kicad/pcbnew/pcb_track.cpp

1743 lines
49 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2012 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2012 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright (C) 1992-2024 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <pcb_base_frame.h>
#include <core/mirror.h>
#include <connectivity/connectivity_data.h>
#include <board.h>
#include <board_design_settings.h>
#include <convert_basic_shapes_to_polygon.h>
#include <pcb_track.h>
#include <base_units.h>
#include <string_utils.h>
#include <view/view.h>
#include <settings/color_settings.h>
#include <settings/settings_manager.h>
#include <geometry/seg.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_arc.h>
#include <drc/drc_engine.h>
#include <pcb_painter.h>
#include <trigo.h>
#include <google/protobuf/any.pb.h>
#include <api/api_enums.h>
#include <api/api_utils.h>
#include <api/api_pcb_utils.h>
#include <api/board/board_types.pb.h>
using KIGFX::PCB_PAINTER;
using KIGFX::PCB_RENDER_SETTINGS;
PCB_TRACK::PCB_TRACK( BOARD_ITEM* aParent, KICAD_T idtype ) :
BOARD_CONNECTED_ITEM( aParent, idtype )
{
m_Width = pcbIUScale.mmToIU( 0.2 ); // Gives a reasonable default width
m_CachedScale = -1.0; // Set invalid to force update
m_CachedLOD = 0.0; // Set to always display
}
EDA_ITEM* PCB_TRACK::Clone() const
{
return new PCB_TRACK( *this );
}
PCB_ARC::PCB_ARC( BOARD_ITEM* aParent, const SHAPE_ARC* aArc ) :
PCB_TRACK( aParent, PCB_ARC_T )
{
m_Start = aArc->GetP0();
m_End = aArc->GetP1();
m_Mid = aArc->GetArcMid();
}
EDA_ITEM* PCB_ARC::Clone() const
{
return new PCB_ARC( *this );
}
PCB_VIA::PCB_VIA( BOARD_ITEM* aParent ) :
PCB_TRACK( aParent, PCB_VIA_T )
{
SetViaType( VIATYPE::THROUGH );
m_bottomLayer = B_Cu;
SetDrillDefault();
m_removeUnconnectedLayer = false;
m_keepStartEndLayer = true;
m_zoneLayerOverrides.fill( ZLO_NONE );
m_isFree = false;
}
PCB_VIA::PCB_VIA( const PCB_VIA& aOther ) :
PCB_TRACK( aOther.GetParent(), PCB_VIA_T )
{
PCB_VIA::operator=( aOther );
const_cast<KIID&>( m_Uuid ) = aOther.m_Uuid;
m_zoneLayerOverrides = aOther.m_zoneLayerOverrides;
}
PCB_VIA& PCB_VIA::operator=( const PCB_VIA &aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
m_Width = aOther.m_Width;
m_Start = aOther.m_Start;
m_End = aOther.m_End;
m_CachedLOD = aOther.m_CachedLOD;
m_CachedScale = aOther.m_CachedScale;
m_bottomLayer = aOther.m_bottomLayer;
m_viaType = aOther.m_viaType;
m_drill = aOther.m_drill;
m_removeUnconnectedLayer = aOther.m_removeUnconnectedLayer;
m_keepStartEndLayer = aOther.m_keepStartEndLayer;
m_isFree = aOther.m_isFree;
return *this;
}
EDA_ITEM* PCB_VIA::Clone() const
{
return new PCB_VIA( *this );
}
wxString PCB_VIA::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const
{
wxString formatStr;
switch( GetViaType() )
{
case VIATYPE::BLIND_BURIED: formatStr = _( "Blind/Buried Via %s on %s" ); break;
case VIATYPE::MICROVIA: formatStr = _( "Micro Via %s on %s" ); break;
default: formatStr = _( "Via %s on %s" ); break;
}
return wxString::Format( formatStr, GetNetnameMsg(), layerMaskDescribe() );
}
BITMAPS PCB_VIA::GetMenuImage() const
{
return BITMAPS::via;
}
bool PCB_TRACK::operator==( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return false;
const PCB_TRACK& other = static_cast<const PCB_TRACK&>( aOther );
return m_Start == other.m_Start && m_End == other.m_End && m_layer == other.m_layer &&
m_Width == other.m_Width;
}
double PCB_TRACK::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
const PCB_TRACK& other = static_cast<const PCB_TRACK&>( aOther );
double similarity = 1.0;
if( m_layer != other.m_layer )
similarity *= 0.9;
if( m_Width != other.m_Width )
similarity *= 0.9;
if( m_Start != other.m_Start )
similarity *= 0.9;
if( m_End != other.m_End )
similarity *= 0.9;
return similarity;
}
bool PCB_ARC::operator==( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return false;
const PCB_ARC& other = static_cast<const PCB_ARC&>( aOther );
return m_Start == other.m_Start && m_End == other.m_End && m_Mid == other.m_Mid &&
m_layer == other.m_layer && m_Width == other.m_Width;
}
double PCB_ARC::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
const PCB_ARC& other = static_cast<const PCB_ARC&>( aOther );
double similarity = 1.0;
if( m_layer != other.m_layer )
similarity *= 0.9;
if( m_Width != other.m_Width )
similarity *= 0.9;
if( m_Start != other.m_Start )
similarity *= 0.9;
if( m_End != other.m_End )
similarity *= 0.9;
if( m_Mid != other.m_Mid )
similarity *= 0.9;
return similarity;
}
bool PCB_VIA::operator==( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return false;
const PCB_VIA& other = static_cast<const PCB_VIA&>( aOther );
return m_Start == other.m_Start && m_End == other.m_End && m_layer == other.m_layer &&
m_bottomLayer == other.m_bottomLayer && m_Width == other.m_Width &&
m_viaType == other.m_viaType && m_drill == other.m_drill &&
m_removeUnconnectedLayer == other.m_removeUnconnectedLayer &&
m_keepStartEndLayer == other.m_keepStartEndLayer &&
m_zoneLayerOverrides == other.m_zoneLayerOverrides;
