1959 lines
76 KiB
C++
1959 lines
76 KiB
C++
/*
|
|
pybind11/numpy.h: Basic NumPy support, vectorize() wrapper
|
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
BSD-style license that can be found in the LICENSE file.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "pybind11.h"
|
|
#include "complex.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <typeindex>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
/* This will be true on all flat address space platforms and allows us to reduce the
|
|
whole npy_intp / ssize_t / Py_intptr_t business down to just ssize_t for all size
|
|
and dimension types (e.g. shape, strides, indexing), instead of inflicting this
|
|
upon the library user. */
|
|
static_assert(sizeof(::pybind11::ssize_t) == sizeof(Py_intptr_t), "ssize_t != Py_intptr_t");
|
|
static_assert(std::is_signed<Py_intptr_t>::value, "Py_intptr_t must be signed");
|
|
// We now can reinterpret_cast between py::ssize_t and Py_intptr_t (MSVC + PyPy cares)
|
|
|
|
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
|
|
|
|
class array; // Forward declaration
|
|
|
|
PYBIND11_NAMESPACE_BEGIN(detail)
|
|
|
|
template <>
|
|
struct handle_type_name<array> {
|
|
static constexpr auto name = const_name("numpy.ndarray");
|
|
};
|
|
|
|
template <typename type, typename SFINAE = void>
|
|
struct npy_format_descriptor;
|
|
|
|
struct PyArrayDescr_Proxy {
|
|
PyObject_HEAD
|
|
PyObject *typeobj;
|
|
char kind;
|
|
char type;
|
|
char byteorder;
|
|
char flags;
|
|
int type_num;
|
|
int elsize;
|
|
int alignment;
|
|
char *subarray;
|
|
PyObject *fields;
|
|
PyObject *names;
|
|
};
|
|
|
|
struct PyArray_Proxy {
|
|
PyObject_HEAD
|
|
char *data;
|
|
int nd;
|
|
ssize_t *dimensions;
|
|
ssize_t *strides;
|
|
PyObject *base;
|
|
PyObject *descr;
|
|
int flags;
|
|
};
|
|
|
|
struct PyVoidScalarObject_Proxy {
|
|
PyObject_VAR_HEAD char *obval;
|
|
PyArrayDescr_Proxy *descr;
|
|
int flags;
|
|
PyObject *base;
|
|
};
|
|
|
|
struct numpy_type_info {
|
|
PyObject *dtype_ptr;
|
|
std::string format_str;
|
|
};
|
|
|
|
struct numpy_internals {
|
|
std::unordered_map<std::type_index, numpy_type_info> registered_dtypes;
|
|
|
|
numpy_type_info *get_type_info(const std::type_info &tinfo, bool throw_if_missing = true) {
|
|
auto it = registered_dtypes.find(std::type_index(tinfo));
|
|
if (it != registered_dtypes.end()) {
|
|
return &(it->second);
|
|
}
|
|
if (throw_if_missing) {
|
|
pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename T>
|
|
numpy_type_info *get_type_info(bool throw_if_missing = true) {
|
|
return get_type_info(typeid(typename std::remove_cv<T>::type), throw_if_missing);
|
|
}
|
|
};
|
|
|
|
PYBIND11_NOINLINE void load_numpy_internals(numpy_internals *&ptr) {
|
|
ptr = &get_or_create_shared_data<numpy_internals>("_numpy_internals");
|
|
}
|
|
|
|
inline numpy_internals &get_numpy_internals() {
|
|
static numpy_internals *ptr = nullptr;
|
|
if (!ptr) {
|
|
load_numpy_internals(ptr);
|
|
}
|
|
return *ptr;
|
|
}
|
|
|
|
template <typename T>
|
|
struct same_size {
|
|
template <typename U>
|
|
using as = bool_constant<sizeof(T) == sizeof(U)>;
|
|
};
|
|
|
|
template <typename Concrete>
|
|
constexpr int platform_lookup() {
|
|
return -1;
|
|
}
|
|
|
|
// Lookup a type according to its size, and return a value corresponding to the NumPy typenum.
|
|
template <typename Concrete, typename T, typename... Ts, typename... Ints>
|
|
constexpr int platform_lookup(int I, Ints... Is) {
|
|
return sizeof(Concrete) == sizeof(T) ? I : platform_lookup<Concrete, Ts...>(Is...);
|
|
}
|
|
|
|
struct npy_api {
|
|
enum constants {
|
|
NPY_ARRAY_C_CONTIGUOUS_ = 0x0001,
|
|
NPY_ARRAY_F_CONTIGUOUS_ = 0x0002,
|
|
NPY_ARRAY_OWNDATA_ = 0x0004,
|
|
NPY_ARRAY_FORCECAST_ = 0x0010,
|
|
NPY_ARRAY_ENSUREARRAY_ = 0x0040,
|
|
NPY_ARRAY_ALIGNED_ = 0x0100,
|
|
NPY_ARRAY_WRITEABLE_ = 0x0400,
|
|
NPY_BOOL_ = 0,
|
|
NPY_BYTE_,
|
|
NPY_UBYTE_,
|
|
NPY_SHORT_,
|
|
NPY_USHORT_,
|
|
NPY_INT_,
|
|
NPY_UINT_,
|
|
NPY_LONG_,
|
|
NPY_ULONG_,
|
|
NPY_LONGLONG_,
|
|
NPY_ULONGLONG_,
|
|
NPY_FLOAT_,
|
|
NPY_DOUBLE_,
|
|
NPY_LONGDOUBLE_,
|
|
NPY_CFLOAT_,
|
|
NPY_CDOUBLE_,
|
|
NPY_CLONGDOUBLE_,
|
|
NPY_OBJECT_ = 17,
|
|
NPY_STRING_,
|
|
NPY_UNICODE_,
|
|
NPY_VOID_,
|
|
// Platform-dependent normalization
|
|
NPY_INT8_ = NPY_BYTE_,
|
|
NPY_UINT8_ = NPY_UBYTE_,
|
|
NPY_INT16_ = NPY_SHORT_,
|
|
NPY_UINT16_ = NPY_USHORT_,
|
|
// `npy_common.h` defines the integer aliases. In order, it checks:
|
|
// NPY_BITSOF_LONG, NPY_BITSOF_LONGLONG, NPY_BITSOF_INT, NPY_BITSOF_SHORT, NPY_BITSOF_CHAR
|
|
// and assigns the alias to the first matching size, so we should check in this order.
|
|
NPY_INT32_
|
|
= platform_lookup<std::int32_t, long, int, short>(NPY_LONG_, NPY_INT_, NPY_SHORT_),
|
|
NPY_UINT32_ = platform_lookup<std::uint32_t, unsigned long, unsigned int, unsigned short>(
|
|
NPY_ULONG_, NPY_UINT_, NPY_USHORT_),
|
|
NPY_INT64_
|
|
= platform_lookup<std::int64_t, long, long long, int>(NPY_LONG_, NPY_LONGLONG_, NPY_INT_),
|
|
NPY_UINT64_
|
|
= platform_lookup<std::uint64_t, unsigned long, unsigned long long, unsigned int>(
|
|
NPY_ULONG_, NPY_ULONGLONG_, NPY_UINT_),
|
|
};
|
|
|
|
struct PyArray_Dims {
|
|
Py_intptr_t *ptr;
|
|
int len;
|
|
};
|
|
|
|
static npy_api &get() {
|
|
static npy_api api = lookup();
|
|
return api;
|
|
}
|
|
|
|
bool PyArray_Check_(PyObject *obj) const {
|
|
return PyObject_TypeCheck(obj, PyArray_Type_) != 0;
|
|
}
|
|
bool PyArrayDescr_Check_(PyObject *obj) const {
|
|
return PyObject_TypeCheck(obj, PyArrayDescr_Type_) != 0;
|
|
}
|
|
|
|
unsigned int (*PyArray_GetNDArrayCFeatureVersion_)();
|
|
PyObject *(*PyArray_DescrFromType_)(int);
|
|
PyObject *(*PyArray_NewFromDescr_)(PyTypeObject *,
|
|
PyObject *,
|
|
int,
|
|
Py_intptr_t const *,
|
|
Py_intptr_t const *,
|
|
void *,
|
|
int,
|
|
PyObject *);
|
|
// Unused. Not removed because that affects ABI of the class.
|
|
PyObject *(*PyArray_DescrNewFromType_)(int);
|
|
int (*PyArray_CopyInto_)(PyObject *, PyObject *);
|
|
PyObject *(*PyArray_NewCopy_)(PyObject *, int);
|
|
PyTypeObject *PyArray_Type_;
|
|
PyTypeObject *PyVoidArrType_Type_;
|
|
PyTypeObject *PyArrayDescr_Type_;
|
|
PyObject *(*PyArray_DescrFromScalar_)(PyObject *);
|
|
PyObject *(*PyArray_FromAny_)(PyObject *, PyObject *, int, int, int, PyObject *);
|
|
int (*PyArray_DescrConverter_)(PyObject *, PyObject **);
|
|
bool (*PyArray_EquivTypes_)(PyObject *, PyObject *);
|
|
int (*PyArray_GetArrayParamsFromObject_)(PyObject *,
|
|
PyObject *,
|
|
unsigned char,
|
|
PyObject **,
|
|
int *,
|
|
Py_intptr_t *,
|
|
PyObject **,
|
|
PyObject *);
|
|
PyObject *(*PyArray_Squeeze_)(PyObject *);
|
|
// Unused. Not removed because that affects ABI of the class.
