kicad/common/eda_shape.cpp

1646 lines
45 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <bezier_curves.h>
#include <base_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <eda_draw_frame.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_circle.h>
#include <macros.h>
#include <math/util.h> // for KiROUND
#include <eda_shape.h>
#include <plotters/plotter.h>
EDA_SHAPE::EDA_SHAPE( SHAPE_T aType, int aLineWidth, FILL_T aFill, bool eeWinding ) :
m_endsSwapped( false ),
m_shape( aType ),
m_stroke( aLineWidth, PLOT_DASH_TYPE::DEFAULT, COLOR4D::UNSPECIFIED ),
m_fill( aFill ),
m_fillColor( COLOR4D::UNSPECIFIED ),
m_editState( 0 ),
m_eeWinding( eeWinding )
{
}
EDA_SHAPE::~EDA_SHAPE()
{
}
wxString EDA_SHAPE::ShowShape() const
{
switch( m_shape )
{
case SHAPE_T::SEGMENT: return _( "Line" );
case SHAPE_T::RECT: return _( "Rect" );
case SHAPE_T::ARC: return _( "Arc" );
case SHAPE_T::CIRCLE: return _( "Circle" );
case SHAPE_T::BEZIER: return _( "Bezier Curve" );
case SHAPE_T::POLY: return _( "Polygon" );
default: return wxT( "??" );
}
}
wxString EDA_SHAPE::SHAPE_T_asString() const
{
switch( m_shape )
{
case SHAPE_T::SEGMENT: return "S_SEGMENT";
case SHAPE_T::RECT: return "S_RECT";
case SHAPE_T::ARC: return "S_ARC";
case SHAPE_T::CIRCLE: return "S_CIRCLE";
case SHAPE_T::POLY: return "S_POLYGON";
case SHAPE_T::BEZIER: return "S_CURVE";
case SHAPE_T::LAST: return "!S_LAST!"; // Synthetic value, but if we come across it then
// we're going to want to know.
}
return wxEmptyString; // Just to quiet GCC.
}
void EDA_SHAPE::setPosition( const VECTOR2I& aPos )
{
move( aPos - getPosition() );
}
VECTOR2I EDA_SHAPE::getPosition() const
{
if( m_shape == SHAPE_T::ARC )
return getCenter();
else if( m_shape == SHAPE_T::POLY )
return m_poly.CVertex( 0 );
else
return m_start;
}
double EDA_SHAPE::GetLength() const
{
double length = 0.0;
switch( m_shape )
{
case SHAPE_T::BEZIER:
for( size_t ii = 1; ii < m_bezierPoints.size(); ++ii )
length += GetLineLength( m_bezierPoints[ ii - 1], m_bezierPoints[ii] );
return length;
case SHAPE_T::SEGMENT:
return GetLineLength( GetStart(), GetEnd() );
case SHAPE_T::POLY:
for( int ii = 0; ii < m_poly.COutline( 0 ).SegmentCount(); ii++ )
length += m_poly.COutline( 0 ).CSegment( ii ).Length();
return length;
case SHAPE_T::ARC:
return 2 * M_PI * GetRadius() * ( GetArcAngle() / 3600.0 );
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return 0.0;
}
}
void EDA_SHAPE::move( const VECTOR2I& aMoveVector )
{
switch ( m_shape )
{
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
case SHAPE_T::RECT:
case SHAPE_T::CIRCLE:
m_start += aMoveVector;
m_end += aMoveVector;
m_arcCenter += aMoveVector;
break;
case SHAPE_T::POLY:
m_poly.Move( VECTOR2I( aMoveVector ) );
break;
case SHAPE_T::BEZIER:
m_start += aMoveVector;
m_end += aMoveVector;
m_bezierC1 += aMoveVector;
m_bezierC2 += aMoveVector;
for( VECTOR2I& pt : m_bezierPoints )
pt += aMoveVector;
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
void EDA_SHAPE::scale( double aScale )
{
auto scalePt = [&]( VECTOR2I& pt )
{
pt.x = KiROUND( pt.x * aScale );
pt.y = KiROUND( pt.y * aScale );
};
switch( m_shape )
{
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
case SHAPE_T::RECT:
scalePt( m_start );
scalePt( m_end );
scalePt( m_arcCenter );
break;
case SHAPE_T::CIRCLE: // ring or circle
scalePt( m_start );
m_end.x = m_start.x + KiROUND( GetRadius() * aScale );
m_end.y = m_start.y;
break;
case SHAPE_T::POLY: // polygon
{
std::vector<VECTOR2I> pts;
for( const VECTOR2I& pt : m_poly.Outline( 0 ).CPoints() )
{
pts.emplace_back( pt );
scalePt( pts.back() );
}
SetPolyPoints( pts );
}
break;
case SHAPE_T::BEZIER:
scalePt( m_start );
scalePt( m_end );
scalePt( m_bezierC1 );
scalePt( m_bezierC2 );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
void EDA_SHAPE::rotate( const VECTOR2I& aRotCentre, double aAngle )
{
switch( m_shape )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
RotatePoint( m_start, aRotCentre, aAngle );
RotatePoint( m_end, aRotCentre, aAngle );
break;
case SHAPE_T::ARC:
RotatePoint( m_start, aRotCentre, aAngle );
RotatePoint( m_end, aRotCentre, aAngle );
RotatePoint( m_arcCenter, aRotCentre, aAngle );
break;
case SHAPE_T::RECT:
if( KiROUND( aAngle ) % 900 == 0 )
{
RotatePoint( m_start, aRotCentre, aAngle );
