kicad/pcbnew/specctra_import_export/specctra.cpp

4020 lines
93 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2007-2011 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2007-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* This source file implements export and import capabilities to the
* specctra dsn file format. The grammar for that file format is documented
* fairly well. There are classes for each major type of descriptor in the
* spec.
*
* Since there are so many classes in here, it may be helpful to generate
* the Doxygen directory:
*
* $ cd <kicadSourceRoot>
* $ doxygen
*
* Then you can view the html documentation in the <kicadSourceRoot>/doxygen
* directory. The main class in this file is SPECCTRA_DB and its main
* functions are LoadPCB(), LoadSESSION(), and ExportPCB().
*
* Wide use is made of boost::ptr_vector<> and std::vector<> template classes.
* If the contained object is small, then std::vector tends to be used.
* If the contained object is large, variable size, or would require writing
* an assignment operator() or copy constructor, then boost::ptr_vector
* cannot be beat.
*/
#include <cstdarg>
#include <cstdio>
#include <build_version.h>
#include <board.h>
#include <pcb_track.h>
#include "specctra.h"
#include <macros.h>
namespace DSN {
#define NESTWIDTH 2 ///< how many spaces per nestLevel
//-----<SPECCTRA_DB>-------------------------------------------------
const char* GetTokenText( T aTok )
{
return SPECCTRA_LEXER::TokenName( aTok );
}
void SPECCTRA_DB::buildLayerMaps( BOARD* aBoard )
{
// specctra wants top physical layer first, then going down to the
// bottom most physical layer in physical sequence.
// Same as KiCad now except for B_Cu
unsigned layerCount = aBoard->GetCopperLayerCount();
m_layerIds.clear();
m_pcbLayer2kicad.resize( layerCount );
m_kicadLayer2pcb.resize( B_Cu + 1 );
#if 0 // was:
for( int kiNdx = layerCount - 1, pcbNdx=FIRST_LAYER; kiNdx >= 0; --kiNdx, ++pcbNdx )
{
int kilayer = (kiNdx>0 && kiNdx==layerCount-1) ? F_Cu : kiNdx;
// establish bi-directional mapping between KiCad's BOARD layer and PCB layer
pcbLayer2kicad[pcbNdx] = kilayer;
kicadLayer2pcb[kilayer] = pcbNdx;
// save the specctra layer name in SPECCTRA_DB::layerIds for later.
layerIds.push_back( TO_UTF8( aBoard->GetLayerName( ToLAYER_ID( kilayer ) ) ) );
}
#else
// establish bi-directional mapping between KiCad's BOARD layer and PCB layer
for( unsigned i = 0; i < m_kicadLayer2pcb.size(); ++i )
{
if( i < layerCount-1 )
m_kicadLayer2pcb[i] = i;
else
m_kicadLayer2pcb[i] = layerCount - 1;
}
for( unsigned i = 0; i < m_pcbLayer2kicad.size(); ++i )
{
PCB_LAYER_ID id = ( i < layerCount-1 ) ? ToLAYER_ID( i ) : B_Cu;
m_pcbLayer2kicad[i] = id;
// save the specctra layer name in SPECCTRA_DB::layerIds for later.
m_layerIds.push_back(TO_UTF8( aBoard->GetLayerName( id ) ) );
}
#endif
}
int SPECCTRA_DB::findLayerName( const std::string& aLayerName ) const
{
for( int i = 0; i < int( m_layerIds.size() ); ++i )
{
if( 0 == aLayerName.compare( m_layerIds[i] ) )
return i;
}
return -1;
}
void SPECCTRA_DB::readCOMPnPIN( std::string* component_id, std::string* pin_id )
{
T tok;
static const char pin_def[] = "<pin_reference>::=<component_id>-<pin_id>";
if( !IsSymbol( (T) CurTok() ) )
Expecting( pin_def );
// case for: A12-14, i.e. no wrapping quotes. This should be a single
// token, so split it.
if( CurTok() != T_STRING )
{
const char* toktext = CurText();
const char* dash = strchr( toktext, '-' );
if( !dash )
Expecting( pin_def );
while( toktext != dash )
*component_id += *toktext++;
++toktext; // skip the dash
while( *toktext )
*pin_id += *toktext++;
}
else // quoted string: "U12"-"14" or "U12"-14, 3 tokens in either case
{
*component_id = CurText();
tok = NextTok();
if( tok!=T_DASH )
Expecting( pin_def );
NextTok(); // accept anything after the dash.