}
double PCB_VIA::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
const PCB_VIA& other = static_cast<const PCB_VIA&>( aOther );
double similarity = 1.0;
if( m_layer != other.m_layer )
similarity *= 0.9;
if( m_Width != other.m_Width )
similarity *= 0.9;
if( m_Start != other.m_Start )
similarity *= 0.9;
if( m_End != other.m_End )
similarity *= 0.9;
if( m_bottomLayer != other.m_bottomLayer )
similarity *= 0.9;
if( m_viaType != other.m_viaType )
similarity *= 0.9;
if( m_drill != other.m_drill )
similarity *= 0.9;
if( m_removeUnconnectedLayer != other.m_removeUnconnectedLayer )
similarity *= 0.9;
if( m_keepStartEndLayer != other.m_keepStartEndLayer )
similarity *= 0.9;
if( m_zoneLayerOverrides != other.m_zoneLayerOverrides )
similarity *= 0.9;
return similarity;
}
void PCB_TRACK::Serialize( google::protobuf::Any &aContainer ) const
{
kiapi::board::types::Track track;
track.mutable_id()->set_value( m_Uuid.AsStdString() );
track.mutable_start()->set_x_nm( GetStart().x );
track.mutable_start()->set_y_nm( GetStart().y );
track.mutable_end()->set_x_nm( GetEnd().x );
track.mutable_end()->set_y_nm( GetEnd().y );
track.mutable_width()->set_value_nm( GetWidth() );
track.set_layer( ToProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( GetLayer() ) );
track.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED
: kiapi::common::types::LockedState::LS_UNLOCKED );
track.mutable_net()->mutable_code()->set_value( GetNetCode() );
track.mutable_net()->set_name( GetNetname() );
aContainer.PackFrom( track );
}
bool PCB_TRACK::Deserialize( const google::protobuf::Any &aContainer )
{
kiapi::board::types::Track track;
if( !aContainer.UnpackTo( &track ) )
return false;
const_cast<KIID&>( m_Uuid ) = KIID( track.id().value() );
SetStart( VECTOR2I( track.start().x_nm(), track.start().y_nm() ) );
SetEnd( VECTOR2I( track.end().x_nm(), track.end().y_nm() ) );
SetWidth( track.width().value_nm() );
SetLayer( FromProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( track.layer() ) );
SetNetCode( track.net().code().value() );
SetLocked( track.locked() == kiapi::common::types::LockedState::LS_LOCKED );
return true;
}
void PCB_ARC::Serialize( google::protobuf::Any &aContainer ) const
{
kiapi::board::types::Arc arc;
arc.mutable_id()->set_value( m_Uuid.AsStdString() );
arc.mutable_start()->set_x_nm( GetStart().x );
arc.mutable_start()->set_y_nm( GetStart().y );
arc.mutable_mid()->set_x_nm( GetMid().x );
arc.mutable_mid()->set_y_nm( GetMid().y );
arc.mutable_end()->set_x_nm( GetEnd().x );
arc.mutable_end()->set_y_nm( GetEnd().y );
arc.mutable_width()->set_value_nm( GetWidth() );
arc.set_layer( ToProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( GetLayer() ) );
arc.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED
: kiapi::common::types::LockedState::LS_UNLOCKED );
arc.mutable_net()->mutable_code()->set_value( GetNetCode() );
arc.mutable_net()->set_name( GetNetname() );
aContainer.PackFrom( arc );
}
bool PCB_ARC::Deserialize( const google::protobuf::Any &aContainer )
{
kiapi::board::types::Arc arc;
if( !aContainer.UnpackTo( &arc ) )
return false;
const_cast<KIID&>( m_Uuid ) = KIID( arc.id().value() );
SetStart( VECTOR2I( arc.start().x_nm(), arc.start().y_nm() ) );
SetMid( VECTOR2I( arc.mid().x_nm(), arc.mid().y_nm() ) );
SetEnd( VECTOR2I( arc.end().x_nm(), arc.end().y_nm() ) );
SetWidth( arc.width().value_nm() );
SetLayer( FromProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( arc.layer() ) );
SetNetCode( arc.net().code().value() );
SetLocked( arc.locked() == kiapi::common::types::LockedState::LS_LOCKED );
return true;
}
void PCB_VIA::Serialize( google::protobuf::Any &aContainer ) const
{
kiapi::board::types::Via via;
via.mutable_id()->set_value( m_Uuid.AsStdString() );
via.mutable_position()->set_x_nm( GetPosition().x );
via.mutable_position()->set_y_nm( GetPosition().y );
kiapi::board::types::PadStack* padstack = via.mutable_pad_stack();
padstack->set_type( GetViaType() == VIATYPE::BLIND_BURIED
? kiapi::board::types::PadStackType::PST_BLIND_BURIED
: kiapi::board::types::PadStackType::PST_THROUGH );
padstack->set_start_layer(
ToProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( m_layer ) );
padstack->set_end_layer(
ToProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( m_bottomLayer ) );
kiapi::common::PackVector2( *padstack->mutable_drill_diameter(),
{ GetDrillValue(), GetDrillValue() } );
kiapi::board::types::PadStackLayer* stackLayer = padstack->add_layers();
kiapi::board::PackLayerSet( *stackLayer->mutable_layers(), GetLayerSet() );
kiapi::common::PackVector2( *stackLayer->mutable_size(),
{ GetWidth(), GetWidth() } );
kiapi::board::types::UnconnectedLayerRemoval ulr;
if( m_removeUnconnectedLayer )
{
if( m_keepStartEndLayer )
ulr = kiapi::board::types::UnconnectedLayerRemoval::ULR_REMOVE_EXCEPT_START_AND_END;
else
ulr = kiapi::board::types::UnconnectedLayerRemoval::ULR_REMOVE;
}
else
{
ulr = kiapi::board::types::UnconnectedLayerRemoval::ULR_KEEP;
}
// TODO: Microvia status is ignored here. Do we still need it?