RotatePoint( m_end, aRotCentre, aAngle );
break;
}
// Convert non-cartesian-rotated rect to a diamond
m_shape = SHAPE_T::POLY;
m_poly.RemoveAllContours();
m_poly.NewOutline();
m_poly.Append( m_start );
m_poly.Append( m_end.x, m_start.y );
m_poly.Append( m_end );
m_poly.Append( m_start.x, m_end.y );
KI_FALLTHROUGH;
case SHAPE_T::POLY:
m_poly.Rotate( -DECIDEG2RAD( aAngle ), VECTOR2I( aRotCentre ) );
break;
case SHAPE_T::BEZIER:
RotatePoint( m_start, aRotCentre, aAngle );
RotatePoint( m_end, aRotCentre, aAngle );
RotatePoint( m_bezierC1, aRotCentre, aAngle );
RotatePoint( m_bezierC2, aRotCentre, aAngle );
for( VECTOR2I& pt : m_bezierPoints )
RotatePoint( pt, aRotCentre, aAngle);
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
void EDA_SHAPE::flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
{
switch ( m_shape )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::RECT:
if( aFlipLeftRight )
{
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
}
else
{
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
}
std::swap( m_start, m_end );
break;
case SHAPE_T::CIRCLE:
if( aFlipLeftRight )
{
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
}
else
{
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
}
break;
case SHAPE_T::ARC:
if( aFlipLeftRight )
{
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
m_arcCenter.x = aCentre.x - ( m_arcCenter.x - aCentre.x );
}
else
{
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
m_arcCenter.y = aCentre.y - ( m_arcCenter.y - aCentre.y );
}
std::swap( m_start, m_end );
break;
case SHAPE_T::POLY:
m_poly.Mirror( aFlipLeftRight, !aFlipLeftRight, aCentre );
break;
case SHAPE_T::BEZIER:
if( aFlipLeftRight )
{
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
m_bezierC1.x = aCentre.x - ( m_bezierC1.x - aCentre.x );
m_bezierC2.x = aCentre.x - ( m_bezierC2.x - aCentre.x );
}
else
{
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
m_bezierC1.y = aCentre.y - ( m_bezierC1.y - aCentre.y );
m_bezierC2.y = aCentre.y - ( m_bezierC2.y - aCentre.y );
}
// Rebuild the poly points shape
{
std::vector<VECTOR2I> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
BEZIER_POLY converter( ctrlPoints );
converter.GetPoly( m_bezierPoints, m_stroke.GetWidth() );
}
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
void EDA_SHAPE::RebuildBezierToSegmentsPointsList( int aMinSegLen )
{
// Has meaning only for S_CURVE DRAW_SEGMENT shape
if( m_shape != SHAPE_T::BEZIER )
{
m_bezierPoints.clear();
return;
}
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
m_bezierPoints = buildBezierToSegmentsPointsList( aMinSegLen );
}
const std::vector<VECTOR2I> EDA_SHAPE::buildBezierToSegmentsPointsList( int aMinSegLen ) const
{
std::vector<VECTOR2I> bezierPoints;
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
std::vector<VECTOR2I> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
BEZIER_POLY converter( ctrlPoints );
converter.GetPoly( bezierPoints, aMinSegLen );
return bezierPoints;
}
VECTOR2I EDA_SHAPE::getCenter() const
{
switch( m_shape )
{
case SHAPE_T::ARC:
return m_arcCenter;
case SHAPE_T::CIRCLE:
return m_start;
case SHAPE_T::SEGMENT:
// Midpoint of the line
return ( m_start + m_end ) / 2;
case SHAPE_T::POLY:
case SHAPE_T::RECT:
case SHAPE_T::BEZIER:
return getBoundingBox().Centre();
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return VECTOR2I();
}
}
void EDA_SHAPE::SetCenter( const VECTOR2I& aCenter )
{
switch( m_shape )
{
case SHAPE_T::ARC:
m_arcCenter = aCenter;
break;
case SHAPE_T::CIRCLE:
m_start = aCenter;
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
VECTOR2I EDA_SHAPE::GetArcMid() const
{
VECTOR2I mid = m_start;
RotatePoint( mid, m_arcCenter, -GetArcAngle() / 2.0 );
return mid;
}
void EDA_SHAPE::CalcArcAngles( double& aStartAngle, double& aEndAngle ) const
{
VECTOR2D startRadial( GetStart() - getCenter() );
VECTOR2D endRadial( GetEnd() - getCenter() );
aStartAngle = 180.0 / M_PI * atan2( startRadial.y, startRadial.x );
aEndAngle = 180.0 / M_PI * atan2( endRadial.y, endRadial.x );
if( aEndAngle == aStartAngle )
aEndAngle = aStartAngle + 360.0; // ring, not null
if( aStartAngle > aEndAngle )
{
if( aEndAngle < 0 )
aEndAngle = NormalizeAngleDegrees( aEndAngle, 0.0, 360.0 );
else
aStartAngle = NormalizeAngleDegrees( aStartAngle, -360.0, 0.0 );
}