*pin_id = CurText();
}
}
void SPECCTRA_DB::readTIME( time_t* time_stamp )
{
T tok;
struct tm mytime;
static const char time_toks[] = "<month> <day> <hour> : <minute> : <second> <year>";
static const char* months[] = { // index 0 = Jan
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec", nullptr
};
NeedSYMBOL(); // month
const char* ptok = CurText();
mytime.tm_mon = 0; // remains if we don't find a month match.
for( int m = 0; months[m]; ++m )
{
if( !strcasecmp( months[m], ptok ) )
{
mytime.tm_mon = m;
break;
}
}
tok = NextTok(); // day
if( tok != T_NUMBER )
Expecting( time_toks );
mytime.tm_mday = atoi( CurText() );
tok = NextTok(); // hour
if( tok != T_NUMBER )
Expecting( time_toks );
mytime.tm_hour = atoi( CurText() );
// : colon
NeedSYMBOL();
if( *CurText() != ':' || strlen( CurText() )!=1 )
Expecting( time_toks );
tok = NextTok(); // minute
if( tok != T_NUMBER )
Expecting( time_toks );
mytime.tm_min = atoi( CurText() );
// : colon
NeedSYMBOL();
if( *CurText() != ':' || strlen( CurText() )!=1 )
Expecting( time_toks );
tok = NextTok(); // second
if( tok != T_NUMBER )
Expecting( time_toks );
mytime.tm_sec = atoi( CurText() );
tok = NextTok(); // year
if( tok != T_NUMBER )
Expecting( time_toks );
mytime.tm_year = atoi( CurText() ) - 1900;
*time_stamp = mktime( &mytime );
}
void SPECCTRA_DB::LoadPCB( const wxString& aFilename )
{
FILE_LINE_READER curr_reader( aFilename );
PushReader( &curr_reader );
if( NextTok() != T_LEFT )
Expecting( T_LEFT );
if( NextTok() != T_pcb )
Expecting( T_pcb );
SetPCB( new PCB() );
doPCB( m_pcb );
PopReader();
}
void SPECCTRA_DB::LoadSESSION( const wxString& aFilename )
{
FILE_LINE_READER curr_reader( aFilename );
PushReader( &curr_reader );
if( NextTok() != T_LEFT )
Expecting( T_LEFT );
if( NextTok() != T_session )
Expecting( T_session );
SetSESSION( new SESSION() );
doSESSION( m_session );
PopReader();
}
void SPECCTRA_DB::doPCB( PCB* growth )
{
T tok;
/* <design_descriptor >::=
(pcb <pcb_id >
[<parser_descriptor> ]
[<capacitance_resolution_descriptor> ]
[<conductance_resolution_descriptor> ]
[<current_resolution_descriptor> ]
[<inductance_resolution_descriptor> ]
[<resistance_resolution_descriptor> ]
[<resolution_descriptor> ]
[<time_resolution_descriptor> ]
[<voltage_resolution_descriptor> ]
[<unit_descriptor> ]
[<structure_descriptor> | <file_descriptor> ]
[<placement_descriptor> | <file_descriptor> ]
[<library_descriptor> | <file_descriptor> ]
[<floor_plan_descriptor> | <file_descriptor> ]
[<part_library_descriptor> | <file_descriptor> ]
[<network_descriptor> | <file_descriptor> ]
[<wiring_descriptor> ]
[<color_descriptor> ]
)
*/
NeedSYMBOL();
growth->m_pcbname = CurText();
while( (tok = NextTok()) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_parser:
if( growth->m_parser )
Unexpected( tok );
growth->m_parser = new PARSER( growth );
doPARSER( growth->m_parser );
break;
case T_unit:
if( growth->m_unit )
Unexpected( tok );
growth->m_unit = new UNIT_RES( growth, tok );
doUNIT( growth->m_unit );
break;
case T_resolution:
if( growth->m_resolution )
Unexpected( tok );
growth->m_resolution = new UNIT_RES( growth, tok );
doRESOLUTION( growth->m_resolution );
break;