padstack->set_unconnected_layer_removal( ulr );
via.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED
: kiapi::common::types::LockedState::LS_UNLOCKED );
via.mutable_net()->mutable_code()->set_value( GetNetCode() );
via.mutable_net()->set_name( GetNetname() );
aContainer.PackFrom( via );
}
bool PCB_VIA::Deserialize( const google::protobuf::Any &aContainer )
{
kiapi::board::types::Via via;
if( !aContainer.UnpackTo( &via ) )
return false;
const_cast<KIID&>( m_Uuid ) = KIID( via.id().value() );
SetStart( VECTOR2I( via.position().x_nm(), via.position().y_nm() ) );
SetEnd( GetStart() );
SetDrill( via.pad_stack().drill_diameter().x_nm() );
const kiapi::board::types::PadStack& padstack = via.pad_stack();
// We don't yet support complex padstacks for vias
if( padstack.layers_size() == 1 )
{
const kiapi::board::types::PadStackLayer& layer = padstack.layers( 0 );
SetWidth( layer.size().x_nm() );
}
switch( padstack.type() )
{
case kiapi::board::types::PadStackType::PST_BLIND_BURIED:
SetViaType( VIATYPE::BLIND_BURIED );
break;
default:
SetViaType( VIATYPE::THROUGH );
break;
}
if( GetViaType() != VIATYPE::THROUGH )
{
m_layer = FromProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>(
padstack.start_layer() );
m_bottomLayer = FromProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>(
padstack.end_layer() );
}
else
{
m_layer = F_Cu;
m_bottomLayer = B_Cu;
}
switch( padstack.unconnected_layer_removal() )
{
case kiapi::board::types::UnconnectedLayerRemoval::ULR_REMOVE:
m_removeUnconnectedLayer = true;
m_keepStartEndLayer = false;
break;
case kiapi::board::types::UnconnectedLayerRemoval::ULR_REMOVE_EXCEPT_START_AND_END:
m_removeUnconnectedLayer = true;
m_keepStartEndLayer = true;
break;
default:
case kiapi::board::types::UnconnectedLayerRemoval::ULR_KEEP:
m_removeUnconnectedLayer = false;
m_keepStartEndLayer = false;
break;
}
SetNetCode( via.net().code().value() );
SetLocked( via.locked() == kiapi::common::types::LockedState::LS_LOCKED );
return true;
}
bool PCB_TRACK::ApproxCollinear( const PCB_TRACK& aTrack )
{
SEG a( m_Start, m_End );
SEG b( aTrack.GetStart(), aTrack.GetEnd() );
return a.ApproxCollinear( b );
}
MINOPTMAX<int> PCB_TRACK::GetWidthConstraint( wxString* aSource ) const
{
DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( TRACK_WIDTH_CONSTRAINT, this, nullptr, m_layer );
}
if( aSource )
*aSource = constraint.GetName();
return constraint.Value();
}
MINOPTMAX<int> PCB_VIA::GetWidthConstraint( wxString* aSource ) const
{
DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( VIA_DIAMETER_CONSTRAINT, this, nullptr, m_layer );
}
if( aSource )
*aSource = constraint.GetName();
return constraint.Value();
}
MINOPTMAX<int> PCB_VIA::GetDrillConstraint( wxString* aSource ) const
{
DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( HOLE_SIZE_CONSTRAINT, this, nullptr, m_layer );
}
if( aSource )
*aSource = constraint.GetName();
return constraint.Value();
}
int PCB_VIA::GetMinAnnulus( PCB_LAYER_ID aLayer, wxString* aSource ) const
{
if( !FlashLayer( aLayer ) )
{
if( aSource )
*aSource = _( "removed annular ring" );
return 0;
}
DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( ANNULAR_WIDTH_CONSTRAINT, this, nullptr, aLayer );
}
if( constraint.Value().HasMin() )
{
if( aSource )
*aSource = constraint.GetName();
return constraint.Value().Min();
}
return 0;
}
int PCB_VIA::GetDrillValue() const
{
if( m_drill > 0 ) // Use the specific value.
return m_drill;
// Use the default value from the Netclass
NETCLASS* netclass = GetEffectiveNetClass();
if( GetViaType() == VIATYPE::MICROVIA )
return netclass->GetuViaDrill();
return netclass->GetViaDrill();
}
EDA_ITEM_FLAGS PCB_TRACK::IsPointOnEnds( const VECTOR2I& point, int min_dist ) const
{
EDA_ITEM_FLAGS result = 0;
if( min_dist < 0 )
min_dist = m_Width / 2;
if( min_dist == 0 )
{
if( m_Start == point )
result |= STARTPOINT;
if( m_End == point )
result |= ENDPOINT;
}
else
{
double dist = GetLineLength( m_Start, point );
if( min_dist >= KiROUND( dist ) )
result |= STARTPOINT;
dist = GetLineLength( m_End, point );
if( min_dist >= KiROUND( dist ) )
result |= ENDPOINT;
}
return result;
}
const BOX2I PCB_TRACK::GetBoundingBox() const
{
// end of track is round, this is its radius, rounded up
int radius = ( m_Width + 1 ) / 2;
int ymax, xmax, ymin, xmin;
if( Type() == PCB_VIA_T )
{
ymax = m_Start.y;
xmax = m_Start.x;
ymin = m_Start.y;
xmin = m_Start.x;
}
else if( Type() == PCB_ARC_T )
{
std::shared_ptr<SHAPE> arc = GetEffectiveShape();
BOX2I bbox = arc->BBox();
xmin = bbox.GetLeft();
xmax = bbox.GetRight();
ymin = bbox.GetTop();