}
int EDA_SHAPE::GetRadius() const
{
double radius = 0.0;
switch( m_shape )
{
case SHAPE_T::ARC:
radius = GetLineLength( m_arcCenter, m_start );
break;
case SHAPE_T::CIRCLE:
radius = GetLineLength( m_start, m_end );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
// don't allow degenerate circles/arcs
return std::max( 1, KiROUND( radius ) );
}
void EDA_SHAPE::SetArcGeometry( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd )
{
m_start = aStart;
m_end = aEnd;
m_arcCenter = CalcArcCenter( aStart, aMid, aEnd );
m_endsSwapped = false;
/**
* If the input winding doesn't match our internal winding, the calculated midpoint will end up
* on the other side of the arc. In this case, we need to flip the start/end points and flag this
* change for the system
*/
VECTOR2I new_mid = GetArcMid();
VECTOR2D dist( new_mid - aMid );
VECTOR2D dist2( new_mid - m_arcCenter );
if( dist.SquaredEuclideanNorm() > dist2.SquaredEuclideanNorm() )
{
std::swap( m_start, m_end );
m_endsSwapped = true;
}
}
double EDA_SHAPE::GetArcAngle() const
{
double startAngle;
double endAngle;
CalcArcAngles( startAngle, endAngle );
return ( endAngle - startAngle ) * 10;
}
void EDA_SHAPE::SetArcAngleAndEnd( double aAngle, bool aCheckNegativeAngle )
{
m_end = m_start;
RotatePoint( m_end, m_arcCenter, -NormalizeAngle360Max( aAngle ) );
if( aCheckNegativeAngle && aAngle < 0 )
{
std::swap( m_start, m_end );
m_endsSwapped = true;
}
}
void EDA_SHAPE::ShapeGetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
EDA_UNITS units = aFrame->GetUserUnits();
ORIGIN_TRANSFORMS originTransforms = aFrame->GetOriginTransforms();
wxString msg;
wxString shape = _( "Shape" );
switch( m_shape )
{
case SHAPE_T::CIRCLE:
aList.emplace_back( shape, _( "Circle" ) );
msg = MessageTextFromValue( units, GetRadius() );
aList.emplace_back( _( "Radius" ), msg );
break;
case SHAPE_T::ARC:
aList.emplace_back( shape, _( "Arc" ) );
msg.Printf( wxT( "%.1f" ), GetArcAngle() / 10.0 );
aList.emplace_back( _( "Angle" ), msg );
msg = MessageTextFromValue( units, GetRadius() );
aList.emplace_back( _( "Radius" ), msg );
break;
case SHAPE_T::BEZIER:
aList.emplace_back( shape, _( "Curve" ) );
msg = MessageTextFromValue( units, GetLength() );
aList.emplace_back( _( "Length" ), msg );
break;
case SHAPE_T::POLY:
aList.emplace_back( shape, _( "Polygon" ) );
msg.Printf( "%d", GetPolyShape().Outline(0).PointCount() );
aList.emplace_back( _( "Points" ), msg );
break;
case SHAPE_T::RECT:
aList.emplace_back( shape, _( "Rectangle" ) );
msg = MessageTextFromValue( units, std::abs( GetEnd().x - GetStart().x ) );
aList.emplace_back( _( "Width" ), msg );
msg = MessageTextFromValue( units, std::abs( GetEnd().y - GetStart().y ) );
aList.emplace_back( _( "Height" ), msg );
break;
case SHAPE_T::SEGMENT:
{
aList.emplace_back( shape, _( "Segment" ) );
msg = MessageTextFromValue( units, GetLineLength( GetStart(), GetEnd() ) );
aList.emplace_back( _( "Length" ), msg );
// angle counter-clockwise from 3'o-clock
const double deg = RAD2DEG( atan2( (double)( GetStart().y - GetEnd().y ),
(double)( GetEnd().x - GetStart().x ) ) );
aList.emplace_back( _( "Angle" ), wxString::Format( "%.1f", deg ) );
}
break;
default:
aList.emplace_back( shape, _( "Unrecognized" ) );
break;
}
aList.emplace_back( _( "Line width" ), MessageTextFromValue( units, GetWidth() ) );
}
const EDA_RECT EDA_SHAPE::getBoundingBox() const
{
EDA_RECT bbox;
switch( m_shape )
{
case SHAPE_T::RECT:
for( VECTOR2I& pt : GetRectCorners() )
bbox.Merge( pt );
break;
case SHAPE_T::SEGMENT:
bbox.SetOrigin( GetStart() );
bbox.SetEnd( GetEnd() );
break;
case SHAPE_T::CIRCLE:
bbox.SetOrigin( GetStart() );
bbox.Inflate( GetRadius() );
break;
case SHAPE_T::ARC:
computeArcBBox( bbox );
break;
case SHAPE_T::POLY:
if( m_poly.IsEmpty() )
break;
for( auto iter = m_poly.CIterate(); iter; iter++ )
{
VECTOR2I pt( iter->x, iter->y );
RotatePoint( pt, getParentOrientation() );
pt += getParentPosition();
bbox.Merge( pt );
}
break;
case SHAPE_T::BEZIER:
bbox.SetOrigin( GetStart() );
bbox.Merge( GetBezierC1() );
bbox.Merge( GetBezierC2() );
bbox.Merge( GetEnd() );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
bbox.Inflate( std::max( 0, GetWidth() ) / 2 );
bbox.Normalize();
return bbox;
}
bool EDA_SHAPE::hitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