|
|
int (*PyArray_SetBaseObject_)(PyObject *, PyObject *);
|
|
PyObject *(*PyArray_Resize_)(PyObject *, PyArray_Dims *, int, int);
|
|
PyObject *(*PyArray_Newshape_)(PyObject *, PyArray_Dims *, int);
|
|
PyObject *(*PyArray_View_)(PyObject *, PyObject *, PyObject *);
|
|
|
|
private:
|
|
enum functions {
|
|
API_PyArray_GetNDArrayCFeatureVersion = 211,
|
|
API_PyArray_Type = 2,
|
|
API_PyArrayDescr_Type = 3,
|
|
API_PyVoidArrType_Type = 39,
|
|
API_PyArray_DescrFromType = 45,
|
|
API_PyArray_DescrFromScalar = 57,
|
|
API_PyArray_FromAny = 69,
|
|
API_PyArray_Resize = 80,
|
|
API_PyArray_CopyInto = 82,
|
|
API_PyArray_NewCopy = 85,
|
|
API_PyArray_NewFromDescr = 94,
|
|
API_PyArray_DescrNewFromType = 96,
|
|
API_PyArray_Newshape = 135,
|
|
API_PyArray_Squeeze = 136,
|
|
API_PyArray_View = 137,
|
|
API_PyArray_DescrConverter = 174,
|
|
API_PyArray_EquivTypes = 182,
|
|
API_PyArray_GetArrayParamsFromObject = 278,
|
|
API_PyArray_SetBaseObject = 282
|
|
};
|
|
|
|
static npy_api lookup() {
|
|
module_ m = module_::import("numpy.core.multiarray");
|
|
auto c = m.attr("_ARRAY_API");
|
|
#if PY_MAJOR_VERSION >= 3
|
|
void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), NULL);
|
|
#else
|
|
void **api_ptr = (void **) PyCObject_AsVoidPtr(c.ptr());
|
|
#endif
|
|
npy_api api;
|
|
#define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func];
|
|
DECL_NPY_API(PyArray_GetNDArrayCFeatureVersion);
|
|
if (api.PyArray_GetNDArrayCFeatureVersion_() < 0x7) {
|
|
pybind11_fail("pybind11 numpy support requires numpy >= 1.7.0");
|
|
}
|
|
DECL_NPY_API(PyArray_Type);
|
|
DECL_NPY_API(PyVoidArrType_Type);
|
|
DECL_NPY_API(PyArrayDescr_Type);
|
|
DECL_NPY_API(PyArray_DescrFromType);
|
|
DECL_NPY_API(PyArray_DescrFromScalar);
|
|
DECL_NPY_API(PyArray_FromAny);
|
|
DECL_NPY_API(PyArray_Resize);
|
|
DECL_NPY_API(PyArray_CopyInto);
|
|
DECL_NPY_API(PyArray_NewCopy);
|
|
DECL_NPY_API(PyArray_NewFromDescr);
|
|
DECL_NPY_API(PyArray_DescrNewFromType);
|
|
DECL_NPY_API(PyArray_Newshape);
|
|
DECL_NPY_API(PyArray_Squeeze);
|
|
DECL_NPY_API(PyArray_View);
|
|
DECL_NPY_API(PyArray_DescrConverter);
|
|
DECL_NPY_API(PyArray_EquivTypes);
|
|
DECL_NPY_API(PyArray_GetArrayParamsFromObject);
|
|
DECL_NPY_API(PyArray_SetBaseObject);
|
|
|
|
#undef DECL_NPY_API
|
|
return api;
|
|
}
|
|
};
|
|
|
|
inline PyArray_Proxy *array_proxy(void *ptr) { return reinterpret_cast<PyArray_Proxy *>(ptr); }
|
|
|
|
inline const PyArray_Proxy *array_proxy(const void *ptr) {
|
|
return reinterpret_cast<const PyArray_Proxy *>(ptr);
|
|
}
|
|
|
|
inline PyArrayDescr_Proxy *array_descriptor_proxy(PyObject *ptr) {
|
|
return reinterpret_cast<PyArrayDescr_Proxy *>(ptr);
|
|
}
|
|
|
|
inline const PyArrayDescr_Proxy *array_descriptor_proxy(const PyObject *ptr) {
|
|
return reinterpret_cast<const PyArrayDescr_Proxy *>(ptr);
|
|
}
|
|
|
|
inline bool check_flags(const void *ptr, int flag) {
|
|
return (flag == (array_proxy(ptr)->flags & flag));
|
|
}
|
|
|
|
template <typename T>
|
|
struct is_std_array : std::false_type {};
|
|
template <typename T, size_t N>
|
|
struct is_std_array<std::array<T, N>> : std::true_type {};
|
|
template <typename T>
|
|
struct is_complex : std::false_type {};
|
|
template <typename T>
|
|
struct is_complex<std::complex<T>> : std::true_type {};
|
|
|
|
template <typename T>
|
|
struct array_info_scalar {
|
|
using type = T;
|
|
static constexpr bool is_array = false;
|
|
static constexpr bool is_empty = false;
|
|
static constexpr auto extents = const_name("");
|
|
static void append_extents(list & /* shape */) {}
|
|
};
|
|
// Computes underlying type and a comma-separated list of extents for array
|
|
// types (any mix of std::array and built-in arrays). An array of char is
|
|
// treated as scalar because it gets special handling.
|
|
template <typename T>
|
|
struct array_info : array_info_scalar<T> {};
|
|
template <typename T, size_t N>
|
|
struct array_info<std::array<T, N>> {
|
|
using type = typename array_info<T>::type;
|
|
static constexpr bool is_array = true;
|
|
static constexpr bool is_empty = (N == 0) || array_info<T>::is_empty;
|
|
static constexpr size_t extent = N;
|
|
|
|
// appends the extents to shape
|
|
static void append_extents(list &shape) {
|
|
shape.append(N);
|
|
array_info<T>::append_extents(shape);
|
|
}
|
|
|
|
static constexpr auto extents = const_name<array_info<T>::is_array>(
|
|
concat(const_name<N>(), array_info<T>::extents), const_name<N>());
|
|
};
|
|
// For numpy we have special handling for arrays of characters, so we don't include
|
|
// the size in the array extents.
|
|
template <size_t N>
|
|
struct array_info<char[N]> : array_info_scalar<char[N]> {};
|
|
template <size_t N>
|
|
struct array_info<std::array<char, N>> : array_info_scalar<std::array<char, N>> {};
|
|
template <typename T, size_t N>
|
|
struct array_info<T[N]> : array_info<std::array<T, N>> {};
|
|
template <typename T>
|
|
using remove_all_extents_t = typename array_info<T>::type;
|
|
|
|
template <typename T>
|
|
using is_pod_struct
|
|
= all_of<std::is_standard_layout<T>, // since we're accessing directly in memory
|
|
// we need a standard layout type
|
|
#if defined(__GLIBCXX__) \
|
|
&& (__GLIBCXX__ < 20150422 || __GLIBCXX__ == 20150426 || __GLIBCXX__ == 20150623 \
|
|
|| __GLIBCXX__ == 20150626 || __GLIBCXX__ == 20160803)
|
|
// libstdc++ < 5 (including versions 4.8.5, 4.9.3 and 4.9.4 which were released after
|
|
// 5) don't implement is_trivially_copyable, so approximate it
|
|
std::is_trivially_destructible<T>,
|
|
satisfies_any_of<T, std::has_trivial_copy_constructor, std::has_trivial_copy_assign>,
|
|
#else
|
|
std::is_trivially_copyable<T>,
|
|
#endif
|
|
satisfies_none_of<T,
|
|
std::is_reference,
|
|
std::is_array,
|
|
is_std_array,
|
|
std::is_arithmetic,
|
|
is_complex,
|
|
std::is_enum>>;
|
|
|
|
// Replacement for std::is_pod (deprecated in C++20)
|
|
template <typename T>
|
|
using is_pod = all_of<std::is_standard_layout<T>, std::is_trivial<T>>;
|
|
|
|
template <ssize_t Dim = 0, typename Strides>
|
|
ssize_t byte_offset_unsafe(const Strides &) {
|
|
return 0;
|
|
}
|
|
template <ssize_t Dim = 0, typename Strides, typename... Ix>
|
|
ssize_t byte_offset_unsafe(const Strides &strides, ssize_t i, Ix... index) {
|
|
return i * strides[Dim] + byte_offset_unsafe<Dim + 1>(strides, index...);
|
|
}
|
|
|
|
/**
|
|
* Proxy class providing unsafe, unchecked const access to array data. This is constructed through
|
|
* the `unchecked<T, N>()` method of `array` or the `unchecked<N>()` method of `array_t<T>`. `Dims`
|
|
* will be -1 for dimensions determined at runtime.
|
|
*/
|
|
template <typename T, ssize_t Dims>
|
|
class unchecked_reference {
|
|
protected:
|
|
static constexpr bool Dynamic = Dims < 0;
|
|
const unsigned char *data_;
|
|
// Storing the shape & strides in local variables (i.e. these arrays) allows the compiler to
|
|
// make large performance gains on big, nested loops, but requires compile-time dimensions
|
|
conditional_t<Dynamic, const ssize_t *, std::array<ssize_t, (size_t) Dims>> shape_, strides_;
|
|
const ssize_t dims_;
|
|
|
|
friend class pybind11::array;
|
|
// Constructor for compile-time dimensions:
|
|
template <bool Dyn = Dynamic>
|
|
unchecked_reference(const void *data,
|
|
const ssize_t *shape,
|
|
const ssize_t *strides,
|
|
enable_if_t<!Dyn, ssize_t>)
|
|
: data_{reinterpret_cast<const unsigned char *>(data)}, dims_{Dims} {
|
|
for (size_t i = 0; i < (size_t) dims_; i++) {
|
|
shape_[i] = shape[i];
|
|
strides_[i] = strides[i];
|
|
}
|
|
}
|
|
// Constructor for runtime dimensions:
|
|
template <bool Dyn = Dynamic>
|
|
unchecked_reference(const void *data,
|
|
const ssize_t *shape,
|
|
const ssize_t *strides,
|
|
enable_if_t<Dyn, ssize_t> dims)
|
|
: data_{reinterpret_cast<const unsigned char *>(data)}, shape_{shape}, strides_{strides},
|
|
dims_{dims} {}
|
|
|
|
public:
|
|
/**
|
|
* Unchecked const reference access to data at the given indices. For a compile-time known
|
|
* number of dimensions, this requires the correct number of arguments; for run-time
|
|
* dimensionality, this is not checked (and so is up to the caller to use safely).
|
|
*/
|
|
template <typename... Ix>
|
|
const T &operator()(Ix... index) const {
|
|
static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
|
|
"Invalid number of indices for unchecked array reference");
|
|
return *reinterpret_cast<const T *>(data_
|
|
+ byte_offset_unsafe(strides_, ssize_t(index)...));
|
|
}
|
|
/**
|
|
* Unchecked const reference access to data; this operator only participates if the reference
|
|
* is to a 1-dimensional array. When present, this is exactly equivalent to `obj(index)`.
|
|
*/
|
|
template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
|
|
const T &operator[](ssize_t index) const {
|
|
return operator()(index);
|
|
}
|
|
|
|
/// Pointer access to the data at the given indices.