ymax = bbox.GetBottom();
}
else
{
ymax = std::max( m_Start.y, m_End.y );
xmax = std::max( m_Start.x, m_End.x );
ymin = std::min( m_Start.y, m_End.y );
xmin = std::min( m_Start.x, m_End.x );
}
ymax += radius;
xmax += radius;
ymin -= radius;
xmin -= radius;
// return a rectangle which is [pos,dim) in nature. therefore the +1
BOX2I ret( VECTOR2I( xmin, ymin ), VECTOR2I( xmax - xmin + 1, ymax - ymin + 1 ) );
return ret;
}
double PCB_TRACK::GetLength() const
{
return GetLineLength( m_Start, m_End );
}
void PCB_TRACK::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
RotatePoint( m_Start, aRotCentre, aAngle );
RotatePoint( m_End, aRotCentre, aAngle );
}
void PCB_ARC::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
RotatePoint( m_Start, aRotCentre, aAngle );
RotatePoint( m_End, aRotCentre, aAngle );
RotatePoint( m_Mid, aRotCentre, aAngle );
}
void PCB_TRACK::Mirror( const VECTOR2I& aCentre, bool aMirrorAroundXAxis )
{
if( aMirrorAroundXAxis )
{
MIRROR( m_Start.y, aCentre.y );
MIRROR( m_End.y, aCentre.y );
}
else
{
MIRROR( m_Start.x, aCentre.x );
MIRROR( m_End.x, aCentre.x );
}
}
void PCB_ARC::Mirror( const VECTOR2I& aCentre, bool aMirrorAroundXAxis )
{
if( aMirrorAroundXAxis )
{
MIRROR( m_Start.y, aCentre.y );
MIRROR( m_End.y, aCentre.y );
MIRROR( m_Mid.y, aCentre.y );
}
else
{
MIRROR( m_Start.x, aCentre.x );
MIRROR( m_End.x, aCentre.x );
MIRROR( m_Mid.x, aCentre.x );
}
}
void PCB_TRACK::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
{
if( aFlipLeftRight )
{
m_Start.x = aCentre.x - ( m_Start.x - aCentre.x );
m_End.x = aCentre.x - ( m_End.x - aCentre.x );
}
else
{
m_Start.y = aCentre.y - ( m_Start.y - aCentre.y );
m_End.y = aCentre.y - ( m_End.y - aCentre.y );
}
int copperLayerCount = GetBoard()->GetCopperLayerCount();
SetLayer( FlipLayer( GetLayer(), copperLayerCount ) );
}
void PCB_ARC::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
{
if( aFlipLeftRight )
{
m_Start.x = aCentre.x - ( m_Start.x - aCentre.x );
m_End.x = aCentre.x - ( m_End.x - aCentre.x );
m_Mid.x = aCentre.x - ( m_Mid.x - aCentre.x );
}
else
{
m_Start.y = aCentre.y - ( m_Start.y - aCentre.y );
m_End.y = aCentre.y - ( m_End.y - aCentre.y );
m_Mid.y = aCentre.y - ( m_Mid.y - aCentre.y );
}
int copperLayerCount = GetBoard()->GetCopperLayerCount();
SetLayer( FlipLayer( GetLayer(), copperLayerCount ) );
}
bool PCB_ARC::IsCCW() const
{
VECTOR2I start_end = m_End - m_Start;
VECTOR2I start_mid = m_Mid - m_Start;
return start_end.Cross( start_mid ) < 0;
}
void PCB_VIA::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
{
if( aFlipLeftRight )
{
m_Start.x = aCentre.x - ( m_Start.x - aCentre.x );
m_End.x = aCentre.x - ( m_End.x - aCentre.x );
}
else
{
m_Start.y = aCentre.y - ( m_Start.y - aCentre.y );
m_End.y = aCentre.y - ( m_End.y - aCentre.y );
}
if( GetViaType() != VIATYPE::THROUGH )
{
int copperLayerCount = GetBoard()->GetCopperLayerCount();
PCB_LAYER_ID top_layer;
PCB_LAYER_ID bottom_layer;
LayerPair( &top_layer, &bottom_layer );
top_layer = FlipLayer( top_layer, copperLayerCount );
bottom_layer = FlipLayer( bottom_layer, copperLayerCount );
SetLayerPair( top_layer, bottom_layer );
}
}
INSPECT_RESULT PCB_TRACK::Visit( INSPECTOR inspector, void* testData,
const std::vector<KICAD_T>& aScanTypes )
{
for( KICAD_T scanType : aScanTypes )
{
if( scanType == Type() )
{
if( INSPECT_RESULT::QUIT == inspector( this, testData ) )
return INSPECT_RESULT::QUIT;
}
}
return INSPECT_RESULT::CONTINUE;
}
std::shared_ptr<SHAPE_SEGMENT> PCB_VIA::GetEffectiveHoleShape() const
{
return std::make_shared<SHAPE_SEGMENT>( SEG( m_Start, m_Start ), m_drill );
}
bool PCB_VIA::IsTented() const
{
if( const BOARD* board = GetBoard() )
return board->GetTentVias();
else
return true;
}
int PCB_VIA::GetSolderMaskExpansion() const
{
if( const BOARD* board = GetBoard() )
return board->GetDesignSettings().m_SolderMaskExpansion;
else
return 0;
}
bool PCB_VIA::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
#if 0
// Nice and simple, but raises its ugly head in performance profiles....
return GetLayerSet().test( aLayer );
#endif
if( aLayer >= m_layer && aLayer <= m_bottomLayer )
return true;
if( !IsTented() )
{
if( aLayer == F_Mask )
return IsOnLayer( F_Cu );
else if( aLayer == B_Mask )
return IsOnLayer( B_Cu );
}
return false;
}
LSET PCB_VIA::GetLayerSet() const
{
LSET layermask;
if( m_layer < PCBNEW_LAYER_ID_START )
return layermask;
if( GetViaType() == VIATYPE::THROUGH )
layermask = LSET::AllCuMask();
else
wxASSERT( m_layer <= m_bottomLayer );
// PCB_LAYER_IDs are numbered from front to back, this is top to bottom.