int maxdist = aAccuracy;
if( GetWidth() > 0 )
maxdist += GetWidth() / 2;
switch( m_shape )
{
case SHAPE_T::CIRCLE:
{
int radius = GetRadius();
int dist = KiROUND( EuclideanNorm( aPosition - getCenter() ) );
if( IsFilled() )
return dist <= radius + maxdist; // Filled circle hit-test
else
return abs( radius - dist ) <= maxdist; // Ring hit-test
}
case SHAPE_T::ARC:
{
if( EuclideanNorm( aPosition - m_start ) <= maxdist )
return true;
if( EuclideanNorm( aPosition - m_end ) <= maxdist )
return true;
VECTOR2I relPos = aPosition - getCenter();
int radius = GetRadius();
int dist = KiROUND( EuclideanNorm( relPos ) );
if( abs( radius - dist ) <= maxdist )
{
double startAngle;
double endAngle;
CalcArcAngles( startAngle, endAngle );
if( m_eeWinding && NormalizeAngleDegrees( startAngle - endAngle, -180.0, 180.0 ) > 0 )
std::swap( startAngle, endAngle );
double relPosAngle = 180.0 / M_PI * atan2( relPos.y, relPos.x );
startAngle = NormalizeAngleDegrees( startAngle, 0.0, 360.0 );
endAngle = NormalizeAngleDegrees( endAngle, 0.0, 360.0 );
relPosAngle = NormalizeAngleDegrees( relPosAngle, 0.0, 360.0 );
if( endAngle > startAngle )
return relPosAngle >= startAngle && relPosAngle <= endAngle;
else
return relPosAngle >= startAngle || relPosAngle <= endAngle;
}
return false;
}
case SHAPE_T::BEZIER:
const_cast<EDA_SHAPE*>( this )->RebuildBezierToSegmentsPointsList( GetWidth() );
for( unsigned int i= 1; i < m_bezierPoints.size(); i++)
{
if( TestSegmentHit( aPosition, m_bezierPoints[ i - 1], m_bezierPoints[i], maxdist ) )
return true;
}
return false;
case SHAPE_T::SEGMENT:
return TestSegmentHit( aPosition, GetStart(), GetEnd(), maxdist );
case SHAPE_T::RECT:
if( IsFilled() ) // Filled rect hit-test
{
SHAPE_POLY_SET poly;
poly.NewOutline();
for( const VECTOR2I& pt : GetRectCorners() )
poly.Append( pt );
return poly.Collide( VECTOR2I( aPosition ), maxdist );
}
else // Open rect hit-test
{
std::vector<VECTOR2I> pts = GetRectCorners();
return TestSegmentHit( aPosition, pts[0], pts[1], maxdist )
|| TestSegmentHit( aPosition, pts[1], pts[2], maxdist )
|| TestSegmentHit( aPosition, pts[2], pts[3], maxdist )
|| TestSegmentHit( aPosition, pts[3], pts[0], maxdist );
}
case SHAPE_T::POLY:
if( IsFilled() )
{
return m_poly.Collide( VECTOR2I( aPosition ), maxdist );
}
else
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return m_poly.CollideEdge( VECTOR2I( aPosition ), dummy, maxdist );
}
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return false;
}
}
bool EDA_SHAPE::hitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
EDA_RECT arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
EDA_RECT arcRect;
EDA_RECT bb = getBoundingBox();
switch( m_shape )
{
case SHAPE_T::CIRCLE:
// Test if area intersects or contains the circle:
if( aContained )
{
return arect.Contains( bb );
}
else
{
// If the rectangle does not intersect the bounding box, this is a much quicker test
if( !aRect.Intersects( bb ) )
{
return false;
}
else
{
return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
}
}
case SHAPE_T::ARC:
// Test for full containment of this arc in the rect
if( aContained )
{
return arect.Contains( bb );
}
// Test if the rect crosses the arc
else
{
arcRect = bb.Common( arect );
/* All following tests must pass:
* 1. Rectangle must intersect arc BoundingBox
* 2. Rectangle must cross the outside of the arc
*/
return arcRect.Intersects( arect ) &&
arcRect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
}
case SHAPE_T::RECT:
if( aContained )
{
return arect.Contains( bb );
}
else
{
std::vector<VECTOR2I> pts = GetRectCorners();
// Account for the width of the lines
arect.Inflate( GetWidth() / 2 );
return ( arect.Intersects( pts[0], pts[1] )
|| arect.Intersects( pts[1], pts[2] )
|| arect.Intersects( pts[2], pts[3] )
|| arect.Intersects( pts[3], pts[0] ) );
}
case SHAPE_T::SEGMENT:
if( aContained )
{
return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() );
}
else
{
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
return arect.Intersects( GetStart(), GetEnd() );
}
case SHAPE_T::POLY:
if( aContained )
{
return arect.Contains( bb );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bb ) )
return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
// Polygons in footprints use coordinates relative to the footprint.
