kicad/3d-viewer/3d_rendering/raytracing/render_3d_raytrace_base.cpp

1775 lines
72 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2020 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 2015-2024 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <algorithm>
#include <atomic>
#include <chrono>
#include <thread>
#include "render_3d_raytrace_base.h"
#include "mortoncodes.h"
#include "../color_rgba.h"
#include "3d_fastmath.h"
#include "3d_math.h"
#include <core/profile.h> // To use GetRunningMicroSecs or another profiling utility
#include <wx/log.h>
RENDER_3D_RAYTRACE_BASE::RENDER_3D_RAYTRACE_BASE( BOARD_ADAPTER& aAdapter, CAMERA& aCamera ) :
RENDER_3D_BASE( aAdapter, aCamera ),
m_postShaderSsao( aCamera )
{
wxLogTrace( m_logTrace, wxT( "RENDER_3D_RAYTRACE_BASE::RENDER_3D_RAYTRACE_BASE" ) );
//m_pboId = GL_NONE;
//m_pboDataSize = 0;
m_accelerator = nullptr;
m_convertedDummyBlockCount = 0;
m_converted2dRoundSegmentCount = 0;
m_oldWindowsSize.x = 0;
m_oldWindowsSize.y = 0;
m_outlineBoard2dObjects = nullptr;
m_antioutlineBoard2dObjects = nullptr;
m_firstHitinfo = nullptr;
m_shaderBuffer = nullptr;
m_cameraLight = nullptr;
m_xoffset = 0;
m_yoffset = 0;
m_is_canvas_initialized = false;
m_isPreview = false;
m_renderState = RT_RENDER_STATE_MAX; // Set to an initial invalid state
m_renderStartTime = 0;
m_blockRenderProgressCount = 0;
}
RENDER_3D_RAYTRACE_BASE::~RENDER_3D_RAYTRACE_BASE()
{
wxLogTrace( m_logTrace, wxT( "RENDER_3D_RAYTRACE_BASE::~RENDER_3D_RAYTRACE_BASE" ) );
delete m_accelerator;
m_accelerator = nullptr;
delete m_outlineBoard2dObjects;
m_outlineBoard2dObjects = nullptr;
delete m_antioutlineBoard2dObjects;
m_antioutlineBoard2dObjects = nullptr;
delete[] m_shaderBuffer;
m_shaderBuffer = nullptr;
}
int RENDER_3D_RAYTRACE_BASE::GetWaitForEditingTimeOut()
{
return 200; // ms
}
void RENDER_3D_RAYTRACE_BASE::restartRenderState()
{
m_renderStartTime = GetRunningMicroSecs();
m_renderState = RT_RENDER_STATE_TRACING;
m_blockRenderProgressCount = 0;
m_postShaderSsao.InitFrame();
m_blockPositionsWasProcessed.resize( m_blockPositions.size() );
// Mark the blocks not processed yet
std::fill( m_blockPositionsWasProcessed.begin(), m_blockPositionsWasProcessed.end(), 0 );
}
static inline void SetPixel( GLubyte* p, const COLOR_RGBA& v )
{
p[0] = v.c[0];
p[1] = v.c[1];
p[2] = v.c[2];
p[3] = v.c[3];
}
SFVEC4F RENDER_3D_RAYTRACE_BASE::premultiplyAlpha( const SFVEC4F& aInput )
{
return SFVEC4F( aInput.r * aInput.a, aInput.g * aInput.a, aInput.b * aInput.a, aInput.a );
}
void RENDER_3D_RAYTRACE_BASE::render( GLubyte* ptrPBO, REPORTER* aStatusReporter )
{
if( ( m_renderState == RT_RENDER_STATE_FINISH ) || ( m_renderState >= RT_RENDER_STATE_MAX ) )
{
restartRenderState();
if( m_cameraLight )
m_cameraLight->SetDirection( -m_camera.GetDir() );
if( m_boardAdapter.m_Cfg->m_Render.engine == RENDER_ENGINE::OPENGL )
{
// Set all pixels of PBO transparent (Alpha to 0)
// This way it will draw the full buffer but only shows the updated (
// already calculated) squares
unsigned int nPixels = m_realBufferSize.x * m_realBufferSize.y;
GLubyte* tmp_ptrPBO = ptrPBO + 3; // PBO is RGBA
for( unsigned int i = 0; i < nPixels; ++i )
{
*tmp_ptrPBO = 0;
tmp_ptrPBO += 4; // PBO is RGBA
}
}
m_backgroundColorTop =
ConvertSRGBAToLinear( premultiplyAlpha( m_boardAdapter.m_BgColorTop ) );
m_backgroundColorBottom =
ConvertSRGBAToLinear( premultiplyAlpha( m_boardAdapter.m_BgColorBot ) );
}
switch( m_renderState )
{
case RT_RENDER_STATE_TRACING:
renderTracing( ptrPBO, aStatusReporter );
break;
case RT_RENDER_STATE_POST_PROCESS_SHADE:
postProcessShading( ptrPBO, aStatusReporter );
break;
case RT_RENDER_STATE_POST_PROCESS_BLUR_AND_FINISH:
postProcessBlurFinish( ptrPBO, aStatusReporter );
break;
default:
wxASSERT_MSG( false, wxT( "Invalid state on m_renderState" ) );
restartRenderState();
break;
}
if( aStatusReporter && ( m_renderState == RT_RENDER_STATE_FINISH ) )
{
// Calculation time in seconds
const double elapsed_time = (double) ( GetRunningMicroSecs() - m_renderStartTime ) / 1e6;
aStatusReporter->Report( wxString::Format( _( "Rendering time %.3f s" ), elapsed_time ) );
}
}
void RENDER_3D_RAYTRACE_BASE::renderTracing( GLubyte* ptrPBO, REPORTER* aStatusReporter )
{
m_isPreview = false;
auto startTime = std::chrono::steady_clock::now();
bool breakLoop = false;
std::atomic<size_t> numBlocksRendered( 0 );
std::atomic<size_t> currentBlock( 0 );
std::atomic<size_t> threadsFinished( 0 );
size_t parallelThreadCount = std::min<size_t>(
std::max<size_t>( std::thread::hardware_concurrency(), 2 ),
m_blockPositions.size() );
const int timeLimit = m_blockPositions.size() > 40000 ? 500 : 200;
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
std::thread t = std::thread( [&]()
{
for( size_t iBlock = currentBlock.fetch_add( 1 );
iBlock < m_blockPositions.size() && !breakLoop;
iBlock = currentBlock.fetch_add( 1 ) )
{
if( !m_blockPositionsWasProcessed[iBlock] )
{
renderBlockTracing( ptrPBO, iBlock );
numBlocksRendered++;
m_blockPositionsWasProcessed[iBlock] = 1;
// Check if it spend already some time render and request to exit
// to display the progress
auto diff = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now() - startTime );
if( diff.count() > timeLimit )
breakLoop = true;
}
}
threadsFinished++;
} );
t.detach();
}
while( threadsFinished < parallelThreadCount )
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
m_blockRenderProgressCount += numBlocksRendered;
if( aStatusReporter )
aStatusReporter->Report( wxString::Format( _( "Rendering: %.0f %%" ),
(float) ( m_blockRenderProgressCount * 100 )
/ (float) m_blockPositions.size() ) );
// Check if it finish the rendering and if should continue to a post processing
// or mark it as finished
if( m_blockRenderProgressCount >= m_blockPositions.size() )
{
if( m_boardAdapter.m_Cfg->m_Render.raytrace_post_processing )
m_renderState = RT_RENDER_STATE_POST_PROCESS_SHADE;
else
m_renderState = RT_RENDER_STATE_FINISH;
}
}
#ifdef USE_SRGB_SPACE
/// @todo This should be removed in future when KiCad supports a greater version of glm lib.