|
|
template <typename... Ix>
|
|
const T *data(Ix... ix) const {
|
|
return &operator()(ssize_t(ix)...);
|
|
}
|
|
|
|
/// Returns the item size, i.e. sizeof(T)
|
|
constexpr static ssize_t itemsize() { return sizeof(T); }
|
|
|
|
/// Returns the shape (i.e. size) of dimension `dim`
|
|
ssize_t shape(ssize_t dim) const { return shape_[(size_t) dim]; }
|
|
|
|
/// Returns the number of dimensions of the array
|
|
ssize_t ndim() const { return dims_; }
|
|
|
|
/// Returns the total number of elements in the referenced array, i.e. the product of the
|
|
/// shapes
|
|
template <bool Dyn = Dynamic>
|
|
enable_if_t<!Dyn, ssize_t> size() const {
|
|
return std::accumulate(
|
|
shape_.begin(), shape_.end(), (ssize_t) 1, std::multiplies<ssize_t>());
|
|
}
|
|
template <bool Dyn = Dynamic>
|
|
enable_if_t<Dyn, ssize_t> size() const {
|
|
return std::accumulate(shape_, shape_ + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
|
|
}
|
|
|
|
/// Returns the total number of bytes used by the referenced data. Note that the actual span
|
|
/// in memory may be larger if the referenced array has non-contiguous strides (e.g. for a
|
|
/// slice).
|
|
ssize_t nbytes() const { return size() * itemsize(); }
|
|
};
|
|
|
|
template <typename T, ssize_t Dims>
|
|
class unchecked_mutable_reference : public unchecked_reference<T, Dims> {
|
|
friend class pybind11::array;
|
|
using ConstBase = unchecked_reference<T, Dims>;
|
|
using ConstBase::ConstBase;
|
|
using ConstBase::Dynamic;
|
|
|
|
public:
|
|
// Bring in const-qualified versions from base class
|
|
using ConstBase::operator();
|
|
using ConstBase::operator[];
|
|
|
|
/// Mutable, unchecked access to data at the given indices.
|
|
template <typename... Ix>
|
|
T &operator()(Ix... index) {
|
|
static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
|
|
"Invalid number of indices for unchecked array reference");
|
|
return const_cast<T &>(ConstBase::operator()(index...));
|
|
}
|
|
/**
|
|
* Mutable, unchecked access data at the given index; this operator only participates if the
|
|
* reference is to a 1-dimensional array (or has runtime dimensions). When present, this is
|
|
* exactly equivalent to `obj(index)`.
|
|
*/
|
|
template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
|
|
T &operator[](ssize_t index) {
|
|
return operator()(index);
|
|
}
|
|
|
|
/// Mutable pointer access to the data at the given indices.
|
|
template <typename... Ix>
|
|
T *mutable_data(Ix... ix) {
|
|
return &operator()(ssize_t(ix)...);
|
|
}
|
|
};
|
|
|
|
template <typename T, ssize_t Dim>
|
|
struct type_caster<unchecked_reference<T, Dim>> {
|
|
static_assert(Dim == 0 && Dim > 0 /* always fail */,
|
|
"unchecked array proxy object is not castable");
|
|
};
|
|
template <typename T, ssize_t Dim>
|
|
struct type_caster<unchecked_mutable_reference<T, Dim>>
|
|
: type_caster<unchecked_reference<T, Dim>> {};
|
|
|
|
PYBIND11_NAMESPACE_END(detail)
|
|
|
|
class dtype : public object {
|
|
public:
|
|
PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_);
|
|
|
|
explicit dtype(const buffer_info &info) {
|
|
dtype descr(_dtype_from_pep3118()(PYBIND11_STR_TYPE(info.format)));
|
|
// If info.itemsize == 0, use the value calculated from the format string
|
|
m_ptr = descr.strip_padding(info.itemsize != 0 ? info.itemsize : descr.itemsize())
|
|
.release()
|
|
.ptr();
|
|
}
|
|
|
|
explicit dtype(const std::string &format) {
|
|
m_ptr = from_args(pybind11::str(format)).release().ptr();
|
|
}
|
|
|
|
explicit dtype(const char *format) : dtype(std::string(format)) {}
|
|
|
|
dtype(list names, list formats, list offsets, ssize_t itemsize) {
|
|
dict args;
|
|
args["names"] = std::move(names);
|
|
args["formats"] = std::move(formats);
|
|
args["offsets"] = std::move(offsets);
|
|
args["itemsize"] = pybind11::int_(itemsize);
|
|
m_ptr = from_args(std::move(args)).release().ptr();
|
|
}
|
|
|
|
/// This is essentially the same as calling numpy.dtype(args) in Python.
|
|
static dtype from_args(object args) {
|
|
PyObject *ptr = nullptr;
|
|
if ((detail::npy_api::get().PyArray_DescrConverter_(args.ptr(), &ptr) == 0) || !ptr) {
|
|
throw error_already_set();
|
|
}
|
|
return reinterpret_steal<dtype>(ptr);
|
|
}
|
|
|
|
/// Return dtype associated with a C++ type.
|
|
template <typename T>
|
|
static dtype of() {
|
|
return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::dtype();
|
|
}
|
|
|
|
/// Size of the data type in bytes.
|
|
ssize_t itemsize() const { return detail::array_descriptor_proxy(m_ptr)->elsize; }
|
|
|
|
/// Returns true for structured data types.
|
|
bool has_fields() const { return detail::array_descriptor_proxy(m_ptr)->names != nullptr; }
|
|
|
|
/// Single-character code for dtype's kind.
|
|
/// For example, floating point types are 'f' and integral types are 'i'.
|
|
char kind() const { return detail::array_descriptor_proxy(m_ptr)->kind; }
|
|
|
|
/// Single-character for dtype's type.
|
|
/// For example, ``float`` is 'f', ``double`` 'd', ``int`` 'i', and ``long`` 'l'.
|
|
char char_() const {
|
|
// Note: The signature, `dtype::char_` follows the naming of NumPy's
|
|
// public Python API (i.e., ``dtype.char``), rather than its internal
|
|
// C API (``PyArray_Descr::type``).
|
|
return detail::array_descriptor_proxy(m_ptr)->type;
|
|
}
|
|
|
|
private:
|
|
static object _dtype_from_pep3118() {
|
|
static PyObject *obj = module_::import("numpy.core._internal")
|
|
.attr("_dtype_from_pep3118")
|
|
.cast<object>()
|
|
.release()
|
|
.ptr();
|
|
return reinterpret_borrow<object>(obj);
|
|
}
|
|
|
|
dtype strip_padding(ssize_t itemsize) {
|
|
// Recursively strip all void fields with empty names that are generated for
|
|
// padding fields (as of NumPy v1.11).
|
|
if (!has_fields()) {
|
|
return *this;
|
|
}
|
|
|
|
struct field_descr {
|
|
PYBIND11_STR_TYPE name;
|
|
object format;
|
|
pybind11::int_ offset;
|
|
};
|
|
std::vector<field_descr> field_descriptors;
|
|
|
|
for (auto field : attr("fields").attr("items")()) {
|
|
auto spec = field.cast<tuple>();
|
|
auto name = spec[0].cast<pybind11::str>();
|
|
auto format = spec[1].cast<tuple>()[0].cast<dtype>();
|
|
auto offset = spec[1].cast<tuple>()[1].cast<pybind11::int_>();
|
|
if ((len(name) == 0u) && format.kind() == 'V') {
|
|
continue;
|
|
}
|
|
field_descriptors.push_back(
|
|
{(PYBIND11_STR_TYPE) name, format.strip_padding(format.itemsize()), offset});
|
|
}
|
|
|
|
std::sort(field_descriptors.begin(),
|
|
field_descriptors.end(),
|
|
[](const field_descr &a, const field_descr &b) {
|
|
return a.offset.cast<int>() < b.offset.cast<int>();
|
|
});
|
|
|
|
list names, formats, offsets;
|
|
for (auto &descr : field_descriptors) {
|
|
names.append(descr.name);
|
|
formats.append(descr.format);
|
|
offsets.append(descr.offset);
|
|
}
|
|
return dtype(std::move(names), std::move(formats), std::move(offsets), itemsize);
|
|
}
|
|
};
|
|
|
|
class array : public buffer {
|
|
public:
|
|
PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array)
|
|
|
|
enum {
|
|
c_style = detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_,
|
|
f_style = detail::npy_api::NPY_ARRAY_F_CONTIGUOUS_,
|
|
forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_
|
|
};
|
|
|
|
array() : array(0, static_cast<const double *>(nullptr)) {}
|
|
|
|
using ShapeContainer = detail::any_container<ssize_t>;
|
|
using StridesContainer = detail::any_container<ssize_t>;
|
|
|
|
// Constructs an array taking shape/strides from arbitrary container types
|
|
array(const pybind11::dtype &dt,
|
|
ShapeContainer shape,
|
|
StridesContainer strides,
|
|
const void *ptr = nullptr,
|
|
handle base = handle()) {
|
|
|
|
if (strides->empty()) {
|
|
*strides = detail::c_strides(*shape, dt.itemsize());
|
|
}
|
|
|
|
auto ndim = shape->size();
|
|
if (ndim != strides->size()) {
|
|
pybind11_fail("NumPy: shape ndim doesn't match strides ndim");
|
|
}
|
|
auto descr = dt;
|
|
|
|
int flags = 0;
|
|
if (base && ptr) {
|
|
if (isinstance<array>(base)) {
|
|
/* Copy flags from base (except ownership bit) */
|
|
flags = reinterpret_borrow<array>(base).flags()
|
|
& ~detail::npy_api::NPY_ARRAY_OWNDATA_;
|
|
} else {
|
|
/* Writable by default, easy to downgrade later on if needed */
|
|
flags = detail::npy_api::NPY_ARRAY_WRITEABLE_;
|
|
}
|
|
}
|
|
|
|
auto &api = detail::npy_api::get();
|
|
auto tmp = reinterpret_steal<object>(api.PyArray_NewFromDescr_(
|
|
api.PyArray_Type_,
|
|
descr.release().ptr(),
|
|
(int) ndim,
|
|
// Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1)
|
|
reinterpret_cast<Py_intptr_t *>(shape->data()),
|
|
reinterpret_cast<Py_intptr_t *>(strides->data()),
|
|
const_cast<void *>(ptr),
|
|
flags,
|
|
nullptr));
|
|
if (!tmp) {
|
|
throw error_already_set();
|
|
}
|
|
if (ptr) {
|
|
if (base) {
|
|
api.PyArray_SetBaseObject_(tmp.ptr(), base.inc_ref().ptr());
|
|
} else {
|
|
tmp = reinterpret_steal<object>(
|
|
api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */));
|
|
}
|
|
}
|
|
m_ptr = tmp.release().ptr();
|
|
}
|
|
|
|
array(const pybind11::dtype &dt,
|
|
ShapeContainer shape,
|
|
const void *ptr = nullptr,
|
|
handle base = handle())
|
|
: array(dt, std::move(shape), {}, ptr, base) {}
|
|
|
|
template <typename T,
|
|
typename
|
|
= detail::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>>
|
|
array(const pybind11::dtype &dt, T count, const void *ptr = nullptr, handle base = handle())
|
|
: array(dt, {{count}}, ptr, base) {}
|
|
|
|
template <typename T>
|
|
array(ShapeContainer shape, StridesContainer strides, const T *ptr, handle base = handle())
|
|
: array(pybind11::dtype::of<T>(), std::move(shape), std::move(strides), ptr, base) {}
|
|
|
|
template <typename T>
|
|
array(ShapeContainer shape, const T *ptr, handle base = handle())
|
|
: array(std::move(shape), {}, ptr, base) {}
|
|
|
|
template <typename T>
|
|
explicit array(ssize_t count, const T *ptr, handle base = handle())
|
|
: array({count}, {}, ptr, base) {}
|
|
|
|
explicit array(const buffer_info &info, handle base = handle())
|
|
: array(pybind11::dtype(info), info.shape, info.strides, info.ptr, base) {}
|
|
|
|
/// Array descriptor (dtype)
|
|
pybind11::dtype dtype() const {
|
|
return reinterpret_borrow<pybind11::dtype>(detail::array_proxy(m_ptr)->descr);
|
|
}
|
|
|
|
/// Total number of elements
|
|
ssize_t size() const {
|
|
return std::accumulate(shape(), shape() + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
|
|
}
|
|
|
|
/// Byte size of a single element
|
|
ssize_t itemsize() const {
|
|
return detail::array_descriptor_proxy(detail::array_proxy(m_ptr)->descr)->elsize;
|
|
}
|
|
|
|
/// Total number of bytes
|
|
ssize_t nbytes() const { return size() * itemsize(); }
|
|
|
|
/// Number of dimensions
|
|
ssize_t ndim() const { return detail::array_proxy(m_ptr)->nd; }
|
|
|
|
/// Base object
|
|
object base() const { return reinterpret_borrow<object>(detail::array_proxy(m_ptr)->base); }
|
|
|
|
/// Dimensions of the array
|
|
const ssize_t *shape() const { return detail::array_proxy(m_ptr)->dimensions; }
|
|
|
|
/// Dimension along a given axis
|
|
ssize_t shape(ssize_t dim) const {
|
|
if (dim >= ndim()) {
|
|
fail_dim_check(dim, "invalid axis");
|
|
}
|
|
return shape()[dim];
|
|
}
|
|
|
|
/// Strides of the array
|
|
const ssize_t *strides() const { return detail::array_proxy(m_ptr)->strides; }
|
|
|
|
/// Stride along a given axis
|
|
ssize_t strides(ssize_t dim) const {
|
|
if (dim >= ndim()) {
|
|
fail_dim_check(dim, "invalid axis");
|
|
}
|
|
return strides()[dim];
|
|
}
|
|
|
|
/// Return the NumPy array flags
|
|
int flags() const { return detail::array_proxy(m_ptr)->flags; }
|
|
|
|
/// If set, the array is writeable (otherwise the buffer is read-only)
|
|
bool writeable() const {
|
|
return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_);
|
|
}
|
|
|
|
/// If set, the array owns the data (will be freed when the array is deleted)
|
|
bool owndata() const {
|
|
return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_);
|
|
}
|
|
|
|
/// Pointer to the contained data. If index is not provided, points to the
|
|
/// beginning of the buffer. May throw if the index would lead to out of bounds access.