// Therefore, instead of using m_poly, we make a copy which is translated
// to the actual location in the board.
double orientation = 0.0;
VECTOR2I offset = getParentPosition();
if( getParentOrientation() )
orientation = -DECIDEG2RAD( getParentOrientation() );
SHAPE_LINE_CHAIN poly = m_poly.Outline( 0 );
poly.Rotate( orientation );
poly.Move( offset );
int count = poly.GetPointCount();
for( int ii = 0; ii < count; ii++ )
{
VECTOR2I vertex = poly.GetPoint( ii );
// Test if the point is within aRect
if( arect.Contains( vertex ) )
return true;
if( ii + 1 < count )
{
VECTOR2I vertexNext = poly.GetPoint( ii + 1 );
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
else if( poly.IsClosed() )
{
VECTOR2I vertexNext = poly.GetPoint( 0 );
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
}
return false;
}
case SHAPE_T::BEZIER:
if( aContained )
{
return arect.Contains( bb );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bb ) )
return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
unsigned count = m_bezierPoints.size();
for( unsigned ii = 1; ii < count; ii++ )
{
VECTOR2I vertex = m_bezierPoints[ii - 1];
VECTOR2I vertexNext = m_bezierPoints[ii];
// Test if the point is within aRect
if( arect.Contains( vertex ) )
return true;
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
return false;
}
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return false;
}
}
std::vector<VECTOR2I> EDA_SHAPE::GetRectCorners() const
{
std::vector<VECTOR2I> pts;
VECTOR2I topLeft = GetStart();
VECTOR2I botRight = GetEnd();
// Un-rotate rect topLeft and botRight
if( KiROUND( getParentOrientation() ) % 900 != 0 )
{
topLeft -= getParentPosition();
RotatePoint( topLeft, -getParentOrientation() );
botRight -= getParentPosition();
RotatePoint( botRight, -getParentOrientation() );
}
// Set up the un-rotated 4 corners
pts.emplace_back( topLeft );
pts.emplace_back( botRight.x, topLeft.y );
pts.emplace_back( botRight );
pts.emplace_back( topLeft.x, botRight.y );
// Now re-rotate the 4 corners to get a diamond
if( KiROUND( getParentOrientation() ) % 900 != 0 )
{
for( VECTOR2I& pt : pts )
{
RotatePoint( pt, getParentOrientation() );
pt += getParentPosition();
}
}
return pts;
}
void EDA_SHAPE::computeArcBBox( EDA_RECT& aBBox ) const
{
VECTOR2I start = m_start;
VECTOR2I end = m_end;
double t1, t2;
CalcArcAngles( t1, t2 );
if( m_eeWinding && NormalizeAngleDegrees( t1 - t2, -180.0, 180.0 ) > 0 )
std::swap( start, end );
// Do not include the center, which is not necessarily inside the BB of an arc with a small
// included angle
aBBox.SetOrigin( start );
aBBox.Merge( end );
// Determine the starting quarter
// 0 right-bottom
// 1 left-bottom
// 2 left-top
// 3 right-top
unsigned int quarter;
if( start.x < m_arcCenter.x )
{
if( start.y <= m_arcCenter.y )
quarter = 2;
else
quarter = 1;
}
else if( start.x == m_arcCenter.x )
{
if( start.y < m_arcCenter.y )
quarter = 3;
else
quarter = 1;
}
else
{
if( start.y < m_arcCenter.y )
quarter = 3;
else
quarter = 0;
}
int radius = GetRadius();
VECTOR2I startRadial = start - m_arcCenter;
VECTOR2I endRadial = end - m_arcCenter;
double angleStart = ArcTangente( startRadial.y, startRadial.x );
double arcAngle = RAD2DECIDEG( endRadial.Angle() - startRadial.Angle() );
int angle = (int) NormalizeAnglePos( angleStart ) % 900 + NormalizeAnglePos( arcAngle );
while( angle > 900 )
{
switch( quarter )
{
case 0: aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y + radius ) ); break; // down
case 1: aBBox.Merge( VECTOR2I( m_arcCenter.x - radius, m_arcCenter.y ) ); break; // left
case 2: aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y - radius ) ); break; // up
case 3: aBBox.Merge( VECTOR2I( m_arcCenter.x + radius, m_arcCenter.y ) ); break; // right
}
++quarter %= 4;
angle -= 900;
}
}
void EDA_SHAPE::SetPolyPoints( const std::vector<VECTOR2I>& aPoints )
{
m_poly.RemoveAllContours();
m_poly.NewOutline();
for( const VECTOR2I& p : aPoints )
m_poly.Append( p.x, p.y );
}
std::vector<SHAPE*> EDA_SHAPE::MakeEffectiveShapes( bool aEdgeOnly ) const
{
std::vector<SHAPE*> effectiveShapes;
switch( m_shape )
{
case SHAPE_T::ARC:
effectiveShapes.emplace_back( new SHAPE_ARC( m_arcCenter, m_start, GetArcAngle() / 10.0,
GetWidth() ) );
break;
case SHAPE_T::SEGMENT:
effectiveShapes.emplace_back( new SHAPE_SEGMENT( m_start, m_end, GetWidth() ) );
break;
case SHAPE_T::RECT:
{
std::vector<VECTOR2I> pts = GetRectCorners();
if( IsFilled() && !aEdgeOnly )
effectiveShapes.emplace_back( new SHAPE_SIMPLE( pts ) );
if( GetWidth() > 0 || !IsFilled() || aEdgeOnly )
{
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[0], pts[1], GetWidth() ) );
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[1], pts[2], GetWidth() ) );
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[2], pts[3], GetWidth() ) );