#define SRGB_GAMA 2.4f
// This function implements the conversion from linear RGB to sRGB
// https://github.com/g-truc/glm/blob/master/glm/gtc/color_space.inl#L12
static SFVEC3F convertLinearToSRGB( const SFVEC3F& aRGBcolor )
{
const float gammaCorrection = 1.0f / SRGB_GAMA;
const SFVEC3F clampedColor = glm::clamp( aRGBcolor, SFVEC3F( 0.0f ), SFVEC3F( 1.0f ) );
return glm::mix( glm::pow( clampedColor, SFVEC3F(gammaCorrection) ) * 1.055f - 0.055f,
clampedColor * 12.92f,
glm::lessThan( clampedColor, SFVEC3F(0.0031308f) ) );
}
static SFVEC4F convertLinearToSRGBA( const SFVEC4F& aRGBAcolor )
{
return SFVEC4F( convertLinearToSRGB( SFVEC3F( aRGBAcolor ) ), aRGBAcolor.a );
}
// This function implements the conversion from sRGB to linear RGB
// https://github.com/g-truc/glm/blob/master/glm/gtc/color_space.inl#L35
SFVEC3F ConvertSRGBToLinear( const SFVEC3F& aSRGBcolor )
{
const float gammaCorrection = SRGB_GAMA;
return glm::mix( glm::pow( ( aSRGBcolor + SFVEC3F( 0.055f ) )
* SFVEC3F( 0.94786729857819905213270142180095f ),
SFVEC3F( gammaCorrection ) ),
aSRGBcolor * SFVEC3F( 0.07739938080495356037151702786378f ),
glm::lessThanEqual( aSRGBcolor, SFVEC3F( 0.04045f ) ) );
}
SFVEC4F ConvertSRGBAToLinear( const SFVEC4F& aSRGBAcolor )
{
return SFVEC4F( ConvertSRGBToLinear( SFVEC3F( aSRGBAcolor ) ), aSRGBAcolor.a );
}
#endif
void RENDER_3D_RAYTRACE_BASE::renderFinalColor( GLubyte* ptrPBO, const SFVEC4F& rgbColor,
bool applyColorSpaceConversion )
{
SFVEC4F color = rgbColor;
#ifdef USE_SRGB_SPACE
/// @note This should be used in future when the KiCad support a greater version of glm lib.
// if( applyColorSpaceConversion )
// rgbColor = glm::convertLinearToSRGB( rgbColor );
if( applyColorSpaceConversion )
color = convertLinearToSRGB( rgbColor );
#endif
ptrPBO[0] = (unsigned int) glm::clamp( (int) ( color.r * 255 ), 0, 255 );
ptrPBO[1] = (unsigned int) glm::clamp( (int) ( color.g * 255 ), 0, 255 );
ptrPBO[2] = (unsigned int) glm::clamp( (int) ( color.b * 255 ), 0, 255 );
ptrPBO[3] = (unsigned int) glm::clamp( (int) ( color.a * 255 ), 0, 255 );
}
static void HITINFO_PACKET_init( HITINFO_PACKET* aHitPacket )
{
// Initialize hitPacket with a "not hit" information
for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
{
aHitPacket[i].m_HitInfo.m_tHit = std::numeric_limits<float>::infinity();
aHitPacket[i].m_HitInfo.m_acc_node_info = 0;
aHitPacket[i].m_hitresult = false;
aHitPacket[i].m_HitInfo.m_HitNormal = SFVEC3F( 0.0f );
aHitPacket[i].m_HitInfo.m_ShadowFactor = 1.0f;
}
}
void RENDER_3D_RAYTRACE_BASE::renderRayPackets( const SFVEC4F* bgColorY, const RAY* aRayPkt,
HITINFO_PACKET* aHitPacket, bool is_testShadow,
SFVEC4F* aOutHitColor )
{
for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
{
for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
{
if( aHitPacket[i].m_hitresult == true )
{
aOutHitColor[i] = shadeHit( bgColorY[y], aRayPkt[i], aHitPacket[i].m_HitInfo,
false, 0, is_testShadow );
}
else
{
aOutHitColor[i] = bgColorY[y];
}
}
}
}
void RENDER_3D_RAYTRACE_BASE::renderAntiAliasPackets( const SFVEC4F* aBgColorY,
const HITINFO_PACKET* aHitPck_X0Y0,
const HITINFO_PACKET* aHitPck_AA_X1Y1,
const RAY* aRayPck, SFVEC4F* aOutHitColor )
{
const bool is_testShadow = m_boardAdapter.m_Cfg->m_Render.raytrace_shadows;
for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
{
for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
{
const RAY& rayAA = aRayPck[i];
HITINFO hitAA;
hitAA.m_tHit = std::numeric_limits<float>::infinity();
hitAA.m_acc_node_info = 0;
bool hitted = false;
const unsigned int idx0y1 = ( x + 0 ) + RAYPACKET_DIM * ( y + 1 );
const unsigned int idx1y1 = ( x + 1 ) + RAYPACKET_DIM * ( y + 1 );
// Gets the node info from the hit.
const unsigned int nodex0y0 = aHitPck_X0Y0[ i ].m_HitInfo.m_acc_node_info;
const unsigned int node_AA_x0y0 = aHitPck_AA_X1Y1[ i ].m_HitInfo.m_acc_node_info;
unsigned int nodex1y0 = 0;
if( x < (RAYPACKET_DIM - 1) )
nodex1y0 = aHitPck_X0Y0[ i + 1 ].m_HitInfo.m_acc_node_info;
unsigned int nodex0y1 = 0;
if( y < ( RAYPACKET_DIM - 1 ) && idx0y1 < RAYPACKET_RAYS_PER_PACKET )
nodex0y1 = aHitPck_X0Y0[idx0y1].m_HitInfo.m_acc_node_info;
unsigned int nodex1y1 = 0;
if( ( x < ( RAYPACKET_DIM - 1 ) ) && ( y < ( RAYPACKET_DIM - 1 ) )
&& idx1y1 < RAYPACKET_RAYS_PER_PACKET )
nodex1y1 = aHitPck_X0Y0[idx1y1].m_HitInfo.m_acc_node_info;
// If all notes are equal we assume there was no change on the object hits.
if( ( ( nodex0y0 == nodex1y0 ) || ( nodex1y0 == 0 ) )
&& ( ( nodex0y0 == nodex0y1 ) || ( nodex0y1 == 0 ) )
&& ( ( nodex0y0 == nodex1y1 ) || ( nodex1y1 == 0 ) )
&& ( nodex0y0 == node_AA_x0y0 ) )
{
/// @todo Either get rid of the if statement above or do something with the
/// commented out code below.