case T_structure:
if( growth->m_structure )
Unexpected( tok );
growth->m_structure = new STRUCTURE( growth );
doSTRUCTURE( growth->m_structure );
break;
case T_placement:
if( growth->m_placement )
Unexpected( tok );
growth->m_placement = new PLACEMENT( growth );
doPLACEMENT( growth->m_placement );
break;
case T_library:
if( growth->m_library )
Unexpected( tok );
growth->m_library = new LIBRARY( growth );
doLIBRARY( growth->m_library );
break;
case T_network:
if( growth->m_network )
Unexpected( tok );
growth->m_network = new NETWORK( growth );
doNETWORK( growth->m_network );
break;
case T_wiring:
if( growth->m_wiring )
Unexpected( tok );
growth->m_wiring = new WIRING( growth );
doWIRING( growth->m_wiring );
break;
default:
Unexpected( CurText() );
}
}
tok = NextTok();
if( tok != T_EOF )
Expecting( T_EOF );
}
void SPECCTRA_DB::doPARSER( PARSER* growth )
{
T tok;
std::string const1;
std::string const2;
/* <parser_descriptor >::=
(parser
[(string_quote <quote_char >)]
(space_in_quoted_tokens [on | off])
[(host_cad <id >)]
[(host_version <id >)]
[{(constant <id > <id >)}]
[(write_resolution] {<character> <positive_integer >})]
[(routes_include {[testpoint | guides |
image_conductor]})]
[(wires_include testpoint)]
[(case_sensitive [on | off])]
[(via_rotate_first [on | off])]
)
*/
while( (tok = NextTok()) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_STRING_QUOTE:
tok = NextTok();
if( tok != T_QUOTE_DEF )
Expecting( T_QUOTE_DEF );
SetStringDelimiter( (unsigned char) *CurText() );
growth->string_quote = *CurText();
m_quote_char = CurText();
NeedRIGHT();
break;
case T_space_in_quoted_tokens:
tok = NextTok();
if( tok!=T_on && tok!=T_off )
Expecting( "on|off" );
SetSpaceInQuotedTokens( tok==T_on );
growth->space_in_quoted_tokens = (tok==T_on);
NeedRIGHT();
break;
case T_host_cad:
NeedSYMBOL();
growth->host_cad = CurText();
NeedRIGHT();
break;
case T_host_version:
NeedSYMBOLorNUMBER();
growth->host_version = CurText();
NeedRIGHT();
break;
case T_constant:
NeedSYMBOLorNUMBER();
const1 = CurText();
NeedSYMBOLorNUMBER();
const2 = CurText();
NeedRIGHT();
growth->constants.push_back( const1 );
growth->constants.push_back( const2 );
break;
case T_write_resolution: // [(writee_resolution {<character> <positive_integer >})]
while( (tok = NextTok()) != T_RIGHT )
{
if( tok!=T_SYMBOL )
Expecting( T_SYMBOL );
tok = NextTok();
if( tok!=T_NUMBER )
Expecting( T_NUMBER );
// @todo
}
break;
case T_routes_include: // [(routes_include {[testpoint | guides | image_conductor]})]
while( (tok = NextTok()) != T_RIGHT )
{
switch( tok )
{
case T_testpoint:
growth->routes_include_testpoint = true;
break;
case T_guide:
growth->routes_include_guides = true;
break;
case T_image_conductor:
growth->routes_include_image_conductor = true;
break;
default:
Expecting( "testpoint|guides|image_conductor" );
}
}
break;
case T_wires_include: // [(wires_include testpoint)]
tok = NextTok();
if( tok != T_testpoint )
Expecting( T_testpoint );
growth->routes_include_testpoint = true;
NeedRIGHT();
break;
case T_case_sensitive:
tok = NextTok();
if( tok!=T_on && tok!=T_off )
Expecting( "on|off" );
growth->case_sensitive = (tok==T_on);
NeedRIGHT();
break;