for( int id = m_layer; id <= m_bottomLayer; ++id )
layermask.set( id );
if( !IsTented() )
{
if( layermask.test( F_Cu ) )
layermask.set( F_Mask );
if( layermask.test( B_Cu ) )
layermask.set( B_Mask );
}
return layermask;
}
void PCB_VIA::SetLayerSet( LSET aLayerSet )
{
bool first = true;
for( PCB_LAYER_ID layer : aLayerSet.Seq() )
{
// m_layer and m_bottomLayer are copper layers, so consider only copper layers in aLayerSet
if( !IsCopperLayer( layer ) )
continue;
if( first )
{
m_layer = layer;
first = false;
}
m_bottomLayer = layer;
}
}
void PCB_VIA::SetLayerPair( PCB_LAYER_ID aTopLayer, PCB_LAYER_ID aBottomLayer )
{
m_layer = aTopLayer;
m_bottomLayer = aBottomLayer;
SanitizeLayers();
}
void PCB_VIA::SetTopLayer( PCB_LAYER_ID aLayer )
{
m_layer = aLayer;
}
void PCB_VIA::SetBottomLayer( PCB_LAYER_ID aLayer )
{
m_bottomLayer = aLayer;
}
void PCB_VIA::LayerPair( PCB_LAYER_ID* top_layer, PCB_LAYER_ID* bottom_layer ) const
{
PCB_LAYER_ID t_layer = F_Cu;
PCB_LAYER_ID b_layer = B_Cu;
if( GetViaType() != VIATYPE::THROUGH )
{
b_layer = m_bottomLayer;
t_layer = m_layer;
if( b_layer < t_layer )
std::swap( b_layer, t_layer );
}
if( top_layer )
*top_layer = t_layer;
if( bottom_layer )
*bottom_layer = b_layer;
}
PCB_LAYER_ID PCB_VIA::TopLayer() const
{
return m_layer;
}
PCB_LAYER_ID PCB_VIA::BottomLayer() const
{
return m_bottomLayer;
}
void PCB_VIA::SanitizeLayers()
{
if( GetViaType() == VIATYPE::THROUGH )
{
m_layer = F_Cu;
m_bottomLayer = B_Cu;
}
if( m_bottomLayer < m_layer )
std::swap( m_bottomLayer, m_layer );
}
bool PCB_VIA::FlashLayer( LSET aLayers ) const
{
for( PCB_LAYER_ID layer : aLayers.Seq() )
{
if( FlashLayer( layer ) )
return true;
}
return false;
}
bool PCB_VIA::FlashLayer( int aLayer ) const
{
// Return the "normal" shape if the caller doesn't specify a particular layer
if( aLayer == UNDEFINED_LAYER )
return true;
const BOARD* board = GetBoard();
if( !board )
return true;
if( !IsOnLayer( static_cast<PCB_LAYER_ID>( aLayer ) ) )
return false;
if( !m_removeUnconnectedLayer || !IsCopperLayer( aLayer ) )
return true;
if( m_keepStartEndLayer && ( aLayer == m_layer || aLayer == m_bottomLayer ) )
return true;
// Must be static to keep from raising its ugly head in performance profiles
static std::initializer_list<KICAD_T> connectedTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T,
PCB_PAD_T };
if( m_zoneLayerOverrides[ aLayer ] == ZLO_FORCE_FLASHED )
return true;
else
return board->GetConnectivity()->IsConnectedOnLayer( this, aLayer, connectedTypes );
}
void PCB_VIA::GetOutermostConnectedLayers( PCB_LAYER_ID* aTopmost,
PCB_LAYER_ID* aBottommost ) const
{
*aTopmost = UNDEFINED_LAYER;
*aBottommost = UNDEFINED_LAYER;
static std::initializer_list<KICAD_T> connectedTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T,
PCB_PAD_T };
for( int layer = TopLayer(); layer <= BottomLayer(); ++layer )
{
bool connected = false;
if( m_zoneLayerOverrides[ layer ] == ZLO_FORCE_FLASHED )
connected = true;
else if( GetBoard()->GetConnectivity()->IsConnectedOnLayer( this, layer, connectedTypes ) )
connected = true;
if( connected )
{
if( *aTopmost == UNDEFINED_LAYER )
*aTopmost = ToLAYER_ID( layer );
*aBottommost = ToLAYER_ID( layer );
}
}
}
void PCB_TRACK::ViewGetLayers( int aLayers[], int& aCount ) const
{
// Show the track and its netname on different layers
aLayers[0] = GetLayer();
aLayers[1] = GetNetnameLayer( aLayers[0] );
aCount = 2;
if( IsLocked() )
aLayers[ aCount++ ] = LAYER_LOCKED_ITEM_SHADOW;
}
double PCB_TRACK::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
constexpr double HIDE = std::numeric_limits<double>::max();
PCB_PAINTER* painter = static_cast<PCB_PAINTER*>( aView->GetPainter() );
PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings();
if( !aView->IsLayerVisible( LAYER_TRACKS ) )
return HIDE;
if( IsNetnameLayer( aLayer ) )
{
if( GetNetCode() <= NETINFO_LIST::UNCONNECTED )
return HIDE;
// Hide netnames on dimmed tracks
if( renderSettings->GetHighContrast() )
{
if( m_layer != renderSettings->GetPrimaryHighContrastLayer() )
return HIDE;
}
// Pick the approximate size of the netname (square chars)
wxString netName = GetUnescapedShortNetname();
size_t num_chars = netName.size();
if( GetLength() < num_chars * GetWidth() )
return HIDE;
// When drawing netnames, clip the track to the viewport
VECTOR2I start( GetStart() );
VECTOR2I end( GetEnd() );
BOX2D viewport = aView->GetViewport();
BOX2I clipBox( viewport.GetOrigin(), viewport.GetSize() );
ClipLine( &clipBox, start.x, start.y, end.x, end.y );
VECTOR2I line = ( end - start );
if( line.EuclideanNorm() == 0 )
return HIDE;
// Netnames will be shown only if zoom is appropriate
return ( double ) pcbIUScale.mmToIU( 4 ) / ( m_Width + 1 );
}
if( aLayer == LAYER_LOCKED_ITEM_SHADOW )
{
// Hide shadow if the main layer is not shown
if( !aView->IsLayerVisible( m_layer ) )
return HIDE;
// Hide shadow on dimmed tracks
if( renderSettings->GetHighContrast() )
{
if( m_layer != renderSettings->GetPrimaryHighContrastLayer() )
return HIDE;
}
}
// Other layers are shown without any conditions
return 0.0;
}
const BOX2I PCB_TRACK::ViewBBox() const
{
BOX2I bbox = GetBoundingBox();
if( const BOARD* board = GetBoard() )
bbox.Inflate( 2 * board->GetDesignSettings().GetBiggestClearanceValue() );