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[3], pts[0], GetWidth() ) );
}
}
break;
case SHAPE_T::CIRCLE:
{
if( IsFilled() && !aEdgeOnly )
effectiveShapes.emplace_back( new SHAPE_CIRCLE( getCenter(), GetRadius() ) );
if( GetWidth() > 0 || !IsFilled() || aEdgeOnly )
effectiveShapes.emplace_back( new SHAPE_ARC( getCenter(), GetEnd(), 360.0 ) );
break;
}
case SHAPE_T::BEZIER:
{
std::vector<VECTOR2I> bezierPoints = buildBezierToSegmentsPointsList( GetWidth() );
VECTOR2I start_pt = bezierPoints[0];
for( unsigned int jj = 1; jj < bezierPoints.size(); jj++ )
{
VECTOR2I end_pt = bezierPoints[jj];
effectiveShapes.emplace_back( new SHAPE_SEGMENT( start_pt, end_pt, GetWidth() ) );
start_pt = end_pt;
}
break;
}
case SHAPE_T::POLY:
{
SHAPE_LINE_CHAIN l = GetPolyShape().COutline( 0 );
l.Rotate( -DECIDEG2RAD( getParentOrientation() ) );
l.Move( getParentPosition() );
if( IsFilled() && !aEdgeOnly )
effectiveShapes.emplace_back( new SHAPE_SIMPLE( l ) );
if( GetWidth() > 0 || !IsFilled() || aEdgeOnly )
{
for( int i = 0; i < l.SegmentCount(); i++ )
effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( i ), GetWidth() ) );
}
}
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
return effectiveShapes;
}
void EDA_SHAPE::DupPolyPointsList( std::vector<VECTOR2I>& aBuffer ) const
{
if( m_poly.OutlineCount() )
{
int pointCount = m_poly.COutline( 0 ).PointCount();
if( pointCount )
{
aBuffer.reserve( pointCount );
for ( auto iter = m_poly.CIterate(); iter; iter++ )
aBuffer.emplace_back( iter->x, iter->y );
}
}
}
bool EDA_SHAPE::IsPolyShapeValid() const
{
// return true if the polygonal shape is valid (has more than 2 points)
if( GetPolyShape().OutlineCount() == 0 )
return false;
const SHAPE_LINE_CHAIN& outline = ( (SHAPE_POLY_SET&)GetPolyShape() ).Outline( 0 );
return outline.PointCount() > 2;
}
int EDA_SHAPE::GetPointCount() const
{
// return the number of corners of the polygonal shape
// this shape is expected to be only one polygon without hole
if( GetPolyShape().OutlineCount() )
return GetPolyShape().VertexCount( 0 );
return 0;
}
void EDA_SHAPE::beginEdit( const VECTOR2I& aPosition )
{
switch( GetShape() )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
case SHAPE_T::RECT:
SetStart( aPosition );
SetEnd( aPosition );
break;
case SHAPE_T::ARC:
SetArcGeometry( aPosition, aPosition, aPosition );
m_editState = 1;
break;
case SHAPE_T::POLY:
m_poly.NewOutline();
m_poly.Outline( 0 ).SetClosed( false );
// Start and end of the first segment (co-located for now)
m_poly.Outline( 0 ).Append( aPosition );
m_poly.Outline( 0 ).Append( aPosition, true );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
bool EDA_SHAPE::continueEdit( const VECTOR2I& aPosition )
{
switch( GetShape() )
{
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
case SHAPE_T::RECT:
return false;
case SHAPE_T::POLY:
{
SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );
// do not add zero-length segments
if( poly.CPoint( poly.GetPointCount() - 2 ) != poly.CLastPoint() )
poly.Append( aPosition, true );
}
return true;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return false;
}
}
void EDA_SHAPE::calcEdit( const VECTOR2I& aPosition )
{
#define sq( x ) pow( x, 2 )
switch( GetShape() )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
case SHAPE_T::RECT:
SetEnd( aPosition );
break;
case SHAPE_T::ARC:
{
int radius = GetRadius();
// Edit state 0: drawing: place start
// Edit state 1: drawing: place end (center calculated for 90-degree subtended angle)
// Edit state 2: point edit: move start (center calculated for invariant subtended angle)
// Edit state 3: point edit: move end (center calculated for invariant subtended angle)
// Edit state 4: point edit: move center
// Edit state 5: point edit: move arc-mid-point
switch( m_editState )
{
case 0:
SetArcGeometry( aPosition, aPosition, aPosition );
return;
case 1:
m_end = aPosition;
radius = KiROUND( sqrt( sq( GetLineLength( m_start, m_end ) ) / 2.0 ) );
break;
case 2:
case 3:
{
VECTOR2I v = m_start - m_end;
double chordBefore = sq( v.x ) + sq( v.y );
if( m_editState == 2 )
m_start = aPosition;
else
m_end = aPosition;
v = m_start - m_end;
double chordAfter = sq( v.x ) + sq( v.y );
double ratio = chordAfter / chordBefore;
if( ratio != 0 )
{
radius = std::max( int( sqrt( sq( radius ) * ratio ) ) + 1,
int( sqrt( chordAfter ) / 2 ) + 1 );
}
}
break;
case 4:
{
double radialA = GetLineLength( m_start, aPosition );
double radialB = GetLineLength( m_end, aPosition );
radius = int( ( radialA + radialB ) / 2.0 ) + 1;
}
break;
case 5:
SetArcGeometry( GetStart(), aPosition, GetEnd() );
return;
}
// Calculate center based on start, end, and radius
//
// Let 'l' be the length of the chord and 'm' the middle point of the chord
double l = GetLineLength( m_start, m_end );
VECTOR2I m = ( m_start + m_end ) / 2;
// Calculate 'd', the vector from the chord midpoint to the center