// Option 1
// This option will give a very good quality on reflections (slow)
/*
if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) )
{
aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
}
else
{
if( m_accelerator->Intersect( rayAA, hitAA ) )
aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
else
aOutHitColor[i] += hitColor[i];
}
*/
// Option 2
// Trace again with the same node,
// then if miss just give the same color as before
//if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) )
// aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
// Option 3
// Use same color
}
else
{
// Try to intersect the different nodes
// It tests the possible combination of hitted or not hitted points
// This will try to get the best hit for this ray
if( nodex0y0 != 0 )
hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y0 );
if( ( nodex1y0 != 0 ) && ( nodex0y0 != nodex1y0 ) )
hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y0 );
if( ( nodex0y1 != 0 ) && ( nodex0y0 != nodex0y1 ) && ( nodex1y0 != nodex0y1 ) )
hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y1 );
if( ( nodex1y1 != 0 ) && ( nodex0y0 != nodex1y1 ) && ( nodex0y1 != nodex1y1 ) &&
( nodex1y0 != nodex1y1 ) )
hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y1 );
if( (node_AA_x0y0 != 0 ) && ( nodex0y0 != node_AA_x0y0 ) &&
( nodex0y1 != node_AA_x0y0 ) && ( nodex1y0 != node_AA_x0y0 ) &&
( nodex1y1 != node_AA_x0y0 ) )
hitted |= m_accelerator->Intersect( rayAA, hitAA, node_AA_x0y0 );
if( hitted )
{
// If we got any result, shade it
aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0,
is_testShadow );
}
else
{
// Note: There are very few cases that will end on this situation
// so it is not so expensive to trace a single ray from the beginning
// It was missed the 'last nodes' so, trace a ray from the beginning
if( m_accelerator->Intersect( rayAA, hitAA ) )
aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0,
is_testShadow );
}
}
}
}
}
#define DISP_FACTOR 0.075f
void RENDER_3D_RAYTRACE_BASE::renderBlockTracing( GLubyte* ptrPBO, signed int iBlock )
{
// Initialize ray packets
const SFVEC2UI& blockPos = m_blockPositions[iBlock];
const SFVEC2I blockPosI = SFVEC2I( blockPos.x + m_xoffset, blockPos.y + m_yoffset );
RAYPACKET blockPacket( m_camera, (SFVEC2F) blockPosI + SFVEC2F( DISP_FACTOR, DISP_FACTOR ),
SFVEC2F( DISP_FACTOR, DISP_FACTOR ) /* Displacement random factor */ );
HITINFO_PACKET hitPacket_X0Y0[RAYPACKET_RAYS_PER_PACKET];
HITINFO_PACKET_init( hitPacket_X0Y0 );
// Calculate background gradient color
SFVEC4F bgColor[RAYPACKET_DIM];// Store a vertical gradient color
for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
{
const float posYfactor = (float) ( blockPosI.y + y ) / (float) m_windowSize.y;
bgColor[y] = m_backgroundColorTop * SFVEC4F(posYfactor) +
m_backgroundColorBottom * ( SFVEC4F(1.0f) - SFVEC4F(posYfactor) );
}
// Intersect ray packets (calculate the intersection with rays and objects)
if( !m_accelerator->Intersect( blockPacket, hitPacket_X0Y0 ) )
{
// If block is empty then set shades and continue
if( m_boardAdapter.m_Cfg->m_Render.raytrace_post_processing )
{
for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
{
const SFVEC4F& outColor = bgColor[y];
const unsigned int yBlockPos = blockPos.y + y;
for( unsigned int x = 0; x < RAYPACKET_DIM; ++x )
{
m_postShaderSsao.SetPixelData( blockPos.x + x, yBlockPos,
SFVEC3F( 0.0f ), outColor,
SFVEC3F( 0.0f ), 0, 1.0f );
}
}
}
// This will set the output color to be displayed
// If post processing is enabled, it will not reflect the final result (as the final
// color will be computed on post processing) but it is used for report progress
const bool isFinalColor = !m_boardAdapter.m_Cfg->m_Render.raytrace_post_processing;
for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
{
const SFVEC4F& outColor = bgColor[y];
const unsigned int yConst = blockPos.x + ( ( y + blockPos.y ) * m_realBufferSize.x );
for( unsigned int x = 0; x < RAYPACKET_DIM; ++x )
{
GLubyte* ptr = &ptrPBO[( yConst + x ) * 4];
renderFinalColor( ptr, outColor, isFinalColor );
}
}
// There is nothing more here to do.. there are no hits ..
// just background so continue
return;
}
SFVEC4F hitColor_X0Y0[RAYPACKET_RAYS_PER_PACKET];
// Shade original (0, 0) hits ("paint" the intersected objects)
renderRayPackets( bgColor, blockPacket.m_ray, hitPacket_X0Y0,
m_boardAdapter.m_Cfg->m_Render.raytrace_shadows, hitColor_X0Y0 );
if( m_boardAdapter.m_Cfg->m_Render.raytrace_anti_aliasing )
{
SFVEC4F hitColor_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET];
// Intersect one blockPosI + (0.5, 0.5) used for anti aliasing calculation
HITINFO_PACKET hitPacket_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET];
HITINFO_PACKET_init( hitPacket_AA_X1Y1 );
RAYPACKET blockPacket_AA_X1Y1( m_camera, (SFVEC2F) blockPosI + SFVEC2F( 0.5f, 0.5f ),
SFVEC2F( DISP_FACTOR, DISP_FACTOR ) );
if( !m_accelerator->Intersect( blockPacket_AA_X1Y1, hitPacket_AA_X1Y1 ) )
{
// Missed all the package
for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
{
const SFVEC4F& outColor = bgColor[y];
for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
hitColor_AA_X1Y1[i] = outColor;
}
}
else
{
renderRayPackets( bgColor, blockPacket_AA_X1Y1.m_ray, hitPacket_AA_X1Y1,
m_boardAdapter.m_Cfg->m_Render.raytrace_shadows, hitColor_AA_X1Y1 );
}
SFVEC4F hitColor_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET];
SFVEC4F hitColor_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET];
SFVEC4F hitColor_AA_X0Y1_half[RAYPACKET_RAYS_PER_PACKET];
for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
{
SFVEC4F color_average = ( hitColor_X0Y0[i] + hitColor_AA_X1Y1[i] ) * SFVEC4F( 0.5f );
hitColor_AA_X1Y0[i] = color_average;
hitColor_AA_X0Y1[i] = color_average;
hitColor_AA_X0Y1_half[i] = color_average;
}
RAY blockRayPck_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET];
RAY blockRayPck_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET];
RAY blockRayPck_AA_X1Y1_half[RAYPACKET_RAYS_PER_PACKET];
RAYPACKET_InitRays_with2DDisplacement(
m_camera, (SFVEC2F) blockPosI + SFVEC2F( 0.5f - DISP_FACTOR, DISP_FACTOR ),
SFVEC2F( DISP_FACTOR, DISP_FACTOR ), blockRayPck_AA_X1Y0 );
RAYPACKET_InitRays_with2DDisplacement(
m_camera, (SFVEC2F) blockPosI + SFVEC2F( DISP_FACTOR, 0.5f - DISP_FACTOR ),
SFVEC2F( DISP_FACTOR, DISP_FACTOR ), blockRayPck_AA_X0Y1 );
RAYPACKET_InitRays_with2DDisplacement(
m_camera, (SFVEC2F) blockPosI + SFVEC2F( 0.25f - DISP_FACTOR, 0.25f - DISP_FACTOR ),
SFVEC2F( DISP_FACTOR, DISP_FACTOR ), blockRayPck_AA_X1Y1_half );
renderAntiAliasPackets( bgColor, hitPacket_X0Y0, hitPacket_AA_X1Y1, blockRayPck_AA_X1Y0,
hitColor_AA_X1Y0 );