case T_via_rotate_first: // [(via_rotate_first [on | off])]
tok = NextTok();
if( tok!=T_on && tok!=T_off )
Expecting( "on|off" );
growth->via_rotate_first = (tok==T_on);
NeedRIGHT();
break;
case T_generated_by_freeroute:
growth->generated_by_freeroute = true;
NeedRIGHT();
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doRESOLUTION( UNIT_RES* growth )
{
T tok = NextTok();
switch( tok )
{
case T_inch:
case T_mil:
case T_cm:
case T_mm:
case T_um:
growth->units = tok;
break;
default:
Expecting( "inch|mil|cm|mm|um" );
}
tok = NextTok();
if( tok != T_NUMBER )
Expecting( T_NUMBER );
growth->value = atoi( CurText() );
NeedRIGHT();
}
void SPECCTRA_DB::doUNIT( UNIT_RES* growth )
{
T tok = NextTok();
switch( tok )
{
case T_inch:
case T_mil:
case T_cm:
case T_mm:
case T_um:
growth->units = tok;
break;
default:
Expecting( "inch|mil|cm|mm|um" );
}
NeedRIGHT();
}
void SPECCTRA_DB::doSPECCTRA_LAYER_PAIR( SPECCTRA_LAYER_PAIR* growth )
{
NeedSYMBOL();
growth->layer_id0 = CurText();
NeedSYMBOL();
growth->layer_id1 = CurText();
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->layer_weight = strtod( CurText(), 0 );
NeedRIGHT();
}
void SPECCTRA_DB::doLAYER_NOISE_WEIGHT( LAYER_NOISE_WEIGHT* growth )
{
T tok;
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
if( NextTok() != T_layer_pair )
Expecting( T_layer_pair );
SPECCTRA_LAYER_PAIR* layer_pair = new SPECCTRA_LAYER_PAIR( growth );
growth->layer_pairs.push_back( layer_pair );
doSPECCTRA_LAYER_PAIR( layer_pair );
}
}
void SPECCTRA_DB::doSTRUCTURE( STRUCTURE* growth )
{
T tok;
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_unit:
if( growth->m_unit )
Unexpected( tok );
growth->m_unit = new UNIT_RES( growth, tok );
doUNIT( growth->m_unit );
break;
case T_resolution:
if( growth->m_unit )
Unexpected( tok );
growth->m_unit = new UNIT_RES( growth, tok );
doRESOLUTION( growth->m_unit );
break;
case T_layer_noise_weight:
if( growth->m_layer_noise_weight )
Unexpected( tok );
growth->m_layer_noise_weight = new LAYER_NOISE_WEIGHT( growth );
doLAYER_NOISE_WEIGHT( growth->m_layer_noise_weight );
break;
case T_place_boundary:
L_place:
if( growth->m_place_boundary )
Unexpected( tok );
growth->m_place_boundary = new BOUNDARY( growth, T_place_boundary );
doBOUNDARY( growth->m_place_boundary );
break;
case T_boundary:
if( growth->m_boundary )
{
if( growth->m_place_boundary )
Unexpected( tok );
goto L_place;
}
growth->m_boundary = new BOUNDARY( growth );
doBOUNDARY( growth->m_boundary );
break;
case T_plane:
COPPER_PLANE* plane;
plane = new COPPER_PLANE( growth );
growth->m_planes.push_back( plane );
doKEEPOUT( plane );
break;
case T_region:
REGION* region;
region = new REGION( growth );
growth->m_regions.push_back( region );
doREGION( region );
break;
case T_snap_angle:
STRINGPROP* stringprop;
stringprop = new STRINGPROP( growth, T_snap_angle );
growth->Append( stringprop );
doSTRINGPROP( stringprop );
break;
case T_via:
if( growth->m_via )
Unexpected( tok );
growth->m_via = new VIA( growth );
doVIA( growth->m_via );
break;
case T_control:
if( growth->m_control )
Unexpected( tok );
growth->m_control = new CONTROL( growth );
doCONTROL( growth->m_control );
break;
case T_layer:
LAYER* layer;