else
bbox.Inflate( GetWidth() ); // Add a bit extra for safety
return bbox;
}
void PCB_VIA::ViewGetLayers( int aLayers[], int& aCount ) const
{
aLayers[0] = LAYER_VIA_HOLES;
aLayers[1] = LAYER_VIA_HOLEWALLS;
aLayers[2] = LAYER_VIA_NETNAMES;
// Just show it on common via & via holes layers
switch( GetViaType() )
{
case VIATYPE::THROUGH: aLayers[3] = LAYER_VIA_THROUGH; break;
case VIATYPE::BLIND_BURIED: aLayers[3] = LAYER_VIA_BBLIND; break;
case VIATYPE::MICROVIA: aLayers[3] = LAYER_VIA_MICROVIA; break;
default: aLayers[3] = LAYER_GP_OVERLAY; break;
}
aCount = 4;
if( IsLocked() )
aLayers[ aCount++ ] = LAYER_LOCKED_ITEM_SHADOW;
// Vias can also be on a solder mask layer. They are on these layers or not,
// depending on the plot and solder mask options
if( IsOnLayer( F_Mask ) )
aLayers[ aCount++ ] = F_Mask;
if( IsOnLayer( B_Mask ) )
aLayers[ aCount++ ] = B_Mask;
}
double PCB_VIA::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
constexpr double HIDE = (double)std::numeric_limits<double>::max();
PCB_PAINTER* painter = static_cast<PCB_PAINTER*>( aView->GetPainter() );
PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings();
LSET visible = LSET::AllLayersMask();
// Meta control for hiding all vias
if( !aView->IsLayerVisible( LAYER_VIAS ) )
return HIDE;
// Handle board visibility
if( const BOARD* board = GetBoard() )
visible = board->GetVisibleLayers() & board->GetEnabledLayers();
// In high contrast mode don't show vias that don't cross the high-contrast layer
if( renderSettings->GetHighContrast() )
{
PCB_LAYER_ID highContrastLayer = renderSettings->GetPrimaryHighContrastLayer();
if( LSET::FrontTechMask().Contains( highContrastLayer ) )
highContrastLayer = F_Cu;
else if( LSET::BackTechMask().Contains( highContrastLayer ) )
highContrastLayer = B_Cu;
if( !GetLayerSet().Contains( highContrastLayer ) )
return HIDE;
}
if( IsHoleLayer( aLayer ) )
{
if( m_viaType == VIATYPE::BLIND_BURIED || m_viaType == VIATYPE::MICROVIA )
{
// Show a blind or micro via's hole if it crosses a visible layer
if( !( visible & GetLayerSet() ).any() )
return HIDE;
}
else
{
// Show a through via's hole if any physical layer is shown
if( !( visible & LSET::PhysicalLayersMask() ).any() )
return HIDE;
}
}
else if( IsNetnameLayer( aLayer ) )
{
if( renderSettings->GetHighContrast() )
{
// Hide netnames unless via is flashed to a high-contrast layer
if( !FlashLayer( renderSettings->GetPrimaryHighContrastLayer() ) )
return HIDE;
}
else
{
// Hide netnames unless pad is flashed to a visible layer
if( !FlashLayer( visible ) )
return HIDE;
}
// Netnames will be shown only if zoom is appropriate
return m_Width == 0 ? HIDE : ( (double)pcbIUScale.mmToIU( 10 ) / m_Width );
}
// Passed all tests; show.
return 0.0;
}
wxString PCB_TRACK::GetFriendlyName() const
{
switch( Type() )
{
case PCB_ARC_T: return _( "Track (arc)" );
case PCB_VIA_T: return _( "Via" );
case PCB_TRACE_T:
default: return _( "Track" );
}
}
void PCB_TRACK::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
BOARD* board = GetBoard();
aList.emplace_back( _( "Type" ), GetFriendlyName() );
GetMsgPanelInfoBase_Common( aFrame, aList );
aList.emplace_back( _( "Layer" ), layerMaskDescribe() );
aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( m_Width ) );
if( Type() == PCB_ARC_T )
{
double radius = static_cast<PCB_ARC*>( this )->GetRadius();
aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( radius ) );
}
aList.emplace_back( _( "Segment Length" ), aFrame->MessageTextFromValue( GetLength() ) );
// Display full track length (in Pcbnew)
if( board && GetNetCode() > 0 )
{
int count;
double trackLen;
double lenPadToDie;
std::tie( count, trackLen, lenPadToDie ) = board->GetTrackLength( *this );
aList.emplace_back( _( "Routed Length" ), aFrame->MessageTextFromValue( trackLen ) );
if( lenPadToDie != 0 )
{
msg = aFrame->MessageTextFromValue( lenPadToDie );
aList.emplace_back( _( "Pad To Die Length" ), msg );
msg = aFrame->MessageTextFromValue( trackLen + lenPadToDie );
aList.emplace_back( _( "Full Length" ), msg );
}
}
wxString source;
int clearance = GetOwnClearance( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ),
aFrame->MessageTextFromValue( clearance ) ),
wxString::Format( _( "(from %s)" ), source ) );
MINOPTMAX<int> constraintValue = GetWidthConstraint( &source );
msg = aFrame->MessageTextFromMinOptMax( constraintValue );
if( !msg.IsEmpty() )
{
aList.emplace_back( wxString::Format( _( "Width Constraints: %s" ), msg ),
wxString::Format( _( "(from %s)" ), source ) );
}
}
void PCB_VIA::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
switch( GetViaType() )
{
case VIATYPE::MICROVIA: msg = _( "Micro Via" ); break;
case VIATYPE::BLIND_BURIED: msg = _( "Blind/Buried Via" ); break;
case VIATYPE::THROUGH: msg = _( "Through Via" ); break;
default: msg = _( "Via" ); break;
}
aList.emplace_back( _( "Type" ), msg );
GetMsgPanelInfoBase_Common( aFrame, aList );
aList.emplace_back( _( "Layer" ), layerMaskDescribe() );
aList.emplace_back( _( "Diameter" ), aFrame->MessageTextFromValue( m_Width ) );
aList.emplace_back( _( "Hole" ), aFrame->MessageTextFromValue( GetDrillValue() ) );
wxString source;
int clearance = GetOwnClearance( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ),