renderAntiAliasPackets( bgColor, hitPacket_X0Y0, hitPacket_AA_X1Y1, blockRayPck_AA_X0Y1,
hitColor_AA_X0Y1 );
renderAntiAliasPackets( bgColor, hitPacket_X0Y0, hitPacket_AA_X1Y1,
blockRayPck_AA_X1Y1_half, hitColor_AA_X0Y1_half );
// Average the result
for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
{
hitColor_X0Y0[i] = ( hitColor_X0Y0[i] + hitColor_AA_X1Y1[i] + hitColor_AA_X1Y0[i] +
hitColor_AA_X0Y1[i] + hitColor_AA_X0Y1_half[i] ) *
SFVEC4F( 1.0f / 5.0f );
}
}
// Copy results to the next stage
GLubyte* ptr = &ptrPBO[( blockPos.x + ( blockPos.y * m_realBufferSize.x ) ) * 4];
const uint32_t ptrInc = ( m_realBufferSize.x - RAYPACKET_DIM ) * 4;
if( m_boardAdapter.m_Cfg->m_Render.raytrace_post_processing )
{
SFVEC2I bPos;
bPos.y = blockPos.y;
for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
{
bPos.x = blockPos.x;
for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
{
const SFVEC4F& hColor = hitColor_X0Y0[i];
if( hitPacket_X0Y0[i].m_hitresult == true )
{
m_postShaderSsao.SetPixelData( bPos.x, bPos.y,
hitPacket_X0Y0[i].m_HitInfo.m_HitNormal,
hColor,
blockPacket.m_ray[i].at(
hitPacket_X0Y0[i].m_HitInfo.m_tHit ),
hitPacket_X0Y0[i].m_HitInfo.m_tHit,
hitPacket_X0Y0[i].m_HitInfo.m_ShadowFactor );
}
else
{
m_postShaderSsao.SetPixelData( bPos.x, bPos.y, SFVEC3F( 0.0f ), hColor,
SFVEC3F( 0.0f ), 0, 1.0f );
}
renderFinalColor( ptr, hColor, false );
bPos.x++;
ptr += 4;
}
ptr += ptrInc;
bPos.y++;
}
}
else
{
for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
{
for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
{
renderFinalColor( ptr, hitColor_X0Y0[i], true );
ptr += 4;
}
ptr += ptrInc;
}
}
}
void RENDER_3D_RAYTRACE_BASE::postProcessShading( GLubyte* /* ptrPBO */, REPORTER* aStatusReporter )
{
if( m_boardAdapter.m_Cfg->m_Render.raytrace_post_processing )
{
if( aStatusReporter )
aStatusReporter->Report( _( "Rendering: Post processing shader" ) );
m_postShaderSsao.SetShadowsEnabled( m_boardAdapter.m_Cfg->m_Render.raytrace_shadows );
std::atomic<size_t> nextBlock( 0 );
std::atomic<size_t> threadsFinished( 0 );
size_t parallelThreadCount = std::max<size_t>( std::thread::hardware_concurrency(), 2 );
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
std::thread t = std::thread( [&]()
{
for( size_t y = nextBlock.fetch_add( 1 ); y < m_realBufferSize.y;
y = nextBlock.fetch_add( 1 ) )
{
SFVEC3F* ptr = &m_shaderBuffer[ y * m_realBufferSize.x ];
for( signed int x = 0; x < (int)m_realBufferSize.x; ++x )
{
*ptr = m_postShaderSsao.Shade( SFVEC2I( x, y ) );
ptr++;
}
}
threadsFinished++;
} );
t.detach();
}
while( threadsFinished < parallelThreadCount )
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
m_postShaderSsao.SetShadedBuffer( m_shaderBuffer );
// Set next state
m_renderState = RT_RENDER_STATE_POST_PROCESS_BLUR_AND_FINISH;
}
else
{
// As this was an invalid state, set to finish
m_renderState = RT_RENDER_STATE_FINISH;
}
}
void RENDER_3D_RAYTRACE_BASE::postProcessBlurFinish( GLubyte* ptrPBO, REPORTER* /* aStatusReporter */ )
{
if( m_boardAdapter.m_Cfg->m_Render.raytrace_post_processing )
{
// Now blurs the shader result and compute the final color
std::atomic<size_t> nextBlock( 0 );
std::atomic<size_t> threadsFinished( 0 );
size_t parallelThreadCount = std::max<size_t>( std::thread::hardware_concurrency(), 2 );
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
std::thread t = std::thread( [&]()
{
for( size_t y = nextBlock.fetch_add( 1 ); y < m_realBufferSize.y;
y = nextBlock.fetch_add( 1 ) )
{
GLubyte* ptr = &ptrPBO[ y * m_realBufferSize.x * 4 ];
for( signed int x = 0; x < (int)m_realBufferSize.x; ++x )
{
const SFVEC3F bluredShadeColor = m_postShaderSsao.Blur( SFVEC2I( x, y ) );
#ifdef USE_SRGB_SPACE
const SFVEC4F originColor = convertLinearToSRGBA(
m_postShaderSsao.GetColorAtNotProtected( SFVEC2I( x, y ) ) );
#else
const SFVEC4F originColor =
m_postShaderSsao.GetColorAtNotProtected( SFVEC2I( x, y ) );
#endif
const SFVEC4F shadedColor = m_postShaderSsao.ApplyShadeColor(
SFVEC2I( x, y ), originColor, bluredShadeColor );
renderFinalColor( ptr, shadedColor, false );
ptr += 4;
}
}
threadsFinished++;
} );
t.detach();
}
while( threadsFinished < parallelThreadCount )
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
// Debug code
//m_postShaderSsao.DebugBuffersOutputAsImages();
}
// End rendering
m_renderState = RT_RENDER_STATE_FINISH;
}
void RENDER_3D_RAYTRACE_BASE::renderPreview( GLubyte* ptrPBO )
{
m_isPreview = true;
std::atomic<size_t> nextBlock( 0 );
std::atomic<size_t> threadsFinished( 0 );
size_t parallelThreadCount = std::min<size_t>(
std::max<size_t>( std::thread::hardware_concurrency(), 2 ),
m_blockPositions.size() );
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
std::thread t = std::thread( [&]()
{
for( size_t iBlock = nextBlock.fetch_add( 1 ); iBlock < m_blockPositionsFast.size();
iBlock = nextBlock.fetch_add( 1 ) )
{
const SFVEC2UI& windowPosUI = m_blockPositionsFast[ iBlock ];
const SFVEC2I windowsPos = SFVEC2I( windowPosUI.x + m_xoffset,
windowPosUI.y + m_yoffset );
RAYPACKET blockPacket( m_camera, windowsPos, 4 );
HITINFO_PACKET hitPacket[RAYPACKET_RAYS_PER_PACKET];
// Initialize hitPacket with a "not hit" information
for( HITINFO_PACKET& packet : hitPacket )
{
packet.m_HitInfo.m_tHit = std::numeric_limits<float>::infinity();
packet.m_HitInfo.m_acc_node_info = 0;
packet.m_hitresult = false;
}
// Intersect packet block
m_accelerator->Intersect( blockPacket, hitPacket );
// Calculate background gradient color
SFVEC4F bgColor[RAYPACKET_DIM];
SFVEC4F bgTopColor = premultiplyAlpha( m_boardAdapter.m_BgColorTop );
SFVEC4F bgBotColor = premultiplyAlpha( m_boardAdapter.m_BgColorBot );
for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
{
const float posYfactor =
(float) ( windowsPos.y + y * 4.0f ) / (float) m_windowSize.y;
bgColor[y] = bgTopColor * SFVEC4F( posYfactor )
+ bgBotColor * ( SFVEC4F( 1.0f ) - SFVEC4F( posYfactor ) );
}
COLOR_RGBA hitColorShading[RAYPACKET_RAYS_PER_PACKET];
for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
{
const SFVEC4F bhColorY = bgColor[i / RAYPACKET_DIM];
if( hitPacket[i].m_hitresult == true )
{
const SFVEC4F hitColor = shadeHit( bhColorY, blockPacket.m_ray[i],
hitPacket[i].m_HitInfo, false,
0, false );
hitColorShading[i] = COLOR_RGBA( hitColor );
}
else
hitColorShading[i] = bhColorY;
}
COLOR_RGBA cLRB_old[(RAYPACKET_DIM - 1)];
for( unsigned int y = 0; y < (RAYPACKET_DIM - 1); ++y )
{
const SFVEC4F bgColorY = bgColor[y];
const COLOR_RGBA bgColorYRGB = COLOR_RGBA( bgColorY );
// This stores cRTB from the last block to be reused next time in a cLTB pixel
COLOR_RGBA cRTB_old;
//RAY cRTB_ray;
//HITINFO cRTB_hitInfo;
for( unsigned int x = 0; x < ( RAYPACKET_DIM - 1 ); ++x )
{
// pxl 0 pxl 1 pxl 2 pxl 3 pxl 4
// x0 x1 ...