|
|
template <typename... Ix>
|
|
const void *data(Ix... index) const {
|
|
return static_cast<const void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
|
|
}
|
|
|
|
/// Mutable pointer to the contained data. If index is not provided, points to the
|
|
/// beginning of the buffer. May throw if the index would lead to out of bounds access.
|
|
/// May throw if the array is not writeable.
|
|
template <typename... Ix>
|
|
void *mutable_data(Ix... index) {
|
|
check_writeable();
|
|
return static_cast<void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
|
|
}
|
|
|
|
/// Byte offset from beginning of the array to a given index (full or partial).
|
|
/// May throw if the index would lead to out of bounds access.
|
|
template <typename... Ix>
|
|
ssize_t offset_at(Ix... index) const {
|
|
if ((ssize_t) sizeof...(index) > ndim()) {
|
|
fail_dim_check(sizeof...(index), "too many indices for an array");
|
|
}
|
|
return byte_offset(ssize_t(index)...);
|
|
}
|
|
|
|
ssize_t offset_at() const { return 0; }
|
|
|
|
/// Item count from beginning of the array to a given index (full or partial).
|
|
/// May throw if the index would lead to out of bounds access.
|
|
template <typename... Ix>
|
|
ssize_t index_at(Ix... index) const {
|
|
return offset_at(index...) / itemsize();
|
|
}
|
|
|
|
/**
|
|
* Returns a proxy object that provides access to the array's data without bounds or
|
|
* dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with
|
|
* care: the array must not be destroyed or reshaped for the duration of the returned object,
|
|
* and the caller must take care not to access invalid dimensions or dimension indices.
|
|
*/
|
|
template <typename T, ssize_t Dims = -1>
|
|
detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
|
|
if (PYBIND11_SILENCE_MSVC_C4127(Dims >= 0) && ndim() != Dims) {
|
|
throw std::domain_error("array has incorrect number of dimensions: "
|
|
+ std::to_string(ndim()) + "; expected "
|
|
+ std::to_string(Dims));
|
|
}
|
|
return detail::unchecked_mutable_reference<T, Dims>(
|
|
mutable_data(), shape(), strides(), ndim());
|
|
}
|
|
|
|
/**
|
|
* Returns a proxy object that provides const access to the array's data without bounds or
|
|
* dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the
|
|
* underlying array have the `writable` flag. Use with care: the array must not be destroyed
|
|
* or reshaped for the duration of the returned object, and the caller must take care not to
|
|
* access invalid dimensions or dimension indices.
|
|
*/
|
|
template <typename T, ssize_t Dims = -1>
|
|
detail::unchecked_reference<T, Dims> unchecked() const & {
|
|
if (PYBIND11_SILENCE_MSVC_C4127(Dims >= 0) && ndim() != Dims) {
|
|
throw std::domain_error("array has incorrect number of dimensions: "
|
|
+ std::to_string(ndim()) + "; expected "
|
|
+ std::to_string(Dims));
|
|
}
|
|
return detail::unchecked_reference<T, Dims>(data(), shape(), strides(), ndim());
|
|
}
|
|
|
|
/// Return a new view with all of the dimensions of length 1 removed
|
|
array squeeze() {
|
|
auto &api = detail::npy_api::get();
|
|
return reinterpret_steal<array>(api.PyArray_Squeeze_(m_ptr));
|
|
}
|
|
|
|
/// Resize array to given shape
|
|
/// If refcheck is true and more that one reference exist to this array
|
|
/// then resize will succeed only if it makes a reshape, i.e. original size doesn't change
|
|
void resize(ShapeContainer new_shape, bool refcheck = true) {
|
|
detail::npy_api::PyArray_Dims d
|
|
= {// Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1)
|
|
reinterpret_cast<Py_intptr_t *>(new_shape->data()),
|
|
int(new_shape->size())};
|
|
// try to resize, set ordering param to -1 cause it's not used anyway
|
|
auto new_array = reinterpret_steal<object>(
|
|
detail::npy_api::get().PyArray_Resize_(m_ptr, &d, int(refcheck), -1));
|
|
if (!new_array) {
|
|
throw error_already_set();
|
|
}
|
|
if (isinstance<array>(new_array)) {
|
|
*this = std::move(new_array);
|
|
}
|
|
}
|
|
|
|
/// Optional `order` parameter omitted, to be added as needed.
|
|
array reshape(ShapeContainer new_shape) {
|
|
detail::npy_api::PyArray_Dims d
|
|
= {reinterpret_cast<Py_intptr_t *>(new_shape->data()), int(new_shape->size())};
|
|
auto new_array
|
|
= reinterpret_steal<array>(detail::npy_api::get().PyArray_Newshape_(m_ptr, &d, 0));
|
|
if (!new_array) {
|
|
throw error_already_set();
|
|
}
|
|
return new_array;
|
|
}
|
|
|
|
/// Create a view of an array in a different data type.
|
|
/// This function may fundamentally reinterpret the data in the array.
|
|
/// It is the responsibility of the caller to ensure that this is safe.
|
|
/// Only supports the `dtype` argument, the `type` argument is omitted,
|
|
/// to be added as needed.
|
|
array view(const std::string &dtype) {
|
|
auto &api = detail::npy_api::get();
|
|
auto new_view = reinterpret_steal<array>(api.PyArray_View_(
|
|
m_ptr, dtype::from_args(pybind11::str(dtype)).release().ptr(), nullptr));
|
|
if (!new_view) {
|
|
throw error_already_set();
|
|
}
|
|
return new_view;
|
|
}
|
|
|
|
/// Ensure that the argument is a NumPy array
|
|
/// In case of an error, nullptr is returned and the Python error is cleared.
