line.c_str() );
if( inch )
{
fprintf( fp, "# dia: %d THOU\n", (int) (dia * 1000) );
fprintf( fp, "# length: %d THOU\n", (int) (length * 1000) );
fprintf( fp, "# board offset: %d THOU\n", (int) (z * 1000) );
if( axial )
{
fprintf( fp, "# wire dia: %d THOU\n", (int) (wireDia * 1000) );
fprintf( fp, "# pitch: %d THOU\n", (int) (pitch * 1000) );
}
}
else
{
fprintf( fp, "# dia: %.3f mm\n", dia );
fprintf( fp, "# length: %.3f mm\n", length );
fprintf( fp, "# board offset: %.3f mm\n", z );
if( axial )
{
fprintf( fp, "# wire dia: %.3f mm\n", wireDia );
fprintf( fp, "# pitch: %.3f mm\n", pitch );
}
}
fprintf( fp, ".ELECTRICAL\n" );
if( !axial )
{
fprintf( fp, "\"CYLV_%s_RAD\" \"D%.3f_H%.3f_Z%.3f\" ", inch ? "IN" : "MM",
dia, length, z );
}
else
{
fprintf( fp, "\"CYLV_%s_AX%s\" \"D%.3f_H%.3f_Z%.3f_WD%.3f_P%.3f\" ", inch ? "IN" : "MM",
left ? "L" : "R", dia, length, z, wireDia, pitch );
}
if( inch )
fprintf( fp, "THOU %d\n", (int) ((length + z) * 1000) );
else
fprintf( fp, "MM %.3f\n", length + z );
if( !axial )
{
fprintf( fp, "0 0 0 0\n" );
if( inch )
fprintf( fp, "0 %d 0 360\n", (int) (dia * 500) );
else
fprintf( fp, "0 %.3f 0 360\n", dia / 2.0 );
fprintf( fp, ".END_ELECTRICAL\n" );
fclose( fp );
return;
}
double px[4], py[4];
// points are:
// [0] = upper point on cylinder perimeter
// [1] = lower point on cylinder perimeter
// [2] = point beneath wire center
// [3] = point above wire center
if( inch )
{
dia *= 1000.0;
pitch *= 1000.0;
wireDia *= 1000.0;
}
double ang = asin( wireDia / dia );
px[0] = dia * cos( ang ) / 2.0 - pitch / 2.0;
px[1] = px[0];
px[2] = pitch / 2.0;
px[3] = px[2];
py[0] = wireDia / 2.0;
py[1] = -py[0];
py[2] = py[1];
py[3] = py[0];
char li = '0';
double fullAng = 360.0;
if( left )
{
li = '1';
fullAng = -360.0;
for( int i = 0; i < 4; ++i ) px[i] = -px[i];
}
if( inch )
{
fprintf( fp, "%c %d %d 0\n", li, (int) px[0], (int) py[0] );
fprintf( fp, "%c %d %d %.3f\n", li, (int) px[1], (int) py[1],
fullAng * ( 1 - ang / M_PI ) );
fprintf( fp, "%c %d %d 0\n", li, (int) px[2], (int) py[2] );
fprintf( fp, "%c %d %d %s\n", li, (int) px[3], (int) py[3],
left ? "-180" : "180" );
fprintf( fp, "%c %d %d 0\n", li, (int) px[0], (int) py[0] );
}
else
{
fprintf( fp, "%c %.3f %.3f 0\n", li, px[0], py[0] );
fprintf( fp, "%c %.3f %.3f %.3f\n", li, px[1], py[1], fullAng * ( 1 - ang / M_PI ) );
fprintf( fp, "%c %.3f %.3f 0\n", li, px[2], py[2] );
fprintf( fp, "%c %.3f %.3f %s\n", li, px[3], py[3],
left ? "-180" : "180" );
fprintf( fp, "%c %.3f %.3f 0\n", li, px[0], py[0] );
}
fprintf( fp, ".END_ELECTRICAL\n" );
fclose( fp );
return;
}
void make_hcyl( bool inch, bool axial, double dia, double length,
double z, double wireDia )
{
stringstream tstr;
string line;
double pitch = 0.0;
double lead = 0.0; // lead length for radial leads
bool ok = false;
while( !ok )
{
if( axial )
cout << "* Axial pitch: ";
else
cout << "* Radial pitch: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
tstr >> pitch;
if( !tstr.fail() && pitch > 0.0 )
{
if( axial )
{
if( (pitch - wireDia) <= length )
{
cout << "* WARNING: Axial pitch must be > length + wireDia\n";
}
else
{
ok = true;
}
}
else
{
if( (pitch + wireDia) >= dia )
{
cout << "* WARNING: Radial pitch must be < dia - wireDia\n";
}
else if( pitch <= wireDia )
{
cout << "* WARNING: Radial pitch must be > wireDia\n";
}
else
{
ok = true;
}
}
}
}
ok = false;
while( !axial && !ok )
{
cout << "* Lead length: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
tstr >> lead;
if( !tstr.fail() && lead > 0.0 )
{
if( lead < wireDia )
cout << "* WARNING: lead length must be >= wireDia\n";
else
ok = true;
}
}
line.clear();
while( line.empty() || line.find( ".idf" ) == string::npos )
{
cout << "* File name (*.idf): ";
line.clear();
std::getline( cin, line );
}
FILE* fp = fopen( line.c_str(), "w" );
if( !fp )
{
cerr << "Could not open output file: " << line << "\n";
return;
}
fprintf( fp, "# cylindrical outline, horiz., " );
fprintf( fp, "%s pins\n", axial ? "axial" : "radial" );
fprintf( fp, "# file: \"%s\"\n", line.c_str() );
if( inch )
{
fprintf( fp, "# dia: %d THOU\n", (int) (dia * 1000) );