// .---------------------------.
// y0 | cLT | cxxx | cLRT | cxxx | cRT |
// | cxxx | cLTC | cxxx | cRTC | cxxx |
// | cLTB | cxxx | cC | cxxx | cRTB |
// | cxxx | cLBC | cxxx | cRBC | cxxx |
// '---------------------------'
// y1 | cLB | cxxx | cLRB | cxxx | cRB |
const unsigned int iLT = ( ( x + 0 ) + RAYPACKET_DIM * ( y + 0 ) );
const unsigned int iRT = ( ( x + 1 ) + RAYPACKET_DIM * ( y + 0 ) );
const unsigned int iLB = ( ( x + 0 ) + RAYPACKET_DIM * ( y + 1 ) );
const unsigned int iRB = ( ( x + 1 ) + RAYPACKET_DIM * ( y + 1 ) );
// !TODO: skip when there are no hits
const COLOR_RGBA& cLT = hitColorShading[ iLT ];
const COLOR_RGBA& cRT = hitColorShading[ iRT ];
const COLOR_RGBA& cLB = hitColorShading[ iLB ];
const COLOR_RGBA& cRB = hitColorShading[ iRB ];
// Trace and shade cC
COLOR_RGBA cC = bgColorYRGB;
const SFVEC3F& oriLT = blockPacket.m_ray[ iLT ].m_Origin;
const SFVEC3F& oriRB = blockPacket.m_ray[ iRB ].m_Origin;
const SFVEC3F& dirLT = blockPacket.m_ray[ iLT ].m_Dir;
const SFVEC3F& dirRB = blockPacket.m_ray[ iRB ].m_Dir;
SFVEC3F oriC;
SFVEC3F dirC;
HITINFO centerHitInfo;
centerHitInfo.m_tHit = std::numeric_limits<float>::infinity();
bool hittedC = false;
if( ( hitPacket[iLT].m_hitresult == true )
|| ( hitPacket[iRT].m_hitresult == true )
|| ( hitPacket[iLB].m_hitresult == true )
|| ( hitPacket[iRB].m_hitresult == true ) )
{
oriC = ( oriLT + oriRB ) * 0.5f;
dirC = glm::normalize( ( dirLT + dirRB ) * 0.5f );
// Trace the center ray
RAY centerRay;
centerRay.Init( oriC, dirC );
const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
if( nodeLT != 0 )
hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo,
nodeLT );
if( ( nodeRT != 0 ) && ( nodeRT != nodeLT ) )
hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo,
nodeRT );
if( ( nodeLB != 0 ) && ( nodeLB != nodeLT ) && ( nodeLB != nodeRT ) )
hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo,
nodeLB );
if( ( nodeRB != 0 ) && ( nodeRB != nodeLB ) && ( nodeRB != nodeLT )
&& ( nodeRB != nodeRT ) )
hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo,
nodeRB );
if( hittedC )
{
cC = COLOR_RGBA( shadeHit( bgColorY, centerRay, centerHitInfo,
false, 0, false ) );
}
else
{
centerHitInfo.m_tHit = std::numeric_limits<float>::infinity();
hittedC = m_accelerator->Intersect( centerRay, centerHitInfo );
if( hittedC )
cC = COLOR_RGBA( shadeHit( bgColorY, centerRay, centerHitInfo,
false, 0, false ) );
}
}
// Trace and shade cLRT
COLOR_RGBA cLRT = bgColorYRGB;
const SFVEC3F& oriRT = blockPacket.m_ray[ iRT ].m_Origin;
const SFVEC3F& dirRT = blockPacket.m_ray[ iRT ].m_Dir;
if( y == 0 )
{
// Trace the center ray
RAY rayLRT;
rayLRT.Init( ( oriLT + oriRT ) * 0.5f,
glm::normalize( ( dirLT + dirRT ) * 0.5f ) );
HITINFO hitInfoLRT;
hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity();
if( hitPacket[iLT].m_hitresult && hitPacket[iRT].m_hitresult
&& ( hitPacket[iLT].m_HitInfo.pHitObject
== hitPacket[iRT].m_HitInfo.pHitObject ) )
{
hitInfoLRT.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject;
hitInfoLRT.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit +
hitPacket[ iRT ].m_HitInfo.m_tHit ) * 0.5f;
hitInfoLRT.m_HitNormal =
glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal +
hitPacket[ iRT ].m_HitInfo.m_HitNormal ) * 0.5f );
cLRT = COLOR_RGBA( shadeHit( bgColorY, rayLRT, hitInfoLRT, false,
0, false ) );
cLRT = BlendColor( cLRT, BlendColor( cLT, cRT ) );
}
else
{
// If any hits
if( hitPacket[ iLT ].m_hitresult || hitPacket[ iRT ].m_hitresult )
{
const unsigned int nodeLT =
hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
const unsigned int nodeRT =
hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
bool hittedLRT = false;
if( nodeLT != 0 )
hittedLRT |= m_accelerator->Intersect( rayLRT, hitInfoLRT,
nodeLT );
if( ( nodeRT != 0 ) && ( nodeRT != nodeLT ) )
hittedLRT |= m_accelerator->Intersect( rayLRT, hitInfoLRT,
nodeRT );
if( hittedLRT )
cLRT = COLOR_RGBA( shadeHit( bgColorY, rayLRT, hitInfoLRT,
false, 0, false ) );
else
{
hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity();
if( m_accelerator->Intersect( rayLRT,hitInfoLRT ) )
cLRT = COLOR_RGBA( shadeHit( bgColorY, rayLRT,
hitInfoLRT, false,
0, false ) );
}
}
}
}
else
{
cLRT = cLRB_old[x];
}
// Trace and shade cLTB
COLOR_RGBA cLTB = bgColorYRGB;
if( x == 0 )
{
const SFVEC3F &oriLB = blockPacket.m_ray[ iLB ].m_Origin;
const SFVEC3F& dirLB = blockPacket.m_ray[ iLB ].m_Dir;
// Trace the center ray
RAY rayLTB;
rayLTB.Init( ( oriLT + oriLB ) * 0.5f,
glm::normalize( ( dirLT + dirLB ) * 0.5f ) );
HITINFO hitInfoLTB;
hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity();
if( hitPacket[ iLT ].m_hitresult && hitPacket[ iLB ].m_hitresult
&& ( hitPacket[ iLT ].m_HitInfo.pHitObject ==
hitPacket[ iLB ].m_HitInfo.pHitObject ) )
{
hitInfoLTB.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject;
hitInfoLTB.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit +
hitPacket[ iLB ].m_HitInfo.m_tHit ) * 0.5f;
hitInfoLTB.m_HitNormal =
glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal +
hitPacket[ iLB ].m_HitInfo.m_HitNormal ) * 0.5f );
cLTB = COLOR_RGBA( shadeHit( bgColorY, rayLTB, hitInfoLTB, false,
0, false ) );
cLTB = BlendColor( cLTB, BlendColor( cLT, cLB) );
}
else
{
// If any hits
if( hitPacket[ iLT ].m_hitresult || hitPacket[ iLB ].m_hitresult )
{
const unsigned int nodeLT =
hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
const unsigned int nodeLB =
hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
bool hittedLTB = false;
if( nodeLT != 0 )
hittedLTB |= m_accelerator->Intersect( rayLTB, hitInfoLTB,
nodeLT );
if( ( nodeLB != 0 ) && ( nodeLB != nodeLT ) )
hittedLTB |= m_accelerator->Intersect( rayLTB, hitInfoLTB,
nodeLB );
if( hittedLTB )
cLTB = COLOR_RGBA( shadeHit( bgColorY, rayLTB, hitInfoLTB,
false, 0, false ) );
else
{
hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity();
if( m_accelerator->Intersect( rayLTB, hitInfoLTB ) )
cLTB = COLOR_RGBA( shadeHit( bgColorY, rayLTB,
hitInfoLTB, false,
0, false ) );
}
}
}
}
else
{
cLTB = cRTB_old;
}
// Trace and shade cRTB
COLOR_RGBA cRTB = bgColorYRGB;
// Trace the center ray
RAY rayRTB;
rayRTB.Init( ( oriRT + oriRB ) * 0.5f,
glm::normalize( ( dirRT + dirRB ) * 0.5f ) );
HITINFO hitInfoRTB;
hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity();
if( hitPacket[ iRT ].m_hitresult && hitPacket[ iRB ].m_hitresult
&& ( hitPacket[ iRT ].m_HitInfo.pHitObject ==
hitPacket[ iRB ].m_HitInfo.pHitObject ) )
{
hitInfoRTB.pHitObject = hitPacket[ iRT ].m_HitInfo.pHitObject;
hitInfoRTB.m_tHit = ( hitPacket[ iRT ].m_HitInfo.m_tHit +
hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f;
hitInfoRTB.m_HitNormal =
glm::normalize( ( hitPacket[ iRT ].m_HitInfo.m_HitNormal +
hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f );
cRTB = COLOR_RGBA( shadeHit( bgColorY, rayRTB, hitInfoRTB, false, 0,
false ) );
cRTB = BlendColor( cRTB, BlendColor( cRT, cRB ) );
}
else
{
// If any hits
if( hitPacket[ iRT ].m_hitresult || hitPacket[ iRB ].m_hitresult )
{
const unsigned int nodeRT =
hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
const unsigned int nodeRB =
hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
bool hittedRTB = false;
if( nodeRT != 0 )
hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB,
nodeRT );
if( ( nodeRB != 0 ) && ( nodeRB != nodeRT ) )
hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB,
nodeRB );
if( hittedRTB )
{
cRTB = COLOR_RGBA( shadeHit( bgColorY, rayRTB, hitInfoRTB,
false, 0, false) );
}
else
{
hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity();
if( m_accelerator->Intersect( rayRTB, hitInfoRTB ) )
cRTB = COLOR_RGBA( shadeHit( bgColorY, rayRTB, hitInfoRTB,
false, 0, false ) );
}
}
}
cRTB_old = cRTB;
// Trace and shade cLRB
COLOR_RGBA cLRB = bgColorYRGB;
const SFVEC3F& oriLB = blockPacket.m_ray[ iLB ].m_Origin;
const SFVEC3F& dirLB = blockPacket.m_ray[ iLB ].m_Dir;
// Trace the center ray
RAY rayLRB;
rayLRB.Init( ( oriLB + oriRB ) * 0.5f,
glm::normalize( ( dirLB + dirRB ) * 0.5f ) );
HITINFO hitInfoLRB;
hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity();
if( hitPacket[iLB].m_hitresult && hitPacket[iRB].m_hitresult
&& ( hitPacket[iLB].m_HitInfo.pHitObject ==
hitPacket[iRB].m_HitInfo.pHitObject ) )
{
hitInfoLRB.pHitObject = hitPacket[ iLB ].m_HitInfo.pHitObject;
hitInfoLRB.m_tHit = ( hitPacket[ iLB ].m_HitInfo.m_tHit +
hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f;
hitInfoLRB.m_HitNormal =
glm::normalize( ( hitPacket[ iLB ].m_HitInfo.m_HitNormal +
hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f );
cLRB = COLOR_RGBA( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0,
false ) );
cLRB = BlendColor( cLRB, BlendColor( cLB, cRB ) );
}
else
{
// If any hits
if( hitPacket[ iLB ].m_hitresult || hitPacket[ iRB ].m_hitresult )
{
const unsigned int nodeLB =
hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
const unsigned int nodeRB =
hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
bool hittedLRB = false;
if( nodeLB != 0 )
hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB,
nodeLB );
if( ( nodeRB != 0 ) && ( nodeRB != nodeLB ) )
hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB,
nodeRB );
if( hittedLRB )
{
cLRB = COLOR_RGBA( shadeHit( bgColorY, rayLRB, hitInfoLRB,
false, 0, false ) );
}
else
{
hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity();
if( m_accelerator->Intersect( rayLRB, hitInfoLRB ) )
cLRB = COLOR_RGBA( shadeHit( bgColorY, rayLRB, hitInfoLRB,
false, 0, false ) );
}
}
}
cLRB_old[x] = cLRB;
// Trace and shade cLTC
COLOR_RGBA cLTC = BlendColor( cLT , cC );
if( hitPacket[ iLT ].m_hitresult || hittedC )
{
// Trace the center ray
RAY rayLTC;
rayLTC.Init( ( oriLT + oriC ) * 0.5f,
glm::normalize( ( dirLT + dirC ) * 0.5f ) );
HITINFO hitInfoLTC;
hitInfoLTC.m_tHit = std::numeric_limits<float>::infinity();
bool hitted = false;
if( hittedC )
hitted = centerHitInfo.pHitObject->Intersect( rayLTC, hitInfoLTC );
else if( hitPacket[ iLT ].m_hitresult )
hitted = hitPacket[ iLT ].m_HitInfo.pHitObject->Intersect(
rayLTC,
hitInfoLTC );
if( hitted )
cLTC = COLOR_RGBA( shadeHit( bgColorY, rayLTC, hitInfoLTC, false,
0, false ) );
}
// Trace and shade cRTC
COLOR_RGBA cRTC = BlendColor( cRT , cC );
if( hitPacket[ iRT ].m_hitresult || hittedC )
{
// Trace the center ray
RAY rayRTC;
rayRTC.Init( ( oriRT + oriC ) * 0.5f,
glm::normalize( ( dirRT + dirC ) * 0.5f ) );
HITINFO hitInfoRTC;
hitInfoRTC.m_tHit = std::numeric_limits<float>::infinity();
bool hitted = false;
if( hittedC )
hitted = centerHitInfo.pHitObject->Intersect( rayRTC, hitInfoRTC );
else if( hitPacket[ iRT ].m_hitresult )
hitted = hitPacket[ iRT ].m_HitInfo.pHitObject->Intersect( rayRTC,