layer = new LAYER( growth );
growth->m_layers.push_back( layer );
doLAYER( layer );
break;
case T_rule:
if( growth->m_rules )
Unexpected( tok );
growth->m_rules = new RULE( growth, T_rule );
doRULE( growth->m_rules );
break;
case T_place_rule:
if( growth->m_place_rules )
Unexpected( tok );
growth->m_place_rules = new RULE( growth, T_place_rule );
doRULE( growth->m_place_rules );
break;
case T_keepout:
case T_place_keepout:
case T_via_keepout:
case T_wire_keepout:
case T_bend_keepout:
case T_elongate_keepout:
KEEPOUT* keepout;
keepout = new KEEPOUT( growth, tok );
growth->m_keepouts.push_back( keepout );
doKEEPOUT( keepout );
break;
case T_grid:
GRID* grid;
grid = new GRID( growth );
growth->m_grids.push_back( grid );
doGRID( grid );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doSTRUCTURE_OUT( STRUCTURE_OUT* growth )
{
/*
<structure_out_descriptor >::=
(structure_out
{<layer_descriptor> }
[<rule_descriptor> ]
)
*/
T tok = NextTok();
while( tok != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_layer:
LAYER* layer;
layer = new LAYER( growth );
growth->m_layers.push_back( layer );
doLAYER( layer );
break;
case T_rule:
if( growth->m_rules )
Unexpected( tok );
growth->m_rules = new RULE( growth, T_rule );
doRULE( growth->m_rules );
break;
default:
Unexpected( CurText() );
}
tok = NextTok();
}
}
void SPECCTRA_DB::doKEEPOUT( KEEPOUT* growth )
{
T tok = NextTok();
if( IsSymbol(tok) )
{
growth->m_name = CurText();
tok = NextTok();
}
if( tok!=T_LEFT )
Expecting( T_LEFT );
while( tok != T_RIGHT )
{
if( tok!=T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_sequence_number:
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->m_sequence_number = atoi( CurText() );
NeedRIGHT();
break;
case T_rule:
if( growth->m_rules )
Unexpected( tok );
growth->m_rules = new RULE( growth, T_rule );
doRULE( growth->m_rules );
break;
case T_place_rule:
if( growth->m_place_rules )
Unexpected( tok );
growth->m_place_rules = new RULE( growth, T_place_rule );
doRULE( growth->m_place_rules );
break;
case T_rect:
if( growth->m_shape )
Unexpected( tok );
growth->m_shape = new RECTANGLE( growth );
doRECTANGLE( (RECTANGLE*) growth->m_shape );
break;
case T_circle:
if( growth->m_shape )
Unexpected( tok );
growth->m_shape = new CIRCLE( growth );
doCIRCLE( (CIRCLE*) growth->m_shape );
break;
case T_polyline_path:
tok = T_path;
KI_FALLTHROUGH;
case T_path:
case T_polygon:
if( growth->m_shape )
Unexpected( tok );
growth->m_shape = new PATH( growth, tok );
doPATH( (PATH*) growth->m_shape );
break;
case T_qarc:
if( growth->m_shape )
Unexpected( tok );
growth->m_shape = new QARC( growth );
doQARC( (QARC*) growth->m_shape );
break;
case T_window:
WINDOW* window;
window = new WINDOW( growth );
growth->m_windows.push_back( window );
doWINDOW( window );
break;
default:
Unexpected( CurText() );
}
tok = NextTok();
}
}
void SPECCTRA_DB::doCONNECT( CONNECT* growth )
{
/* from page 143 of specctra spec:
(connect
{(terminal <object_type> [<pin_reference> ])}
)
*/
T tok = NextTok();
while( tok != T_RIGHT )
{
if( tok!=T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_terminal:
// since we do not use the terminal information, simply toss it.