aFrame->MessageTextFromValue( clearance ) ),
wxString::Format( _( "(from %s)" ), source ) );
int minAnnulus = GetMinAnnulus( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Annular Width: %s" ),
aFrame->MessageTextFromValue( minAnnulus ) ),
wxString::Format( _( "(from %s)" ), source ) );
}
void PCB_TRACK::GetMsgPanelInfoBase_Common( EDA_DRAW_FRAME* aFrame,
std::vector<MSG_PANEL_ITEM>& aList ) const
{
aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) );
aList.emplace_back( _( "Resolved Netclass" ),
UnescapeString( GetEffectiveNetClass()->GetName() ) );
#if 0 // Enable for debugging
if( GetBoard() )
aList.emplace_back( _( "NetCode" ), wxString::Format( wxT( "%d" ), GetNetCode() ) );
aList.emplace_back( wxT( "Flags" ), wxString::Format( wxT( "0x%08X" ), m_flags ) );
aList.emplace_back( wxT( "Start pos" ), wxString::Format( wxT( "%d %d" ),
m_Start.x,
m_Start.y ) );
aList.emplace_back( wxT( "End pos" ), wxString::Format( wxT( "%d %d" ),
m_End.x,
m_End.y ) );
#endif
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME && IsLocked() )
aList.emplace_back( _( "Status" ), _( "Locked" ) );
}
wxString PCB_VIA::layerMaskDescribe() const
{
const BOARD* board = GetBoard();
PCB_LAYER_ID top_layer;
PCB_LAYER_ID bottom_layer;
LayerPair( &top_layer, &bottom_layer );
return board->GetLayerName( top_layer ) + wxT( " - " ) + board->GetLayerName( bottom_layer );
}
bool PCB_TRACK::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
return TestSegmentHit( aPosition, m_Start, m_End, aAccuracy + ( m_Width / 2 ) );
}
bool PCB_ARC::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
int max_dist = aAccuracy + ( m_Width / 2 );
// Short-circuit common cases where the arc is connected to a track or via at an endpoint
if( EuclideanNorm( GetStart() - aPosition ) <= max_dist ||
EuclideanNorm( GetEnd() - aPosition ) <= max_dist )
{
return true;
}
VECTOR2I center = GetPosition();
VECTOR2I relpos = aPosition - center;
double dist = EuclideanNorm( relpos );
double radius = GetRadius();
if( std::abs( dist - radius ) > max_dist )
return false;
EDA_ANGLE arc_angle = GetAngle();
EDA_ANGLE arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg
EDA_ANGLE arc_hittest( relpos );
// Calculate relative angle between the starting point of the arc, and the test point
arc_hittest -= arc_angle_start;
// Normalise arc_hittest between 0 ... 360 deg
arc_hittest.Normalize();
if( arc_angle < ANGLE_0 )
return arc_hittest >= ANGLE_360 + arc_angle;
return arc_hittest <= arc_angle;
}
bool PCB_VIA::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
int max_dist = aAccuracy + ( m_Width / 2 );
// rel_pos is aPosition relative to m_Start (or the center of the via)
VECTOR2I rel_pos = aPosition - m_Start;
double dist = (double) rel_pos.x * rel_pos.x + (double) rel_pos.y * rel_pos.y;
return dist <= (double) max_dist * max_dist;
}
bool PCB_TRACK::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Inflate( aAccuracy );
if( aContained )
return arect.Contains( GetStart() ) && arect.Contains( GetEnd() );
else
return arect.Intersects( GetStart(), GetEnd() );
}
bool PCB_ARC::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Inflate( aAccuracy );
BOX2I box( GetStart() );
box.Merge( GetMid() );
box.Merge( GetEnd() );
box.Inflate( GetWidth() / 2 );
if( aContained )
return arect.Contains( box );
else
return arect.Intersects( box );
}
bool PCB_VIA::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Inflate( aAccuracy );
BOX2I box( GetStart() );
box.Inflate( GetWidth() / 2 );
if( aContained )
return arect.Contains( box );
else
return arect.IntersectsCircle( GetStart(), GetWidth() / 2 );
}
wxString PCB_TRACK::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const
{
return wxString::Format( Type() == PCB_ARC_T ? _("Track (arc) %s on %s, length %s" )
: _("Track %s on %s, length %s" ),
GetNetnameMsg(),
GetLayerName(),
aUnitsProvider->MessageTextFromValue( GetLength() ) );
}
BITMAPS PCB_TRACK::GetMenuImage() const
{
return BITMAPS::add_tracks;
}
void PCB_TRACK::swapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_TRACE_T );
std::swap( *((PCB_TRACK*) this), *((PCB_TRACK*) aImage) );
}
void PCB_ARC::swapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_ARC_T );
std::swap( *this, *static_cast<PCB_ARC*>( aImage ) );
}
void PCB_VIA::swapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_VIA_T );
std::swap( *((PCB_VIA*) this), *((PCB_VIA*) aImage) );
}
VECTOR2I PCB_ARC::GetPosition() const
{
VECTOR2I center = CalcArcCenter( m_Start, m_Mid, m_End );
return center;
}
double PCB_ARC::GetRadius() const
{
auto center = CalcArcCenter( m_Start, m_Mid , m_End );
return GetLineLength( center, m_Start );
}
EDA_ANGLE PCB_ARC::GetAngle() const
{
VECTOR2I center = GetPosition();
EDA_ANGLE angle1 = EDA_ANGLE( m_Mid - center ) - EDA_ANGLE( m_Start - center );
EDA_ANGLE angle2 = EDA_ANGLE( m_End - center ) - EDA_ANGLE( m_Mid - center );
return angle1.Normalize180() + angle2.Normalize180();
}
EDA_ANGLE PCB_ARC::GetArcAngleStart() const
{
VECTOR2I pos( GetPosition() );
VECTOR2D dir( (double) m_Start.x - pos.x, (double) m_Start.y - pos.y );
EDA_ANGLE angleStart( dir );
return angleStart.Normalize();
}
// Note: used in python tests. Ignore CLion's claim that it's unused....