fprintf( fp, "# length: %d THOU\n", (int) (length * 1000) );
fprintf( fp, "# extra height: %d THOU\n", (int) (z * 1000) );
fprintf( fp, "# wire dia: %d THOU\n", (int) (wireDia * 1000) );
fprintf( fp, "# pitch: %d THOU\n", (int) (pitch * 1000) );
if( !axial )
fprintf( fp, "# lead: %d THOU\n", (int) (lead * 1000) );
}
else
{
fprintf( fp, "# dia: %.3f mm\n", dia );
fprintf( fp, "# length: %.3f mm\n", length );
fprintf( fp, "# extra height: %.3f mm\n", z );
fprintf( fp, "# wire dia: %.3f mm\n", wireDia );
fprintf( fp, "# pitch: %.3f mm\n", pitch );
if( !axial )
fprintf( fp, "# lead: %.3f mm\n", lead );
}
fprintf( fp, ".ELECTRICAL\n" );
if( axial )
{
fprintf( fp, "\"CYLH_%s_AXI\" \"D%.3f_H%.3f_Z%.3f_WD%.3f_P%.3f\" ",
inch ? "IN" : "MM", dia, length, z, wireDia, pitch );
}
else
{
fprintf( fp, "\"CYLH_%s_RAD\" \"D%.3f_H%.3f_Z%.3f_WD%.3f_P%.3f_L%.3f\" ",
inch ? "IN" : "MM", dia, length, z, wireDia, pitch, lead );
}
if( inch )
{
fprintf( fp, "THOU %d\n", (int) ((dia + z) * 1000) );
dia *= 1000.0;
length *= 1000.0;
wireDia *= 1000.0;
pitch *= 1000.0;
if( !axial )
lead *= 1000.0;
}
else
{
fprintf( fp, "MM %.3f\n", dia + z );
}
if( axial )
writeAxialCyl( fp, inch, dia, length, wireDia, pitch );
else
writeRadialCyl( fp, inch, dia, length, wireDia, pitch, lead );
fprintf( fp, ".END_ELECTRICAL\n" );
fclose( fp );
return;
}
void writeAxialCyl( FILE* fp, bool inch, double dia, double length,
double wireDia, double pitch )
{
double x1, y1;
double x2, y2;
x1 = -length / 2.0;
x2 = -pitch / 2.0;
y1 = dia / 2.0;
y2 = wireDia / 2.0;
if( inch )
{
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y1 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) x2, (int) y2 );
fprintf( fp, "0 %d %d 180\n", (int) x2, (int) -y2 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) -y2 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) -y1 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) -y1 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) -y2 );
fprintf( fp, "0 %d %d 0\n", (int) -x2, (int) -y2 );
fprintf( fp, "0 %d %d 180\n", (int) -x2, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y1 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y1 );
}
else
{
fprintf( fp, "0 %.3f %.3f 0\n", x1, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x2, y2 );
fprintf( fp, "0 %.3f %.3f 180\n", x2, -y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, -y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, -y1 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, -y1 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, -y2 );
fprintf( fp, "0 %.3f %.3f 0\n", -x2, -y2 );
fprintf( fp, "0 %.3f %.3f 180\n", -x2, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, y1 );
}
return;
}
void writeRadialCyl( FILE* fp, bool inch, double dia, double length,
double wireDia, double pitch, double lead )
{
double x1, y1;
double x2, y2;
double x3;
// center is between the mounting holes
// which are on a horizontal line
y1 = lead + length;
y2 = lead;
x1 = dia / 2.0;
x2 = ( pitch + wireDia ) /2.0;
x3 = x2 - wireDia;
if( inch )
{
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y1 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) -x2, (int) y2 );
fprintf( fp, "0 %d 0 0\n", (int) -x2 );
fprintf( fp, "0 %d 0 180\n", (int) -x3 );
fprintf( fp, "0 %d %d 0\n", (int) -x3, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) x3, (int) y2 );
fprintf( fp, "0 %d 0 0\n", (int) x3 );
fprintf( fp, "0 %d 0 180\n", (int) x2 );
fprintf( fp, "0 %d %d 0\n", (int) x2, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y1 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y1 );
}
else
{
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", -x2, y2 );
fprintf( fp, "0 %.3f 0 0\n", -x2 );
fprintf( fp, "0 %.3f 0 180\n", -x3 );
fprintf( fp, "0 %.3f %.3f 0\n", -x3, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x3, y2 );
fprintf( fp, "0 %.3f 0 0\n", x3 );
fprintf( fp, "0 %.3f 0 180\n", x2 );
fprintf( fp, "0 %.3f %.3f 0\n", x2, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y1 );
}
return;
}