|
|
static array ensure(handle h, int ExtraFlags = 0) {
|
|
auto result = reinterpret_steal<array>(raw_array(h.ptr(), ExtraFlags));
|
|
if (!result) {
|
|
PyErr_Clear();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
protected:
|
|
template <typename, typename>
|
|
friend struct detail::npy_format_descriptor;
|
|
|
|
void fail_dim_check(ssize_t dim, const std::string &msg) const {
|
|
throw index_error(msg + ": " + std::to_string(dim) + " (ndim = " + std::to_string(ndim())
|
|
+ ")");
|
|
}
|
|
|
|
template <typename... Ix>
|
|
ssize_t byte_offset(Ix... index) const {
|
|
check_dimensions(index...);
|
|
return detail::byte_offset_unsafe(strides(), ssize_t(index)...);
|
|
}
|
|
|
|
void check_writeable() const {
|
|
if (!writeable()) {
|
|
throw std::domain_error("array is not writeable");
|
|
}
|
|
}
|
|
|
|
template <typename... Ix>
|
|
void check_dimensions(Ix... index) const {
|
|
check_dimensions_impl(ssize_t(0), shape(), ssize_t(index)...);
|
|
}
|
|
|
|
void check_dimensions_impl(ssize_t, const ssize_t *) const {}
|
|
|
|
template <typename... Ix>
|
|
void check_dimensions_impl(ssize_t axis, const ssize_t *shape, ssize_t i, Ix... index) const {
|
|
if (i >= *shape) {
|
|
throw index_error(std::string("index ") + std::to_string(i)
|
|
+ " is out of bounds for axis " + std::to_string(axis)
|
|
+ " with size " + std::to_string(*shape));
|
|
}
|
|
check_dimensions_impl(axis + 1, shape + 1, index...);
|
|
}
|
|
|
|
/// Create array from any object -- always returns a new reference
|
|
static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) {
|
|
if (ptr == nullptr) {
|
|
PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array from a nullptr");
|
|
return nullptr;
|
|
}
|
|
return detail::npy_api::get().PyArray_FromAny_(
|
|
ptr, nullptr, 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr);
|
|
}
|
|
};
|
|
|
|
template <typename T, int ExtraFlags = array::forcecast>
|
|
class array_t : public array {
|
|
private:
|
|
struct private_ctor {};
|
|
// Delegating constructor needed when both moving and accessing in the same constructor
|
|
array_t(private_ctor,
|
|
ShapeContainer &&shape,
|
|
StridesContainer &&strides,
|
|
const T *ptr,
|
|
handle base)
|
|
: array(std::move(shape), std::move(strides), ptr, base) {}
|
|
|
|
public:
|
|
static_assert(!detail::array_info<T>::is_array, "Array types cannot be used with array_t");
|
|
|
|
using value_type = T;
|
|
|
|
array_t() : array(0, static_cast<const T *>(nullptr)) {}
|
|
array_t(handle h, borrowed_t) : array(h, borrowed_t{}) {}
|
|
array_t(handle h, stolen_t) : array(h, stolen_t{}) {}
|
|
|
|
PYBIND11_DEPRECATED("Use array_t<T>::ensure() instead")
|
|
array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen_t{}) {
|
|
if (!m_ptr) {
|
|
PyErr_Clear();
|
|
}
|
|
if (!is_borrowed) {
|
|
Py_XDECREF(h.ptr());
|
|
}
|
|
}
|
|
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
array_t(const object &o) : array(raw_array_t(o.ptr()), stolen_t{}) {
|
|
if (!m_ptr) {
|
|
throw error_already_set();
|
|
}
|
|
}
|
|
|
|
explicit array_t(const buffer_info &info, handle base = handle()) : array(info, base) {}
|
|
|
|
array_t(ShapeContainer shape,
|
|
StridesContainer strides,
|
|
const T *ptr = nullptr,
|
|
handle base = handle())
|
|
: array(std::move(shape), std::move(strides), ptr, base) {}
|
|
|
|
explicit array_t(ShapeContainer shape, const T *ptr = nullptr, handle base = handle())
|
|
: array_t(private_ctor{},
|
|
std::move(shape),
|
|
(ExtraFlags & f_style) != 0 ? detail::f_strides(*shape, itemsize())
|
|
: detail::c_strides(*shape, itemsize()),
|
|
ptr,
|
|
base) {}
|
|
|
|
explicit array_t(ssize_t count, const T *ptr = nullptr, handle base = handle())
|
|
: array({count}, {}, ptr, base) {}
|
|
|
|
constexpr ssize_t itemsize() const { return sizeof(T); }
|
|
|
|
template <typename... Ix>
|
|
ssize_t index_at(Ix... index) const {
|
|
return offset_at(index...) / itemsize();
|
|
}
|
|
|
|
template <typename... Ix>
|
|
const T *data(Ix... index) const {
|
|
return static_cast<const T *>(array::data(index...));
|
|
}
|
|
|
|
template <typename... Ix>
|
|
T *mutable_data(Ix... index) {
|
|
return static_cast<T *>(array::mutable_data(index...));
|
|
}
|
|
|
|
// Reference to element at a given index
|
|
template <typename... Ix>
|
|
const T &at(Ix... index) const {
|
|
if ((ssize_t) sizeof...(index) != ndim()) {
|
|
fail_dim_check(sizeof...(index), "index dimension mismatch");
|
|
}
|
|
return *(static_cast<const T *>(array::data())
|
|
+ byte_offset(ssize_t(index)...) / itemsize());
|
|
}
|
|
|
|
// Mutable reference to element at a given index
|
|
template <typename... Ix>
|
|
T &mutable_at(Ix... index) {
|
|
if ((ssize_t) sizeof...(index) != ndim()) {
|
|
fail_dim_check(sizeof...(index), "index dimension mismatch");
|
|
}
|
|
return *(static_cast<T *>(array::mutable_data())
|
|
+ byte_offset(ssize_t(index)...) / itemsize());
|
|
}
|
|
|
|
/**
|
|
* Returns a proxy object that provides access to the array's data without bounds or
|
|
* dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with
|
|
* care: the array must not be destroyed or reshaped for the duration of the returned object,
|
|
* and the caller must take care not to access invalid dimensions or dimension indices.
|
|
*/
|
|
template <ssize_t Dims = -1>
|
|
detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
|
|
return array::mutable_unchecked<T, Dims>();
|
|
}
|
|
|
|
/**
|
|
* Returns a proxy object that provides const access to the array's data without bounds or
|
|
* dimensionality checking. Unlike `unchecked()`, this does not require that the underlying
|
|
* array have the `writable` flag. Use with care: the array must not be destroyed or reshaped
|
|
* for the duration of the returned object, and the caller must take care not to access invalid
|
|
* dimensions or dimension indices.
|
|
*/
|
|
template <ssize_t Dims = -1>
|
|
detail::unchecked_reference<T, Dims> unchecked() const & {
|
|
return array::unchecked<T, Dims>();
|
|
}
|
|
|
|
/// Ensure that the argument is a NumPy array of the correct dtype (and if not, try to convert
|
|
/// it). In case of an error, nullptr is returned and the Python error is cleared.
|
|
static array_t ensure(handle h) {
|
|
auto result = reinterpret_steal<array_t>(raw_array_t(h.ptr()));
|
|
if (!result) {
|
|
PyErr_Clear();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static bool check_(handle h) {
|
|
const auto &api = detail::npy_api::get();
|
|
return api.PyArray_Check_(h.ptr())
|
|
&& api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr,
|
|
dtype::of<T>().ptr())
|
|
&& detail::check_flags(h.ptr(), ExtraFlags & (array::c_style | array::f_style));
|
|
}
|
|
|
|
protected:
|
|
/// Create array from any object -- always returns a new reference
|
|
static PyObject *raw_array_t(PyObject *ptr) {
|
|
if (ptr == nullptr) {
|
|
PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array_t from a nullptr");
|
|
return nullptr;
|
|
}
|
|
return detail::npy_api::get().PyArray_FromAny_(ptr,
|
|
dtype::of<T>().release().ptr(),
|
|
0,
|
|
0,
|
|
detail::npy_api::NPY_ARRAY_ENSUREARRAY_
|
|
| ExtraFlags,
|
|
nullptr);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct format_descriptor<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
|
|
static std::string format() {
|
|
return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::format();
|
|
}
|
|
};
|
|
|
|
template <size_t N>
|
|
struct format_descriptor<char[N]> {
|
|
static std::string format() { return std::to_string(N) + "s"; }
|
|
};
|
|
template <size_t N>
|
|
struct format_descriptor<std::array<char, N>> {
|
|
static std::string format() { return std::to_string(N) + "s"; }
|
|
};
|
|
|
|
template <typename T>
|
|
struct format_descriptor<T, detail::enable_if_t<std::is_enum<T>::value>> {
|
|
static std::string format() {
|
|
return format_descriptor<
|
|
typename std::remove_cv<typename std::underlying_type<T>::type>::type>::format();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct format_descriptor<T, detail::enable_if_t<detail::array_info<T>::is_array>> {
|
|
static std::string format() {
|
|
using namespace detail;
|
|
static constexpr auto extents = const_name("(") + array_info<T>::extents + const_name(")");
|
|
return extents.text + format_descriptor<remove_all_extents_t<T>>::format();
|
|
}
|
|
};
|
|
|
|
PYBIND11_NAMESPACE_BEGIN(detail)
|
|
template <typename T, int ExtraFlags>
|
|
struct pyobject_caster<array_t<T, ExtraFlags>> {
|
|
using type = array_t<T, ExtraFlags>;
|
|
|
|
bool load(handle src, bool convert) {
|
|
if (!convert && !type::check_(src)) {
|
|
return false;
|
|
}
|
|
value = type::ensure(src);
|
|
return static_cast<bool>(value);
|
|
}
|
|
|
|
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
|
|
return src.inc_ref();
|
|
}
|
|
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
|
|
};
|
|
|
|
template <typename T>
|
|
struct compare_buffer_info<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
|
|
static bool compare(const buffer_info &b) {
|
|
return npy_api::get().PyArray_EquivTypes_(dtype::of<T>().ptr(), dtype(b).ptr());
|
|
}
|
|
};
|
|
|
|
template <typename T, typename = void>
|
|
struct npy_format_descriptor_name;
|
|
|
|
template <typename T>
|
|
struct npy_format_descriptor_name<T, enable_if_t<std::is_integral<T>::value>> {
|
|
static constexpr auto name = const_name<std::is_same<T, bool>::value>(
|
|
const_name("bool"),
|
|
const_name<std::is_signed<T>::value>("numpy.int", "numpy.uint")
|
|
+ const_name<sizeof(T) * 8>());
|
|
};
|
|
|
|
template <typename T>
|
|
struct npy_format_descriptor_name<T, enable_if_t<std::is_floating_point<T>::value>> {
|
|
static constexpr auto name = const_name < std::is_same<T, float>::value
|
|
|| std::is_same<T, const float>::value
|
|
|| std::is_same<T, double>::value
|
|
|| std::is_same<T, const double>::value
|
|
> (const_name("numpy.float") + const_name<sizeof(T) * 8>(),
|
|
const_name("numpy.longdouble"));
|
|
};
|
|
|
|
template <typename T>
|
|
struct npy_format_descriptor_name<T, enable_if_t<is_complex<T>::value>> {