VECTOR2I d;
d.x = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_start.y - m_end.y ) / l );
d.y = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_end.x - m_start.x ) / l );
VECTOR2I c1 = m + d;
VECTOR2I c2 = m - d;
// Solution gives us 2 centers; we need to pick one:
switch( m_editState )
{
case 1:
{
// Keep center clockwise from chord while drawing
VECTOR2I chordVector = m_end - m_start;
double chordAngle = ArcTangente( chordVector.y, chordVector.x );
NORMALIZE_ANGLE_POS( chordAngle );
VECTOR2I c1Test = c1;
RotatePoint( c1Test, m_start, -chordAngle );
m_arcCenter = c1Test.x > 0 ? c2 : c1;
}
break;
case 2:
case 3:
// Pick the one closer to the old center
m_arcCenter = GetLineLength( c1, m_arcCenter ) < GetLineLength( c2, m_arcCenter ) ? c1 : c2;
break;
case 4:
// Pick the one closer to the mouse position
m_arcCenter = GetLineLength( c1, aPosition ) < GetLineLength( c2, aPosition ) ? c1 : c2;
if( GetArcAngle() > 1800 )
std::swap( m_start, m_end );
break;
}
}
break;
case SHAPE_T::POLY:
m_poly.Outline( 0 ).SetPoint( m_poly.Outline( 0 ).GetPointCount() - 1, aPosition );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
void EDA_SHAPE::endEdit( bool aClosed )
{
switch( GetShape() )
{
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
case SHAPE_T::RECT:
break;
case SHAPE_T::POLY:
{
SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );
// do not include last point twice
if( poly.GetPointCount() > 2 )
{
if( poly.CPoint( poly.GetPointCount() - 2 ) == poly.CLastPoint() )
{
poly.SetClosed( aClosed );
poly.Remove( poly.GetPointCount() - 1 );
}
}
}
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
void EDA_SHAPE::SwapShape( EDA_SHAPE* aImage )
{
EDA_SHAPE* image = dynamic_cast<EDA_SHAPE*>( aImage );
assert( image );
#define SWAPITEM( x ) std::swap( x, image->x )
SWAPITEM( m_stroke );
SWAPITEM( m_start );
SWAPITEM( m_end );
SWAPITEM( m_arcCenter );
SWAPITEM( m_shape );
SWAPITEM( m_bezierC1 );
SWAPITEM( m_bezierC2 );
SWAPITEM( m_bezierPoints );
SWAPITEM( m_poly );
SWAPITEM( m_fill );
SWAPITEM( m_fillColor );
SWAPITEM( m_eeWinding );
SWAPITEM( m_editState );
SWAPITEM( m_endsSwapped );
#undef SWAPITEM
}
int EDA_SHAPE::Compare( const EDA_SHAPE* aOther ) const
{
#define EPSILON 2 // Should be enough for rounding errors on calculated items
#define TEST( a, b ) { if( a != b ) return a - b; }
#define TEST_E( a, b ) { if( abs( a - b ) > EPSILON ) return a - b; }
#define TEST_PT( a, b ) { TEST_E( a.x, b.x ); TEST_E( a.y, b.y ); }
TEST_PT( m_start, aOther->m_start );
TEST_PT( m_end, aOther->m_end );
TEST( (int) m_shape, (int) aOther->m_shape );
if( m_shape == SHAPE_T::ARC )
{
TEST_PT( m_arcCenter, aOther->m_arcCenter );
}
else if( m_shape == SHAPE_T::BEZIER )
{
TEST_PT( m_bezierC1, aOther->m_bezierC1 );
TEST_PT( m_bezierC2, aOther->m_bezierC2 );
}
else if( m_shape == SHAPE_T::POLY )
{
TEST( m_poly.TotalVertices(), aOther->m_poly.TotalVertices() );
}
for( size_t ii = 0; ii < m_bezierPoints.size(); ++ii )
TEST_PT( m_bezierPoints[ii], aOther->m_bezierPoints[ii] );
for( int ii = 0; ii < m_poly.TotalVertices(); ++ii )
TEST_PT( m_poly.CVertex( ii ), aOther->m_poly.CVertex( ii ) );
TEST_E( m_stroke.GetWidth(), aOther->m_stroke.GetWidth() );
TEST( (int) m_stroke.GetPlotStyle(), (int) aOther->m_stroke.GetPlotStyle() );
TEST( (int) m_fill, (int) aOther->m_fill );
return 0;
}
void EDA_SHAPE::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer,
int aClearanceValue,
int aError, ERROR_LOC aErrorLoc,
bool ignoreLineWidth ) const
{
int width = ignoreLineWidth ? 0 : GetWidth();
width += 2 * aClearanceValue;
switch( m_shape )
{
case SHAPE_T::CIRCLE:
if( IsFilled() )
{
TransformCircleToPolygon( aCornerBuffer, getCenter(), GetRadius() + width / 2, aError,
aErrorLoc );
}
else
{
TransformRingToPolygon( aCornerBuffer, getCenter(), GetRadius(), width, aError,
aErrorLoc );
}
break;
case SHAPE_T::RECT:
{
std::vector<VECTOR2I> pts = GetRectCorners();
if( IsFilled() )
{
aCornerBuffer.NewOutline();
for( const VECTOR2I& pt : pts )
aCornerBuffer.Append( pt );
}
if( width > 0 || !IsFilled() )
{
// Add in segments
TransformOvalToPolygon( aCornerBuffer, pts[0], pts[1], width, aError, aErrorLoc );
TransformOvalToPolygon( aCornerBuffer, pts[1], pts[2], width, aError, aErrorLoc );
TransformOvalToPolygon( aCornerBuffer, pts[2], pts[3], width, aError, aErrorLoc );
TransformOvalToPolygon( aCornerBuffer, pts[3], pts[0], width, aError, aErrorLoc );
}
break;
}
case SHAPE_T::ARC:
TransformArcToPolygon( aCornerBuffer, GetStart(), GetArcMid(), GetEnd(), width, aError,
aErrorLoc );
break;
case SHAPE_T::SEGMENT:
TransformOvalToPolygon( aCornerBuffer, GetStart(), GetEnd(), width, aError, aErrorLoc );
break;
case SHAPE_T::POLY:
{
if( !IsPolyShapeValid() )
break;
// The polygon is expected to be a simple polygon; not self intersecting, no hole.