while( ( tok = NextTok() ) != T_RIGHT && tok != T_EOF )
;
break;
default:
Unexpected( CurText() );
}
tok = NextTok();
}
}
void SPECCTRA_DB::doWINDOW( WINDOW* growth )
{
T tok = NextTok();
while( tok != T_RIGHT )
{
if( tok!=T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_rect:
if( growth->shape )
Unexpected( tok );
growth->shape = new RECTANGLE( growth );
doRECTANGLE( (RECTANGLE*) growth->shape );
break;
case T_circle:
if( growth->shape )
Unexpected( tok );
growth->shape = new CIRCLE( growth );
doCIRCLE( (CIRCLE*) growth->shape );
break;
case T_polyline_path:
tok = T_path;
KI_FALLTHROUGH;
case T_path:
case T_polygon:
if( growth->shape )
Unexpected( tok );
growth->shape = new PATH( growth, tok );
doPATH( (PATH*) growth->shape );
break;
case T_qarc:
if( growth->shape )
Unexpected( tok );
growth->shape = new QARC( growth );
doQARC( (QARC*) growth->shape );
break;
default:
Unexpected( CurText() );
}
tok = NextTok();
}
}
void SPECCTRA_DB::doBOUNDARY( BOUNDARY* growth )
{
T tok = NextTok();
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
if( tok == T_rect )
{
if( growth->paths.size() )
Unexpected( "rect when path already encountered" );
growth->rectangle = new RECTANGLE( growth );
doRECTANGLE( growth->rectangle );
NeedRIGHT();
}
else if( tok == T_path )
{
if( growth->rectangle )
Unexpected( "path when rect already encountered" );
for(;;)
{
if( tok != T_path )
Expecting( T_path );
PATH* path = new PATH( growth, T_path );
growth->paths.push_back( path );
doPATH( path );
tok = NextTok();
if( tok == T_RIGHT )
break;
if( tok != T_LEFT )
Expecting(T_LEFT);
tok = NextTok();
}
}
else
{
Expecting( "rect|path" );
}
}
void SPECCTRA_DB::doPATH( PATH* growth )
{
T tok = NextTok();
if( !IsSymbol( tok ) && tok != T_NUMBER ) // a layer name can be like a number like +12
Expecting( "layer_id" );
growth->layer_id = CurText();
if( NextTok() != T_NUMBER )
Expecting( "aperture_width" );
growth->aperture_width = strtod( CurText(), nullptr );
POINT ptTemp;
tok = NextTok();
do
{
if( tok != T_NUMBER )
Expecting( T_NUMBER );
ptTemp.x = strtod( CurText(), nullptr );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
ptTemp.y = strtod( CurText(), nullptr );
growth->points.push_back( ptTemp );
} while( ( tok = NextTok() ) != T_RIGHT && tok != T_LEFT );
if( tok == T_LEFT )
{
if( NextTok() != T_aperture_type )
Expecting( T_aperture_type );
tok = NextTok();
if( tok!=T_round && tok!=T_square )
Expecting( "round|square" );
growth->aperture_type = tok;
NeedRIGHT();
}
}
void SPECCTRA_DB::doRECTANGLE( RECTANGLE* growth )
{
NeedSYMBOL();
growth->layer_id = CurText();
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->point0.x = strtod( CurText(), nullptr );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->point0.y = strtod( CurText(), nullptr );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->point1.x = strtod( CurText(), nullptr );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->point1.y = strtod( CurText(), nullptr );
NeedRIGHT();
}
void SPECCTRA_DB::doCIRCLE( CIRCLE* growth )
{
T tok;
NeedSYMBOLorNUMBER();
growth->layer_id = CurText();
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->diameter = strtod( CurText(), 0 );
tok = NextTok();
if( tok == T_NUMBER )
{
growth->vertex.x = strtod( CurText(), 0 );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->vertex.y = strtod( CurText(), 0 );
tok = NextTok();
}
if( tok != T_RIGHT )
Expecting( T_RIGHT );
}
void SPECCTRA_DB::doQARC( QARC* growth )
{
NeedSYMBOL();
growth->layer_id = CurText();
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->aperture_width = strtod( CurText(), 0 );
for( int i = 0; i < 3; ++i )
{
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->vertex[i].x = strtod( CurText(), 0 );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->vertex[i].y = strtod( CurText(), 0 );
}
NeedRIGHT();
}
void SPECCTRA_DB::doSTRINGPROP( STRINGPROP* growth )
{
NeedSYMBOL();
growth->value = CurText();
NeedRIGHT();
}
void SPECCTRA_DB::doTOKPROP( TOKPROP* growth )
{
T tok = NextTok();
if( tok<0 )
Unexpected( CurText() );
growth->value = tok;
NeedRIGHT();
}
void SPECCTRA_DB::doVIA( VIA* growth )
{
T tok;
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok == T_LEFT )
{
if( NextTok() != T_spare )
Expecting( T_spare );
while( (tok = NextTok()) != T_RIGHT )
{
if( !IsSymbol( tok ) )
Expecting( T_SYMBOL );
growth->m_spares.push_back( CurText() );
}
}
else if( IsSymbol( tok ) )
{
growth->m_padstacks.push_back( CurText() );
}
else
{
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doCONTROL( CONTROL* growth )
{
T tok;
while( (tok = NextTok()) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_via_at_smd:
tok = NextTok();
if( tok!=T_on && tok!=T_off )
Expecting( "on|off" );
growth->via_at_smd = (tok==T_on);
NeedRIGHT();
break;
case T_off_grid:
case T_route_to_fanout_only:
case T_force_to_terminal_point:
case T_same_net_checking:
case T_checking_trim_by_pin:
case T_noise_calculation:
case T_noise_accumulation:
case T_include_pins_in_crosstalk:
case T_bbv_ctr2ctr:
case T_average_pair_length:
case T_crosstalk_model:
case T_roundoff_rotation:
case T_microvia:
case T_reroute_order_viols:
TOKPROP* tokprop;
tokprop = new TOKPROP( growth, tok );
growth->Append( tokprop );
doTOKPROP( tokprop );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doPROPERTIES( PROPERTIES* growth )
{
T tok;
PROPERTY property; // construct it once here, append multiple times.