|
|
static constexpr auto name = const_name < std::is_same<typename T::value_type, float>::value
|
|
|| std::is_same<typename T::value_type, const float>::value
|
|
|| std::is_same<typename T::value_type, double>::value
|
|
|| std::is_same<typename T::value_type, const double>::value
|
|
> (const_name("numpy.complex")
|
|
+ const_name<sizeof(typename T::value_type) * 16>(),
|
|
const_name("numpy.longcomplex"));
|
|
};
|
|
|
|
template <typename T>
|
|
struct npy_format_descriptor<
|
|
T,
|
|
enable_if_t<satisfies_any_of<T, std::is_arithmetic, is_complex>::value>>
|
|
: npy_format_descriptor_name<T> {
|
|
private:
|
|
// NB: the order here must match the one in common.h
|
|
constexpr static const int values[15] = {npy_api::NPY_BOOL_,
|
|
npy_api::NPY_BYTE_,
|
|
npy_api::NPY_UBYTE_,
|
|
npy_api::NPY_INT16_,
|
|
npy_api::NPY_UINT16_,
|
|
npy_api::NPY_INT32_,
|
|
npy_api::NPY_UINT32_,
|
|
npy_api::NPY_INT64_,
|
|
npy_api::NPY_UINT64_,
|
|
npy_api::NPY_FLOAT_,
|
|
npy_api::NPY_DOUBLE_,
|
|
npy_api::NPY_LONGDOUBLE_,
|
|
npy_api::NPY_CFLOAT_,
|
|
npy_api::NPY_CDOUBLE_,
|
|
npy_api::NPY_CLONGDOUBLE_};
|
|
|
|
public:
|
|
static constexpr int value = values[detail::is_fmt_numeric<T>::index];
|
|
|
|
static pybind11::dtype dtype() {
|
|
if (auto *ptr = npy_api::get().PyArray_DescrFromType_(value)) {
|
|
return reinterpret_steal<pybind11::dtype>(ptr);
|
|
}
|
|
pybind11_fail("Unsupported buffer format!");
|
|
}
|
|
};
|
|
|
|
#define PYBIND11_DECL_CHAR_FMT \
|
|
static constexpr auto name = const_name("S") + const_name<N>(); \
|
|
static pybind11::dtype dtype() { \
|
|
return pybind11::dtype(std::string("S") + std::to_string(N)); \
|
|
}
|
|
template <size_t N>
|
|
struct npy_format_descriptor<char[N]> {
|
|
PYBIND11_DECL_CHAR_FMT
|
|
};
|
|
template <size_t N>
|
|
struct npy_format_descriptor<std::array<char, N>> {
|
|
PYBIND11_DECL_CHAR_FMT
|
|
};
|
|
#undef PYBIND11_DECL_CHAR_FMT
|
|
|
|
template <typename T>
|
|
struct npy_format_descriptor<T, enable_if_t<array_info<T>::is_array>> {
|
|
private:
|
|
using base_descr = npy_format_descriptor<typename array_info<T>::type>;
|
|
|
|
public:
|
|
static_assert(!array_info<T>::is_empty, "Zero-sized arrays are not supported");
|
|
|
|
static constexpr auto name
|
|
= const_name("(") + array_info<T>::extents + const_name(")") + base_descr::name;
|
|
static pybind11::dtype dtype() {
|
|
list shape;
|
|
array_info<T>::append_extents(shape);
|
|
return pybind11::dtype::from_args(pybind11::make_tuple(base_descr::dtype(), shape));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct npy_format_descriptor<T, enable_if_t<std::is_enum<T>::value>> {
|
|
private:
|
|
using base_descr = npy_format_descriptor<typename std::underlying_type<T>::type>;
|
|
|
|
public:
|
|
static constexpr auto name = base_descr::name;
|
|
static pybind11::dtype dtype() { return base_descr::dtype(); }
|
|
};
|
|
|
|
struct field_descriptor {
|
|
const char *name;
|
|
ssize_t offset;
|
|
ssize_t size;
|
|
std::string format;
|
|
dtype descr;
|
|
};
|
|
|
|
PYBIND11_NOINLINE void register_structured_dtype(any_container<field_descriptor> fields,
|
|
const std::type_info &tinfo,
|
|
ssize_t itemsize,
|
|
bool (*direct_converter)(PyObject *, void *&)) {
|
|
|
|
auto &numpy_internals = get_numpy_internals();
|
|
if (numpy_internals.get_type_info(tinfo, false)) {
|
|
pybind11_fail("NumPy: dtype is already registered");
|
|
}
|
|
|
|
// Use ordered fields because order matters as of NumPy 1.14:
|
|
// https://docs.scipy.org/doc/numpy/release.html#multiple-field-indexing-assignment-of-structured-arrays
|
|
std::vector<field_descriptor> ordered_fields(std::move(fields));
|
|
std::sort(
|
|
ordered_fields.begin(),
|
|
ordered_fields.end(),
|
|
[](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; });
|
|
|
|
list names, formats, offsets;
|
|
for (auto &field : ordered_fields) {
|
|
if (!field.descr) {
|
|
pybind11_fail(std::string("NumPy: unsupported field dtype: `") + field.name + "` @ "
|
|
+ tinfo.name());
|
|
}
|
|
names.append(PYBIND11_STR_TYPE(field.name));
|
|
formats.append(field.descr);
|
|
offsets.append(pybind11::int_(field.offset));
|
|
}
|
|
auto *dtype_ptr
|
|
= pybind11::dtype(std::move(names), std::move(formats), std::move(offsets), itemsize)
|
|
.release()
|
|
.ptr();
|
|
|
|
// There is an existing bug in NumPy (as of v1.11): trailing bytes are
|
|
// not encoded explicitly into the format string. This will supposedly
|
|
// get fixed in v1.12; for further details, see these:
|
|
// - https://github.com/numpy/numpy/issues/7797
|
|
// - https://github.com/numpy/numpy/pull/7798
|
|
// Because of this, we won't use numpy's logic to generate buffer format
|
|
// strings and will just do it ourselves.
|
|
ssize_t offset = 0;
|
|
std::ostringstream oss;
|
|
// mark the structure as unaligned with '^', because numpy and C++ don't
|
|
// always agree about alignment (particularly for complex), and we're
|
|
// explicitly listing all our padding. This depends on none of the fields
|
|
// overriding the endianness. Putting the ^ in front of individual fields
|
|
// isn't guaranteed to work due to https://github.com/numpy/numpy/issues/9049
|
|
oss << "^T{";
|
|
for (auto &field : ordered_fields) {
|
|
if (field.offset > offset) {
|
|
oss << (field.offset - offset) << 'x';
|
|
}
|
|
oss << field.format << ':' << field.name << ':';
|
|
offset = field.offset + field.size;
|
|
}
|
|
if (itemsize > offset) {
|
|
oss << (itemsize - offset) << 'x';
|
|
}
|
|
oss << '}';
|
|
auto format_str = oss.str();
|
|
|
|
// Sanity check: verify that NumPy properly parses our buffer format string
|
|
auto &api = npy_api::get();
|
|
auto arr = array(buffer_info(nullptr, itemsize, format_str, 1));
|
|
if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr())) {
|
|
pybind11_fail("NumPy: invalid buffer descriptor!");
|
|
}
|
|
|
|
auto tindex = std::type_index(tinfo);
|
|
numpy_internals.registered_dtypes[tindex] = {dtype_ptr, format_str};
|
|
get_internals().direct_conversions[tindex].push_back(direct_converter);
|
|
}
|
|
|
|
template <typename T, typename SFINAE>
|
|
struct npy_format_descriptor {
|
|
static_assert(is_pod_struct<T>::value,
|
|
"Attempt to use a non-POD or unimplemented POD type as a numpy dtype");
|
|
|
|
static constexpr auto name = make_caster<T>::name;
|
|
|
|
static pybind11::dtype dtype() { return reinterpret_borrow<pybind11::dtype>(dtype_ptr()); }
|
|
|
|
static std::string format() {
|
|
static auto format_str = get_numpy_internals().get_type_info<T>(true)->format_str;
|
|
return format_str;
|
|
}
|
|
|
|
static void register_dtype(any_container<field_descriptor> fields) {
|
|
register_structured_dtype(std::move(fields),
|
|
typeid(typename std::remove_cv<T>::type),
|
|
sizeof(T),
|
|
&direct_converter);
|
|
}
|
|
|
|
private:
|
|
static PyObject *dtype_ptr() {
|
|
static PyObject *ptr = get_numpy_internals().get_type_info<T>(true)->dtype_ptr;
|
|
return ptr;
|
|
}
|
|
|
|
static bool direct_converter(PyObject *obj, void *&value) {
|
|
auto &api = npy_api::get();
|
|
if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_)) {
|
|
return false;
|
|
}
|
|
if (auto descr = reinterpret_steal<object>(api.PyArray_DescrFromScalar_(obj))) {
|
|
if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) {
|
|
value = ((PyVoidScalarObject_Proxy *) obj)->obval;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
#ifdef __CLION_IDE__ // replace heavy macro with dummy code for the IDE (doesn't affect code)
|
|
# define PYBIND11_NUMPY_DTYPE(Type, ...) ((void) 0)
|
|
# define PYBIND11_NUMPY_DTYPE_EX(Type, ...) ((void) 0)
|
|
#else
|
|
|
|
# define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name) \
|
|
::pybind11::detail::field_descriptor { \
|
|
Name, offsetof(T, Field), sizeof(decltype(std::declval<T>().Field)), \
|
|
::pybind11::format_descriptor<decltype(std::declval<T>().Field)>::format(), \
|
|
::pybind11::detail::npy_format_descriptor< \
|
|
decltype(std::declval<T>().Field)>::dtype() \
|
|
}
|
|
|
|
// Extract name, offset and format descriptor for a struct field
|
|
# define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, # Field)
|
|
|
|
// The main idea of this macro is borrowed from https://github.com/swansontec/map-macro
|
|
// (C) William Swanson, Paul Fultz
|
|
# define PYBIND11_EVAL0(...) __VA_ARGS__
|
|
# define PYBIND11_EVAL1(...) PYBIND11_EVAL0(PYBIND11_EVAL0(PYBIND11_EVAL0(__VA_ARGS__)))
|
|
# define PYBIND11_EVAL2(...) PYBIND11_EVAL1(PYBIND11_EVAL1(PYBIND11_EVAL1(__VA_ARGS__)))
|
|
# define PYBIND11_EVAL3(...) PYBIND11_EVAL2(PYBIND11_EVAL2(PYBIND11_EVAL2(__VA_ARGS__)))
|
|
# define PYBIND11_EVAL4(...) PYBIND11_EVAL3(PYBIND11_EVAL3(PYBIND11_EVAL3(__VA_ARGS__)))
|
|
# define PYBIND11_EVAL(...) PYBIND11_EVAL4(PYBIND11_EVAL4(PYBIND11_EVAL4(__VA_ARGS__)))
|
|
# define PYBIND11_MAP_END(...)
|
|
# define PYBIND11_MAP_OUT
|
|
# define PYBIND11_MAP_COMMA ,
|
|
# define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END
|
|
# define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT
|
|
# define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0(test, next, 0)
|
|
# define PYBIND11_MAP_NEXT(test, next) PYBIND11_MAP_NEXT1(PYBIND11_MAP_GET_END test, next)
|
|
# if defined(_MSC_VER) \
|
|
&& !defined(__clang__) // MSVC is not as eager to expand macros, hence this workaround
|
|
# define PYBIND11_MAP_LIST_NEXT1(test, next) \
|
|
PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0))
|
|
# else
|
|
# define PYBIND11_MAP_LIST_NEXT1(test, next) \
|
|
PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)
|
|
# endif
|
|
# define PYBIND11_MAP_LIST_NEXT(test, next) \
|
|
PYBIND11_MAP_LIST_NEXT1(PYBIND11_MAP_GET_END test, next)
|
|
# define PYBIND11_MAP_LIST0(f, t, x, peek, ...) \
|
|
f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST1)(f, t, peek, __VA_ARGS__)
|
|
# define PYBIND11_MAP_LIST1(f, t, x, peek, ...) \
|
|
f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST0)(f, t, peek, __VA_ARGS__)
|
|
// PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ...