hitInfoRTC );
if( hitted )
cRTC = COLOR_RGBA( shadeHit( bgColorY, rayRTC, hitInfoRTC, false,
0, false ) );
}
// Trace and shade cLBC
COLOR_RGBA cLBC = BlendColor( cLB , cC );
if( hitPacket[ iLB ].m_hitresult || hittedC )
{
// Trace the center ray
RAY rayLBC;
rayLBC.Init( ( oriLB + oriC ) * 0.5f,
glm::normalize( ( dirLB + dirC ) * 0.5f ) );
HITINFO hitInfoLBC;
hitInfoLBC.m_tHit = std::numeric_limits<float>::infinity();
bool hitted = false;
if( hittedC )
hitted = centerHitInfo.pHitObject->Intersect( rayLBC, hitInfoLBC );
else if( hitPacket[ iLB ].m_hitresult )
hitted = hitPacket[ iLB ].m_HitInfo.pHitObject->Intersect( rayLBC,
hitInfoLBC );
if( hitted )
cLBC = COLOR_RGBA( shadeHit( bgColorY, rayLBC, hitInfoLBC, false,
0, false ) );
}
// Trace and shade cRBC
COLOR_RGBA cRBC = BlendColor( cRB , cC );
if( hitPacket[ iRB ].m_hitresult || hittedC )
{
// Trace the center ray
RAY rayRBC;
rayRBC.Init( ( oriRB + oriC ) * 0.5f,
glm::normalize( ( dirRB + dirC ) * 0.5f ) );
HITINFO hitInfoRBC;
hitInfoRBC.m_tHit = std::numeric_limits<float>::infinity();
bool hitted = false;
if( hittedC )
hitted = centerHitInfo.pHitObject->Intersect( rayRBC, hitInfoRBC );
else if( hitPacket[ iRB ].m_hitresult )
hitted = hitPacket[ iRB ].m_HitInfo.pHitObject->Intersect( rayRBC,
hitInfoRBC );
if( hitted )
cRBC = COLOR_RGBA( shadeHit( bgColorY, rayRBC, hitInfoRBC, false,
0, false ) );
}
// Set pixel colors
GLubyte* ptr =
&ptrPBO[( 4 * x + m_blockPositionsFast[iBlock].x
+ m_realBufferSize.x
* ( m_blockPositionsFast[iBlock].y + 4 * y ) ) * 4];
SetPixel( ptr + 0, cLT );
SetPixel( ptr + 4, BlendColor( cLT, cLRT, cLTC ) );
SetPixel( ptr + 8, cLRT );
SetPixel( ptr + 12, BlendColor( cLRT, cRT, cRTC ) );
ptr += m_realBufferSize.x * 4;
SetPixel( ptr + 0, BlendColor( cLT , cLTB, cLTC ) );
SetPixel( ptr + 4, BlendColor( cLTC, BlendColor( cLT , cC ) ) );
SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRT, cLTC, cRTC ) ) );
SetPixel( ptr + 12, BlendColor( cRTC, BlendColor( cRT , cC ) ) );
ptr += m_realBufferSize.x * 4;
SetPixel( ptr + 0, cLTB );
SetPixel( ptr + 4, BlendColor( cC, BlendColor( cLTB, cLTC, cLBC ) ) );
SetPixel( ptr + 8, cC );
SetPixel( ptr + 12, BlendColor( cC, BlendColor( cRTB, cRTC, cRBC ) ) );
ptr += m_realBufferSize.x * 4;
SetPixel( ptr + 0, BlendColor( cLB , cLTB, cLBC ) );
SetPixel( ptr + 4, BlendColor( cLBC, BlendColor( cLB , cC ) ) );
SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRB, cLBC, cRBC ) ) );
SetPixel( ptr + 12, BlendColor( cRBC, BlendColor( cRB , cC ) ) );
}
}
}
threadsFinished++;
} );
t.detach();
}
while( threadsFinished < parallelThreadCount )
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
#define USE_EXPERIMENTAL_SOFT_SHADOWS 1
SFVEC4F RENDER_3D_RAYTRACE_BASE::shadeHit( const SFVEC4F& aBgColor, const RAY& aRay, HITINFO& aHitInfo,
bool aIsInsideObject, unsigned int aRecursiveLevel,
bool is_testShadow ) const
{
const MATERIAL* objMaterial = aHitInfo.pHitObject->GetMaterial();
wxASSERT( objMaterial != nullptr );
SFVEC4F outColor =
SFVEC4F( objMaterial->GetEmissiveColor() + objMaterial->GetAmbientColor(), 1.0f );
if( aRecursiveLevel > 7 )
return outColor;
SFVEC3F hitPoint = aHitInfo.m_HitPoint;
hitPoint += aHitInfo.m_HitNormal * m_boardAdapter.GetNonCopperLayerThickness() * 0.6f;
const SFVEC4F diffuseColorObj =
SFVEC4F( aHitInfo.pHitObject->GetDiffuseColor( aHitInfo ), 1.0f );
#if USE_EXPERIMENTAL_SOFT_SHADOWS
bool is_aa_enabled = m_boardAdapter.m_Cfg->m_Render.raytrace_anti_aliasing && !m_isPreview;
#endif
float shadow_att_factor_sum = 0.0f;
unsigned int nr_lights_that_can_cast_shadows = 0;
for( const LIGHT* light : m_lights )
{
SFVEC3F vectorToLight;
SFVEC3F colorOfLight;
float distToLight;
light->GetLightParameters( hitPoint, vectorToLight, colorOfLight, distToLight );
if( m_isPreview )
colorOfLight = SFVEC3F( 1.0f );
const float NdotL = glm::dot( aHitInfo.m_HitNormal, vectorToLight );
// Only calc shade if the normal is facing the direction of light,
// otherwise it is in the shadow
if( NdotL >= FLT_EPSILON )
{
float shadow_att_factor_light = 1.0f;
if( is_testShadow && light->GetCastShadows() )
{
nr_lights_that_can_cast_shadows++;
#if USE_EXPERIMENTAL_SOFT_SHADOWS
// For rays that are recursive, just calculate one hit shadow
if( aRecursiveLevel > 0 )
{
#endif
RAY rayToLight;
rayToLight.Init( hitPoint, vectorToLight );
// Test if point is not in the shadow.
// Test for any hit from the point in the direction of light
if( m_accelerator->IntersectP( rayToLight, distToLight ) )
shadow_att_factor_light = 0.0f;
#if USE_EXPERIMENTAL_SOFT_SHADOWS
}
else // Experimental softshadow calculation
{
const unsigned int shadow_number_of_samples =
m_boardAdapter.m_Cfg->m_Render.raytrace_nrsamples_shadows;
const float shadow_inc_factor = 1.0f / (float) ( shadow_number_of_samples );
for( unsigned int i = 0; i < shadow_number_of_samples; ++i )
{
RAY rayToLight;
if( i == 0 )
{
rayToLight.Init( hitPoint, vectorToLight );
}
else
{
const SFVEC3F unifVector = UniformRandomHemisphereDirection();
const SFVEC3F disturbed_vector_to_light =
glm::normalize( vectorToLight + unifVector *
m_boardAdapter.m_Cfg->m_Render.raytrace_spread_shadows );
rayToLight.Init( hitPoint, disturbed_vector_to_light );
}
// !TODO: there are multiple ways that this tests can be
// optimized. Eg: by packing rays or to test against the
// latest hit object.