double orientation = getParentOrientation();
VECTOR2I offset = getParentPosition();
// Build the polygon with the actual position and orientation:
std::vector<VECTOR2I> poly;
DupPolyPointsList( poly );
for( VECTOR2I& point : poly )
{
RotatePoint( point, orientation );
point += offset;
}
if( IsFilled() )
{
aCornerBuffer.NewOutline();
for( const VECTOR2I& point : poly )
aCornerBuffer.Append( point.x, point.y );
}
if( width > 0 || !IsFilled() )
{
VECTOR2I pt1( poly[poly.size() - 1] );
for( const VECTOR2I& pt2 : poly )
{
if( pt2 != pt1 )
TransformOvalToPolygon( aCornerBuffer, pt1, pt2, width, aError, aErrorLoc );
pt1 = pt2;
}
}
break;
}
case SHAPE_T::BEZIER:
{
std::vector<VECTOR2I> ctrlPts = { GetStart(), GetBezierC1(), GetBezierC2(), GetEnd() };
BEZIER_POLY converter( ctrlPts );
std::vector<VECTOR2I> poly;
converter.GetPoly( poly, GetWidth() );
for( unsigned ii = 1; ii < poly.size(); ii++ )
{
TransformOvalToPolygon( aCornerBuffer, poly[ii - 1], poly[ii], width, aError,
aErrorLoc );
}
break;
}
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
static struct EDA_SHAPE_DESC
{
EDA_SHAPE_DESC()
{
ENUM_MAP<SHAPE_T>::Instance()
.Map( SHAPE_T::SEGMENT, _HKI( "Segment" ) )
.Map( SHAPE_T::RECT, _HKI( "Rectangle" ) )
.Map( SHAPE_T::ARC, _HKI( "Arc" ) )
.Map( SHAPE_T::CIRCLE, _HKI( "Circle" ) )
.Map( SHAPE_T::POLY, _HKI( "Polygon" ) )
.Map( SHAPE_T::BEZIER, _HKI( "Bezier" ) );
ENUM_MAP<PLOT_DASH_TYPE>::Instance()
.Map( PLOT_DASH_TYPE::DEFAULT, _HKI( "Default" ) )
.Map( PLOT_DASH_TYPE::SOLID, _HKI( "Solid" ) )
.Map( PLOT_DASH_TYPE::DASH, _HKI( "Dashed" ) )
.Map( PLOT_DASH_TYPE::DOT, _HKI( "Dotted" ) )
.Map( PLOT_DASH_TYPE::DASHDOT, _HKI( "Dash-Dot" ) )
.Map( PLOT_DASH_TYPE::DASHDOTDOT, _HKI( "Dash-Dot-Dot" ) );
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( EDA_SHAPE );
propMgr.AddProperty( new PROPERTY_ENUM<EDA_SHAPE, SHAPE_T>( _HKI( "Shape" ),
&EDA_SHAPE::SetShape, &EDA_SHAPE::GetShape ) );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start X" ),
&EDA_SHAPE::SetStartX, &EDA_SHAPE::GetStartX ) );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start Y" ),
&EDA_SHAPE::SetStartY, &EDA_SHAPE::GetStartY ) );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End X" ),
&EDA_SHAPE::SetEndX, &EDA_SHAPE::GetEndX ) );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End Y" ),
&EDA_SHAPE::SetEndY, &EDA_SHAPE::GetEndY ) );
// TODO: m_arcCenter, m_bezierC1, m_bezierC2, m_poly
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Line Width" ),
&EDA_SHAPE::SetWidth, &EDA_SHAPE::GetWidth ) );
}
} _EDA_SHAPE_DESC;
ENUM_TO_WXANY( SHAPE_T )
ENUM_TO_WXANY( PLOT_DASH_TYPE )