|
|
# define PYBIND11_MAP_LIST(f, t, ...) \
|
|
PYBIND11_EVAL(PYBIND11_MAP_LIST1(f, t, __VA_ARGS__, (), 0))
|
|
|
|
# define PYBIND11_NUMPY_DTYPE(Type, ...) \
|
|
::pybind11::detail::npy_format_descriptor<Type>::register_dtype( \
|
|
::std::vector<::pybind11::detail::field_descriptor>{ \
|
|
PYBIND11_MAP_LIST(PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)})
|
|
|
|
# if defined(_MSC_VER) && !defined(__clang__)
|
|
# define PYBIND11_MAP2_LIST_NEXT1(test, next) \
|
|
PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0))
|
|
# else
|
|
# define PYBIND11_MAP2_LIST_NEXT1(test, next) \
|
|
PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)
|
|
# endif
|
|
# define PYBIND11_MAP2_LIST_NEXT(test, next) \
|
|
PYBIND11_MAP2_LIST_NEXT1(PYBIND11_MAP_GET_END test, next)
|
|
# define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...) \
|
|
f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST1)(f, t, peek, __VA_ARGS__)
|
|
# define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...) \
|
|
f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST0)(f, t, peek, __VA_ARGS__)
|
|
// PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ...
|
|
# define PYBIND11_MAP2_LIST(f, t, ...) \
|
|
PYBIND11_EVAL(PYBIND11_MAP2_LIST1(f, t, __VA_ARGS__, (), 0))
|
|
|
|
# define PYBIND11_NUMPY_DTYPE_EX(Type, ...) \
|
|
::pybind11::detail::npy_format_descriptor<Type>::register_dtype( \
|
|
::std::vector<::pybind11::detail::field_descriptor>{ \
|
|
PYBIND11_MAP2_LIST(PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)})
|
|
|
|
#endif // __CLION_IDE__
|
|
|
|
class common_iterator {
|
|
public:
|
|
using container_type = std::vector<ssize_t>;
|
|
using value_type = container_type::value_type;
|
|
using size_type = container_type::size_type;
|
|
|
|
common_iterator() : m_strides() {}
|
|
|
|
common_iterator(void *ptr, const container_type &strides, const container_type &shape)
|
|
: p_ptr(reinterpret_cast<char *>(ptr)), m_strides(strides.size()) {
|
|
m_strides.back() = static_cast<value_type>(strides.back());
|
|
for (size_type i = m_strides.size() - 1; i != 0; --i) {
|
|
size_type j = i - 1;
|
|
auto s = static_cast<value_type>(shape[i]);
|
|
m_strides[j] = strides[j] + m_strides[i] - strides[i] * s;
|
|
}
|
|
}
|
|
|
|
void increment(size_type dim) { p_ptr += m_strides[dim]; }
|
|
|
|
void *data() const { return p_ptr; }
|
|
|
|
private:
|
|
char *p_ptr{0};
|
|
container_type m_strides;
|
|
};
|
|
|
|
template <size_t N>
|
|
class multi_array_iterator {
|
|
public:
|
|
using container_type = std::vector<ssize_t>;
|
|
|
|
multi_array_iterator(const std::array<buffer_info, N> &buffers, const container_type &shape)
|
|
: m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator() {
|
|
|
|
// Manual copy to avoid conversion warning if using std::copy
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
m_shape[i] = shape[i];
|
|
}
|
|
|
|
container_type strides(shape.size());
|
|
for (size_t i = 0; i < N; ++i) {
|
|
init_common_iterator(buffers[i], shape, m_common_iterator[i], strides);
|
|
}
|
|
}
|
|
|
|
multi_array_iterator &operator++() {
|
|
for (size_t j = m_index.size(); j != 0; --j) {
|
|
size_t i = j - 1;
|
|
if (++m_index[i] != m_shape[i]) {
|
|
increment_common_iterator(i);
|
|
break;
|
|
}
|
|
m_index[i] = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <size_t K, class T = void>
|
|
T *data() const {
|
|
return reinterpret_cast<T *>(m_common_iterator[K].data());
|
|
}
|
|
|
|
private:
|
|
using common_iter = common_iterator;
|
|
|
|
void init_common_iterator(const buffer_info &buffer,
|
|
const container_type &shape,
|
|
common_iter &iterator,
|
|
container_type &strides) {
|
|
auto buffer_shape_iter = buffer.shape.rbegin();
|
|
auto buffer_strides_iter = buffer.strides.rbegin();
|
|
auto shape_iter = shape.rbegin();
|
|
auto strides_iter = strides.rbegin();
|
|
|
|
while (buffer_shape_iter != buffer.shape.rend()) {
|
|
if (*shape_iter == *buffer_shape_iter) {
|
|
*strides_iter = *buffer_strides_iter;
|
|
} else {
|
|
*strides_iter = 0;
|
|
}
|
|
|
|
++buffer_shape_iter;
|
|
++buffer_strides_iter;
|
|
++shape_iter;
|
|
++strides_iter;
|
|
}
|
|
|
|
std::fill(strides_iter, strides.rend(), 0);
|
|
iterator = common_iter(buffer.ptr, strides, shape);
|
|
}
|
|
|
|
void increment_common_iterator(size_t dim) {
|
|
for (auto &iter : m_common_iterator) {
|
|
iter.increment(dim);
|
|
}
|
|
}
|
|
|
|
container_type m_shape;
|
|
container_type m_index;
|
|
std::array<common_iter, N> m_common_iterator;
|
|
};
|
|
|
|
enum class broadcast_trivial { non_trivial, c_trivial, f_trivial };
|
|
|
|
// Populates the shape and number of dimensions for the set of buffers. Returns a
|
|
// broadcast_trivial enum value indicating whether the broadcast is "trivial"--that is, has each
|
|
// buffer being either a singleton or a full-size, C-contiguous (`c_trivial`) or Fortran-contiguous
|
|
// (`f_trivial`) storage buffer; returns `non_trivial` otherwise.
|
|
template <size_t N>
|
|
broadcast_trivial
|
|
broadcast(const std::array<buffer_info, N> &buffers, ssize_t &ndim, std::vector<ssize_t> &shape) {
|
|
ndim = std::accumulate(
|
|
buffers.begin(), buffers.end(), ssize_t(0), [](ssize_t res, const buffer_info &buf) {
|
|
return std::max(res, buf.ndim);
|
|
});
|
|
|
|
shape.clear();
|
|
shape.resize((size_t) ndim, 1);
|
|
|
|
// Figure out the output size, and make sure all input arrays conform (i.e. are either size 1
|
|
// or the full size).
|
|
for (size_t i = 0; i < N; ++i) {
|
|
auto res_iter = shape.rbegin();
|
|
auto end = buffers[i].shape.rend();
|
|
for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != end;
|
|
++shape_iter, ++res_iter) {
|
|
const auto &dim_size_in = *shape_iter;
|
|
auto &dim_size_out = *res_iter;
|
|
|
|
// Each input dimension can either be 1 or `n`, but `n` values must match across
|
|
// buffers
|
|
if (dim_size_out == 1) {
|
|
dim_size_out = dim_size_in;
|
|
} else if (dim_size_in != 1 && dim_size_in != dim_size_out) {
|
|
pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!");
|
|
}
|
|
}
|
|
}
|
|
|
|
bool trivial_broadcast_c = true;
|
|
bool trivial_broadcast_f = true;
|
|
for (size_t i = 0; i < N && (trivial_broadcast_c || trivial_broadcast_f); ++i) {
|
|
if (buffers[i].size == 1) {
|
|
continue;
|
|
}
|
|
|
|
// Require the same number of dimensions:
|
|
if (buffers[i].ndim != ndim) {
|
|
return broadcast_trivial::non_trivial;
|
|
}
|
|
|
|
// Require all dimensions be full-size:
|
|
if (!std::equal(buffers[i].shape.cbegin(), buffers[i].shape.cend(), shape.cbegin())) {
|
|
return broadcast_trivial::non_trivial;
|
|
}
|
|
|
|
// Check for C contiguity (but only if previous inputs were also C contiguous)
|
|
if (trivial_broadcast_c) {
|
|
ssize_t expect_stride = buffers[i].itemsize;
|
|
auto end = buffers[i].shape.crend();
|
|
for (auto shape_iter = buffers[i].shape.crbegin(),
|
|
stride_iter = buffers[i].strides.crbegin();
|
|
trivial_broadcast_c && shape_iter != end;
|
|
++shape_iter, ++stride_iter) {
|
|
if (expect_stride == *stride_iter) {
|
|
expect_stride *= *shape_iter;
|
|
} else {
|
|
trivial_broadcast_c = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for Fortran contiguity (if previous inputs were also F contiguous)
|
|
if (trivial_broadcast_f) {
|
|
ssize_t expect_stride = buffers[i].itemsize;
|
|
auto end = buffers[i].shape.cend();
|
|
for (auto shape_iter = buffers[i].shape.cbegin(),
|
|
stride_iter = buffers[i].strides.cbegin();
|
|
trivial_broadcast_f && shape_iter != end;
|
|
++shape_iter, ++stride_iter) {
|
|
if (expect_stride == *stride_iter) {
|
|
expect_stride *= *shape_iter;
|
|
} else {
|
|
trivial_broadcast_f = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return trivial_broadcast_c ? broadcast_trivial::c_trivial
|
|
: trivial_broadcast_f ? broadcast_trivial::f_trivial
|
|
: broadcast_trivial::non_trivial;
|
|
}
|
|
|
|
template <typename T>
|
|
struct vectorize_arg {
|
|
static_assert(!std::is_rvalue_reference<T>::value,
|
|
"Functions with rvalue reference arguments cannot be vectorized");
|
|
// The wrapped function gets called with this type:
|
|
using call_type = remove_reference_t<T>;
|
|
// Is this a vectorized argument?