if( m_accelerator->IntersectP( rayToLight, distToLight ) )
{
shadow_att_factor_light -= shadow_inc_factor;
}
}
}
#endif
shadow_att_factor_sum += shadow_att_factor_light;
}
outColor += SFVEC4F( objMaterial->Shade( aRay, aHitInfo, NdotL, diffuseColorObj,
vectorToLight, colorOfLight,
shadow_att_factor_light ),
1.0 );
}
// Only use the headlight for preview
if( m_isPreview )
break;
}
// Improvement: this is not taking in account the lightcolor
if( nr_lights_that_can_cast_shadows > 0 )
{
aHitInfo.m_ShadowFactor = glm::max(
shadow_att_factor_sum / (float) ( nr_lights_that_can_cast_shadows * 1.0f ), 0.0f );
}
else
{
aHitInfo.m_ShadowFactor = 1.0f;
}
// Clamp color to not be brighter than 1.0f
outColor = glm::min( outColor, SFVEC4F( 1.0f ) );
if( !m_isPreview )
{
// Reflections
if( ( objMaterial->GetReflection() > 0.0f )
&& m_boardAdapter.m_Cfg->m_Render.raytrace_reflections
&& ( aRecursiveLevel < objMaterial->GetReflectionRecursionCount() ) )
{
const unsigned int reflection_number_of_samples =
objMaterial->GetReflectionRayCount();
SFVEC4F sum_color = SFVEC4F( 0.0f );
const SFVEC3F reflectVector = aRay.m_Dir - 2.0f *
glm::dot( aRay.m_Dir, aHitInfo.m_HitNormal ) * aHitInfo.m_HitNormal;
for( unsigned int i = 0; i < reflection_number_of_samples; ++i )
{
RAY reflectedRay;
if( i == 0 )
{
reflectedRay.Init( hitPoint, reflectVector );
}
else
{
// Apply some randomize to the reflected vector
const SFVEC3F random_reflectVector =
glm::normalize( reflectVector +
UniformRandomHemisphereDirection() *
m_boardAdapter.m_Cfg->m_Render.raytrace_spread_reflections );
reflectedRay.Init( hitPoint, random_reflectVector );
}
HITINFO reflectedHit;
reflectedHit.m_tHit = std::numeric_limits<float>::infinity();
if( m_accelerator->Intersect( reflectedRay, reflectedHit ) )
{
SFVEC4F add = ( diffuseColorObj + SFVEC4F( objMaterial->GetSpecularColor(), 1.0f ) ) *
shadeHit( aBgColor, reflectedRay, reflectedHit, false,
aRecursiveLevel + 1, is_testShadow ) *
SFVEC4F( objMaterial->GetReflection() *
// Falloff factor
(1.0f / ( 1.0f + 0.75f * reflectedHit.m_tHit *
reflectedHit.m_tHit) ) );
sum_color += add;
}
else
{
sum_color += aBgColor;
}
}
outColor += (sum_color / SFVEC4F( (float)reflection_number_of_samples) );
}
// Refraction
const float objTransparency = aHitInfo.pHitObject->GetModelTransparency();
if( ( objTransparency > 0.0f ) && m_boardAdapter.m_Cfg->m_Render.raytrace_refractions
&& ( aRecursiveLevel < objMaterial->GetRefractionRecursionCount() ) )
{
const float airIndex = 1.000293f;
const float glassIndex = 1.49f;
const float air_over_glass = airIndex / glassIndex;
const float glass_over_air = glassIndex / airIndex;
const float refractionRatio = aIsInsideObject?glass_over_air:air_over_glass;
SFVEC3F refractedVector;
if( Refract( aRay.m_Dir, aHitInfo.m_HitNormal, refractionRatio, refractedVector ) )
{
// This increase the start point by a "fixed" factor so it will work the
// same for all distances
const SFVEC3F startPoint =
aRay.at( aHitInfo.m_tHit + m_boardAdapter.GetNonCopperLayerThickness() *
0.25f );
const unsigned int refractions_number_of_samples =
objMaterial->GetRefractionRayCount();
SFVEC4F sum_color = SFVEC4F( 0.0f );
for( unsigned int i = 0; i < refractions_number_of_samples; ++i )
{
RAY refractedRay;
if( i == 0 )
{
refractedRay.Init( startPoint, refractedVector );
}
else
{
// apply some randomize to the refracted vector
const SFVEC3F randomizeRefractedVector =
glm::normalize( refractedVector +
UniformRandomHemisphereDirection() *
m_boardAdapter.m_Cfg->m_Render.raytrace_spread_refractions );
refractedRay.Init( startPoint, randomizeRefractedVector );
}
HITINFO refractedHit;
refractedHit.m_tHit = std::numeric_limits<float>::infinity();
SFVEC4F refractedColor = aBgColor;
if( m_accelerator->Intersect( refractedRay, refractedHit ) )
{
refractedColor = shadeHit( aBgColor, refractedRay, refractedHit,
!aIsInsideObject, aRecursiveLevel + 1, false );
const SFVEC4F absorbance = ( SFVEC4F(1.0f) - diffuseColorObj ) *
(1.0f - objTransparency ) *
objMaterial->GetAbsorvance() *
refractedHit.m_tHit;
const SFVEC4F transparency = 1.0f / ( absorbance + 1.0f );
sum_color += refractedColor * transparency;
}
else
{
sum_color += refractedColor;
}
}
outColor = outColor * ( 1.0f - objTransparency ) + objTransparency * sum_color
/ SFVEC4F( (float) refractions_number_of_samples );
}
else
{
outColor = outColor * ( 1.0f - objTransparency ) + objTransparency * aBgColor;
}
}
}
return outColor;
}
static float distance( const SFVEC2UI& a, const SFVEC2UI& b )
{
const float dx = (float) a.x - (float) b.x;
const float dy = (float) a.y - (float) b.y;
return hypotf( dx, dy );
}
void RENDER_3D_RAYTRACE_BASE::initializeBlockPositions()
{
m_realBufferSize = SFVEC2UI( 0 );
// Calc block positions for fast preview mode
m_blockPositionsFast.clear();
unsigned int i = 0;
while(1)
{
const unsigned int mX = DecodeMorton2X(i);
const unsigned int mY = DecodeMorton2Y(i);
i++;
const SFVEC2UI blockPos( mX * 4 * RAYPACKET_DIM - mX * 4,
mY * 4 * RAYPACKET_DIM - mY * 4 );
if( ( blockPos.x >= ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4 ) ) ) &&
( blockPos.y >= ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4 ) ) ) )
break;
if( ( blockPos.x < ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4 ) ) ) &&
( blockPos.y < ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4 ) ) ) )
{
m_blockPositionsFast.push_back( blockPos );
if( blockPos.x > m_realBufferSize.x )
m_realBufferSize.x = blockPos.x;
if( blockPos.y > m_realBufferSize.y )
m_realBufferSize.y = blockPos.y;
}
}
m_fastPreviewModeSize = m_realBufferSize;
m_realBufferSize.x = ( ( m_realBufferSize.x + RAYPACKET_DIM * 4 ) & RAYPACKET_INVMASK );
m_realBufferSize.y = ( ( m_realBufferSize.y + RAYPACKET_DIM * 4 ) & RAYPACKET_INVMASK );
m_xoffset = ( m_windowSize.x - m_realBufferSize.x ) / 2;
m_yoffset = ( m_windowSize.y - m_realBufferSize.y ) / 2;
m_postShaderSsao.UpdateSize( m_realBufferSize );
// Calc block positions for regular rendering. Choose an 'inside out' style of rendering.
m_blockPositions.clear();
const int blocks_x = m_realBufferSize.x / RAYPACKET_DIM;
const int blocks_y = m_realBufferSize.y / RAYPACKET_DIM;
m_blockPositions.reserve( blocks_x * blocks_y );
for( int x = 0; x < blocks_x; ++x )
{
for( int y = 0; y < blocks_y; ++y )
m_blockPositions.emplace_back( x * RAYPACKET_DIM, y * RAYPACKET_DIM );
}
const SFVEC2UI center( m_realBufferSize.x / 2, m_realBufferSize.y / 2 );
std::sort( m_blockPositions.begin(), m_blockPositions.end(),
[&]( const SFVEC2UI& a, const SFVEC2UI& b )
{
// Sort order: inside out.
float distanceA = distance( a, center );
float distanceB = distance( b, center );
if( distanceA != distanceB )
return distanceA < distanceB;
if( a[0] != b[0] )
return a[0] < b[0];
return a[1] < b[1];
} );
// Create m_shader buffer
delete[] m_shaderBuffer;
m_shaderBuffer = new SFVEC3F[m_realBufferSize.x * m_realBufferSize.y];
initPbo();
}
BOARD_ITEM* RENDER_3D_RAYTRACE_BASE::IntersectBoardItem( const RAY& aRay )
{
HITINFO hitInfo;
hitInfo.m_tHit = std::numeric_limits<float>::infinity();
if( m_accelerator )
{
if( m_accelerator->Intersect( aRay, hitInfo ) )
{
if( hitInfo.pHitObject )
return hitInfo.pHitObject->GetBoardItem();
}
}
return nullptr;
}