EDA_ANGLE PCB_ARC::GetArcAngleEnd() const
{
VECTOR2I pos( GetPosition() );
VECTOR2D dir( (double) m_End.x - pos.x, (double) m_End.y - pos.y );
EDA_ANGLE angleEnd( dir );
return angleEnd.Normalize();
}
bool PCB_ARC::IsDegenerated( int aThreshold ) const
{
// Too small arcs cannot be really handled: arc center (and arc radius)
// cannot be safely computed if the distance between mid and end points
// is too small (a few internal units)
// len of both segments must be < aThreshold to be a very small degenerated arc
return ( GetMid() - GetStart() ).EuclideanNorm() < aThreshold
&& ( GetMid() - GetEnd() ).EuclideanNorm() < aThreshold;
}
bool PCB_TRACK::cmp_tracks::operator() ( const PCB_TRACK* a, const PCB_TRACK* b ) const
{
if( a->GetNetCode() != b->GetNetCode() )
return a->GetNetCode() < b->GetNetCode();
if( a->GetLayer() != b->GetLayer() )
return a->GetLayer() < b->GetLayer();
if( a->Type() != b->Type() )
return a->Type() < b->Type();
if( a->m_Uuid != b->m_Uuid )
return a->m_Uuid < b->m_Uuid;
return a < b;
}
std::shared_ptr<SHAPE> PCB_TRACK::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
return std::make_shared<SHAPE_SEGMENT>( m_Start, m_End, m_Width );
}
std::shared_ptr<SHAPE> PCB_VIA::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
if( aFlash == FLASHING::ALWAYS_FLASHED
|| ( aFlash == FLASHING::DEFAULT && FlashLayer( aLayer ) ) )
{
return std::make_shared<SHAPE_CIRCLE>( m_Start, m_Width / 2 );
}
else
{
return std::make_shared<SHAPE_CIRCLE>( m_Start, GetDrillValue() / 2 );
}
}
std::shared_ptr<SHAPE> PCB_ARC::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
return std::make_shared<SHAPE_ARC>( GetStart(), GetMid(), GetEnd(), GetWidth() );
}
void PCB_TRACK::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer,
int aClearance, int aError, ERROR_LOC aErrorLoc,
bool ignoreLineWidth ) const
{
wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for tracks." ) );
switch( Type() )
{
case PCB_VIA_T:
{
int radius = ( m_Width / 2 ) + aClearance;
TransformCircleToPolygon( aBuffer, m_Start, radius, aError, aErrorLoc );
break;
}
case PCB_ARC_T:
{
const PCB_ARC* arc = static_cast<const PCB_ARC*>( this );
int width = m_Width + ( 2 * aClearance );
TransformArcToPolygon( aBuffer, arc->GetStart(), arc->GetMid(), arc->GetEnd(), width,
aError, aErrorLoc );
break;
}
default:
{
int width = m_Width + ( 2 * aClearance );
TransformOvalToPolygon( aBuffer, m_Start, m_End, width, aError, aErrorLoc );
break;
}
}
}
static struct TRACK_VIA_DESC
{
TRACK_VIA_DESC()
{
ENUM_MAP<VIATYPE>::Instance()
.Undefined( VIATYPE::NOT_DEFINED )
.Map( VIATYPE::THROUGH, _HKI( "Through" ) )
.Map( VIATYPE::BLIND_BURIED, _HKI( "Blind/buried" ) )
.Map( VIATYPE::MICROVIA, _HKI( "Micro" ) );
ENUM_MAP<PCB_LAYER_ID>& layerEnum = ENUM_MAP<PCB_LAYER_ID>::Instance();
if( layerEnum.Choices().GetCount() == 0 )
{
layerEnum.Undefined( UNDEFINED_LAYER );
for( LSEQ seq = LSET::AllLayersMask().Seq(); seq; ++seq )
layerEnum.Map( *seq, LSET::Name( *seq ) );
}
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
// Track
REGISTER_TYPE( PCB_TRACK );
propMgr.InheritsAfter( TYPE_HASH( PCB_TRACK ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
propMgr.AddProperty( new PROPERTY<PCB_TRACK, int>( _HKI( "Width" ),
&PCB_TRACK::SetWidth, &PCB_TRACK::GetWidth, PROPERTY_DISPLAY::PT_SIZE ) );
propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position X" ),
new PROPERTY<PCB_TRACK, int, BOARD_ITEM>( _HKI( "Start X" ),
&PCB_TRACK::SetX, &PCB_TRACK::GetX, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_X_COORD) );
propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position Y" ),
new PROPERTY<PCB_TRACK, int, BOARD_ITEM>( _HKI( "Start Y" ),
&PCB_TRACK::SetY, &PCB_TRACK::GetY, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_Y_COORD ) );
propMgr.AddProperty( new PROPERTY<PCB_TRACK, int>( _HKI( "End X" ),
&PCB_TRACK::SetEndX, &PCB_TRACK::GetEndX, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_X_COORD) );
propMgr.AddProperty( new PROPERTY<PCB_TRACK, int>( _HKI( "End Y" ),
&PCB_TRACK::SetEndY, &PCB_TRACK::GetEndY, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_Y_COORD) );
// Arc
REGISTER_TYPE( PCB_ARC );
propMgr.InheritsAfter( TYPE_HASH( PCB_ARC ), TYPE_HASH( PCB_TRACK ) );
// Via
REGISTER_TYPE( PCB_VIA );
propMgr.InheritsAfter( TYPE_HASH( PCB_VIA ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
// TODO test drill, use getdrillvalue?
const wxString groupVia = _HKI( "Via Properties" );
propMgr.Mask( TYPE_HASH( PCB_VIA ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ) );
propMgr.ReplaceProperty( TYPE_HASH( PCB_TRACK ), _HKI( "Width" ),
new PROPERTY<PCB_VIA, int, PCB_TRACK>( _HKI( "Diameter" ),
&PCB_VIA::SetWidth, &PCB_VIA::GetWidth, PROPERTY_DISPLAY::PT_SIZE ) );
propMgr.AddProperty( new PROPERTY<PCB_VIA, int>( _HKI( "Hole" ),
&PCB_VIA::SetDrill, &PCB_VIA::GetDrillValue, PROPERTY_DISPLAY::PT_SIZE ), groupVia );
propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Layer" ),
new PROPERTY_ENUM<PCB_VIA, PCB_LAYER_ID, BOARD_ITEM>( _HKI( "Layer Top" ),
&PCB_VIA::SetLayer, &PCB_VIA::GetLayer ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, PCB_LAYER_ID>( _HKI( "Layer Bottom" ),
&PCB_VIA::SetBottomLayer, &PCB_VIA::BottomLayer ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, VIATYPE>( _HKI( "Via Type" ),
&PCB_VIA::SetViaType, &PCB_VIA::GetViaType ), groupVia );
}
} _TRACK_VIA_DESC;
ENUM_TO_WXANY( VIATYPE );