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
NeedSYMBOLorNUMBER();
property.name = CurText();
NeedSYMBOLorNUMBER();
property.value = CurText();
growth->push_back( property );
NeedRIGHT();
}
}
void SPECCTRA_DB::doLAYER( LAYER* growth )
{
T tok = NextTok();
if( !IsSymbol( tok ) )
Expecting( T_SYMBOL );
growth->name = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_type:
tok = NextTok();
if( tok != T_signal && tok != T_power && tok != T_mixed && tok != T_jumper )
Expecting( "signal|power|mixed|jumper" );
growth->layer_type = tok;
if( NextTok()!=T_RIGHT )
Expecting(T_RIGHT);
break;
case T_rule:
growth->rules = new RULE( growth, T_rule );
doRULE( growth->rules );
break;
case T_property:
doPROPERTIES( &growth->properties );
break;
case T_direction:
tok = NextTok();
switch( tok )
{
case T_horizontal:
case T_vertical:
case T_orthogonal:
case T_positive_diagonal:
case T_negative_diagonal:
case T_diagonal:
case T_off:
growth->direction = tok;
break;
default:
// the spec has an example show an abbreviation of the "horizontal" keyword. Ouch.
if( !strcmp( "hori", CurText() ) )
{
growth->direction = T_horizontal;
break;
}
else if( !strcmp( "vert", CurText() ) )
{
growth->direction = T_vertical;
break;
}
Expecting( "horizontal|vertical|orthogonal|positive_diagonal|negative_diagonal|"
"diagonal|off" );
}
if( NextTok() != T_RIGHT )
Expecting( T_RIGHT );
break;
case T_cost:
tok = NextTok();
switch( tok )
{
case T_forbidden:
case T_high:
case T_medium:
case T_low:
case T_free:
growth->cost = tok;
break;
case T_NUMBER:
// store as negative so we can differentiate between
// T (positive) and T_NUMBER (negative)
growth->cost = -atoi( CurText() );
break;
default:
Expecting( "forbidden|high|medium|low|free|<positive_integer>|-1" );
}
tok = NextTok();
if( tok == T_LEFT )
{
if( NextTok() != T_type )
Unexpected( CurText() );
tok = NextTok();
if( tok!=T_length && tok!=T_way )
Expecting( "length|way" );
growth->cost_type = tok;
if( NextTok()!=T_RIGHT )
Expecting( T_RIGHT );
tok = NextTok();
}
if( tok != T_RIGHT )
Expecting( T_RIGHT );
break;
case T_use_net:
while( ( tok = NextTok() ) != T_RIGHT )
{
if( !IsSymbol( tok ) )
Expecting( T_SYMBOL );
growth->use_net.push_back( CurText() );
}
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doRULE( RULE* growth )
{
std::string builder;
int bracketNesting = 1; // we already saw the opening T_LEFT
T tok = T_NONE;
while( bracketNesting != 0 && tok != T_EOF )
{
tok = NextTok();
if( tok==T_LEFT)
++bracketNesting;
else if( tok==T_RIGHT )
--bracketNesting;
if( bracketNesting >= 1 )
{
if( PrevTok() != T_LEFT && tok != T_RIGHT && ( tok != T_LEFT || bracketNesting > 2 ) )
builder += ' ';
if( tok == T_STRING )
builder += m_quote_char;
builder += CurText();
if( tok == T_STRING )
builder += m_quote_char;
}
// When the nested rule is closed with a T_RIGHT and we are back down
// to bracketNesting == 1, (inside the <rule_descriptor> but outside
// the last rule). Then save the last rule and clear the string builder.