|
|
static constexpr bool vectorize
|
|
= satisfies_any_of<call_type, std::is_arithmetic, is_complex, is_pod>::value
|
|
&& satisfies_none_of<call_type,
|
|
std::is_pointer,
|
|
std::is_array,
|
|
is_std_array,
|
|
std::is_enum>::value
|
|
&& (!std::is_reference<T>::value
|
|
|| (std::is_lvalue_reference<T>::value && std::is_const<call_type>::value));
|
|
// Accept this type: an array for vectorized types, otherwise the type as-is:
|
|
using type = conditional_t<vectorize, array_t<remove_cv_t<call_type>, array::forcecast>, T>;
|
|
};
|
|
|
|
// py::vectorize when a return type is present
|
|
template <typename Func, typename Return, typename... Args>
|
|
struct vectorize_returned_array {
|
|
using Type = array_t<Return>;
|
|
|
|
static Type create(broadcast_trivial trivial, const std::vector<ssize_t> &shape) {
|
|
if (trivial == broadcast_trivial::f_trivial) {
|
|
return array_t<Return, array::f_style>(shape);
|
|
}
|
|
return array_t<Return>(shape);
|
|
}
|
|
|
|
static Return *mutable_data(Type &array) { return array.mutable_data(); }
|
|
|
|
static Return call(Func &f, Args &...args) { return f(args...); }
|
|
|
|
static void call(Return *out, size_t i, Func &f, Args &...args) { out[i] = f(args...); }
|
|
};
|
|
|
|
// py::vectorize when a return type is not present
|
|
template <typename Func, typename... Args>
|
|
struct vectorize_returned_array<Func, void, Args...> {
|
|
using Type = none;
|
|
|
|
static Type create(broadcast_trivial, const std::vector<ssize_t> &) { return none(); }
|
|
|
|
static void *mutable_data(Type &) { return nullptr; }
|
|
|
|
static detail::void_type call(Func &f, Args &...args) {
|
|
f(args...);
|
|
return {};
|
|
}
|
|
|
|
static void call(void *, size_t, Func &f, Args &...args) { f(args...); }
|
|
};
|
|
|
|
template <typename Func, typename Return, typename... Args>
|
|
struct vectorize_helper {
|
|
|
|
// NVCC for some reason breaks if NVectorized is private
|
|
#ifdef __CUDACC__
|
|
public:
|
|
#else
|
|
private:
|
|
#endif
|
|
|
|
static constexpr size_t N = sizeof...(Args);
|
|
static constexpr size_t NVectorized = constexpr_sum(vectorize_arg<Args>::vectorize...);
|
|
static_assert(
|
|
NVectorized >= 1,
|
|
"pybind11::vectorize(...) requires a function with at least one vectorizable argument");
|
|
|
|
public:
|
|
template <typename T,
|
|
// SFINAE to prevent shadowing the copy constructor.
|
|
typename = detail::enable_if_t<
|
|
!std::is_same<vectorize_helper, typename std::decay<T>::type>::value>>
|
|
explicit vectorize_helper(T &&f) : f(std::forward<T>(f)) {}
|
|
|
|
object operator()(typename vectorize_arg<Args>::type... args) {
|
|
return run(args...,
|
|
make_index_sequence<N>(),
|
|
select_indices<vectorize_arg<Args>::vectorize...>(),
|
|
make_index_sequence<NVectorized>());
|
|
}
|
|
|
|
private:
|
|
remove_reference_t<Func> f;
|
|
|
|
// Internal compiler error in MSVC 19.16.27025.1 (Visual Studio 2017 15.9.4), when compiling
|
|
// with "/permissive-" flag when arg_call_types is manually inlined.
|
|
using arg_call_types = std::tuple<typename vectorize_arg<Args>::call_type...>;
|
|
template <size_t Index>
|
|
using param_n_t = typename std::tuple_element<Index, arg_call_types>::type;
|
|
|
|
using returned_array = vectorize_returned_array<Func, Return, Args...>;
|
|
|
|
// Runs a vectorized function given arguments tuple and three index sequences:
|
|
// - Index is the full set of 0 ... (N-1) argument indices;
|
|
// - VIndex is the subset of argument indices with vectorized parameters, letting us access
|
|
// vectorized arguments (anything not in this sequence is passed through)
|
|
// - BIndex is a incremental sequence (beginning at 0) of the same size as VIndex, so that
|
|
// we can store vectorized buffer_infos in an array (argument VIndex has its buffer at
|
|
// index BIndex in the array).
|
|
template <size_t... Index, size_t... VIndex, size_t... BIndex>
|
|
object run(typename vectorize_arg<Args>::type &...args,
|
|
index_sequence<Index...> i_seq,
|
|
index_sequence<VIndex...> vi_seq,
|
|
index_sequence<BIndex...> bi_seq) {
|
|
|
|
// Pointers to values the function was called with; the vectorized ones set here will start
|
|
// out as array_t<T> pointers, but they will be changed them to T pointers before we make
|
|
// call the wrapped function. Non-vectorized pointers are left as-is.
|
|
std::array<void *, N> params{{&args...}};
|
|
|
|
// The array of `buffer_info`s of vectorized arguments:
|
|
std::array<buffer_info, NVectorized> buffers{
|
|
{reinterpret_cast<array *>(params[VIndex])->request()...}};
|
|
|
|
/* Determine dimensions parameters of output array */
|
|
ssize_t nd = 0;
|
|
std::vector<ssize_t> shape(0);
|
|
auto trivial = broadcast(buffers, nd, shape);
|
|
auto ndim = (size_t) nd;
|
|
|
|
size_t size
|
|
= std::accumulate(shape.begin(), shape.end(), (size_t) 1, std::multiplies<size_t>());
|
|
|
|
// If all arguments are 0-dimension arrays (i.e. single values) return a plain value (i.e.
|
|
// not wrapped in an array).
|
|
if (size == 1 && ndim == 0) {
|
|
PYBIND11_EXPAND_SIDE_EFFECTS(params[VIndex] = buffers[BIndex].ptr);
|
|
return cast(
|
|
returned_array::call(f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...));
|
|
}
|
|
|
|
auto result = returned_array::create(trivial, shape);
|
|
|
|
if (size == 0) {
|
|
return std::move(result);
|
|
}
|
|
|
|
/* Call the function */
|
|
auto *mutable_data = returned_array::mutable_data(result);
|
|
if (trivial == broadcast_trivial::non_trivial) {
|
|
apply_broadcast(buffers, params, mutable_data, size, shape, i_seq, vi_seq, bi_seq);
|
|
} else {
|
|
apply_trivial(buffers, params, mutable_data, size, i_seq, vi_seq, bi_seq);
|
|
}
|
|
|
|
return std::move(result);
|
|
}
|
|
|
|
template <size_t... Index, size_t... VIndex, size_t... BIndex>
|
|
void apply_trivial(std::array<buffer_info, NVectorized> &buffers,
|
|
std::array<void *, N> ¶ms,
|
|
Return *out,
|
|
size_t size,
|
|
index_sequence<Index...>,
|
|
index_sequence<VIndex...>,
|
|
index_sequence<BIndex...>) {
|
|
|
|
// Initialize an array of mutable byte references and sizes with references set to the
|
|
// appropriate pointer in `params`; as we iterate, we'll increment each pointer by its size
|
|
// (except for singletons, which get an increment of 0).
|
|
std::array<std::pair<unsigned char *&, const size_t>, NVectorized> vecparams{
|
|
{std::pair<unsigned char *&, const size_t>(
|
|
reinterpret_cast<unsigned char *&>(params[VIndex] = buffers[BIndex].ptr),
|
|
buffers[BIndex].size == 1 ? 0 : sizeof(param_n_t<VIndex>))...}};
|
|
|
|
for (size_t i = 0; i < size; ++i) {
|
|
returned_array::call(
|
|
out, i, f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...);
|
|
for (auto &x : vecparams) {
|
|
x.first += x.second;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <size_t... Index, size_t... VIndex, size_t... BIndex>
|
|
void apply_broadcast(std::array<buffer_info, NVectorized> &buffers,
|
|
std::array<void *, N> ¶ms,
|
|
Return *out,
|
|
size_t size,
|
|
const std::vector<ssize_t> &output_shape,
|
|
index_sequence<Index...>,
|
|
index_sequence<VIndex...>,
|
|
index_sequence<BIndex...>) {
|
|
|
|
multi_array_iterator<NVectorized> input_iter(buffers, output_shape);
|
|
|
|
for (size_t i = 0; i < size; ++i, ++input_iter) {
|
|
PYBIND11_EXPAND_SIDE_EFFECTS((params[VIndex] = input_iter.template data<BIndex>()));
|
|
returned_array::call(
|
|
out, i, f, *reinterpret_cast<param_n_t<Index> *>(std::get<Index>(params))...);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Func, typename Return, typename... Args>
|
|
vectorize_helper<Func, Return, Args...> vectorize_extractor(const Func &f, Return (*)(Args...)) {
|
|
return detail::vectorize_helper<Func, Return, Args...>(f);
|
|
}
|
|
|
|
template <typename T, int Flags>
|
|
struct handle_type_name<array_t<T, Flags>> {
|
|
static constexpr auto name
|
|
= const_name("numpy.ndarray[") + npy_format_descriptor<T>::name + const_name("]");
|
|
};
|
|
|
|
PYBIND11_NAMESPACE_END(detail)
|
|
|
|
// Vanilla pointer vectorizer:
|
|
template <typename Return, typename... Args>
|
|
detail::vectorize_helper<Return (*)(Args...), Return, Args...> vectorize(Return (*f)(Args...)) {
|
|
return detail::vectorize_helper<Return (*)(Args...), Return, Args...>(f);
|
|
}
|
|
|
|
// lambda vectorizer:
|
|
template <typename Func, detail::enable_if_t<detail::is_lambda<Func>::value, int> = 0>
|
|
auto vectorize(Func &&f)
|
|
-> decltype(detail::vectorize_extractor(std::forward<Func>(f),
|
|
(detail::function_signature_t<Func> *) nullptr)) {
|
|
return detail::vectorize_extractor(std::forward<Func>(f),
|
|
(detail::function_signature_t<Func> *) nullptr);
|
|
}
|
|
|
|
// Vectorize a class method (non-const):
|
|
template <typename Return,
|
|
typename Class,
|
|
typename... Args,
|
|
typename Helper = detail::vectorize_helper<
|
|
decltype(std::mem_fn(std::declval<Return (Class::*)(Args...)>())),
|
|
Return,
|
|
Class *,
|
|
Args...>>
|
|
Helper vectorize(Return (Class::*f)(Args...)) {
|
|
return Helper(std::mem_fn(f));
|
|
}
|
|
|
|
// Vectorize a class method (const):
|
|
template <typename Return,
|
|
typename Class,
|
|
typename... Args,
|
|
typename Helper = detail::vectorize_helper<
|
|
decltype(std::mem_fn(std::declval<Return (Class::*)(Args...) const>())),
|
|
Return,
|
|
const Class *,
|
|
Args...>>
|
|
Helper vectorize(Return (Class::*f)(Args...) const) {
|
|
return Helper(std::mem_fn(f));
|
|
}
|
|
|
|
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
|