if( bracketNesting == 1 )
{
growth->m_rules.push_back( builder );
builder.clear();
}
}
if( tok==T_EOF )
Unexpected( T_EOF );
}
#if 0
void SPECCTRA_DB::doPLACE_RULE( PLACE_RULE* growth, bool expect_object_type )
{
/* (place_rule [<structure_place_rule_object> ]
{[<spacing_descriptor> |
<permit_orient_descriptor> |
<permit_side_descriptor> |
<opposite_side_descriptor> ]}
)
*/
T tok = NextTok();
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
if( tok == T_object_type )
{
if( !expect_object_type )
Unexpected( tok );
/* [(object_type
[pcb |
image_set [large | small | discrete | capacitor | resistor]
[(image_type [smd | pin])]]
)]
*/
tok = NextTok();
switch( tok )
{
case T_pcb:
growth->object_type = tok;
break;
case T_image_set:
tok = NextTok();
switch( tok )
{
case T_large:
case T_small:
case T_discrete:
case T_capacitor:
case T_resistor:
growth->object_type = tok;
break;
default:
Unexpected( CurText() );
}
break;
default:
Unexpected( CurText() );
}
tok = NextTok();
if( tok == T_LEFT )
{
tok = NextTok();
if( tok != T_image_type )
Expecting( T_image_type );
tok = NextTok();
if( tok!=T_smd && tok!=T_pin )
Expecting( "smd|pin" );
NeedRIGHT();
tok = NextTok();
}
if( tok != T_RIGHT )
Expecting( T_RIGHT );
tok = NextTok();
}
/* {[<spacing_descriptor> |
<permit_orient_descriptor> |
<permit_side_descriptor> | <opposite_side_descriptor> ]}
*/
doRULE( growth );
}
#endif
void SPECCTRA_DB::doREGION( REGION* growth )
{
T tok = NextTok();
if( IsSymbol( tok ) )
{
growth->m_region_id = CurText();
tok = NextTok();
}
for(;;)
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_rect:
if( growth->m_rectangle )
Unexpected( tok );
growth->m_rectangle = new RECTANGLE( growth );
doRECTANGLE( growth->m_rectangle );
break;
case T_polygon:
if( growth->m_polygon )
Unexpected( tok );
growth->m_polygon = new PATH( growth, T_polygon );
doPATH( growth->m_polygon );
break;
case T_region_net:
case T_region_class:
STRINGPROP* stringprop;
stringprop = new STRINGPROP( growth, tok );
growth->Append( stringprop );
doSTRINGPROP( stringprop );
break;
case T_region_class_class:
CLASS_CLASS* class_class;
class_class = new CLASS_CLASS( growth, tok );
growth->Append( class_class );
doCLASS_CLASS( class_class );
break;
case T_rule:
if( growth->m_rules )
Unexpected( tok );
growth->m_rules = new RULE( growth, T_rule );
doRULE( growth->m_rules );
break;
default:
Unexpected( CurText() );
}
tok = NextTok();
if( tok == T_RIGHT )
{
if( !growth->m_rules )
Expecting( T_rule );
break;
}
}
}
void SPECCTRA_DB::doCLASS_CLASS( CLASS_CLASS* growth )
{
T tok = NextTok();
if( tok != T_LEFT )
Expecting( T_LEFT );
while( ( tok = NextTok() ) != T_RIGHT )
{
switch( tok )
{
case T_classes:
if( growth->classes )
Unexpected( tok );
growth->classes = new CLASSES( growth );
doCLASSES( growth->classes );
break;
case T_rule:
// only T_class_class takes a T_rule
if( growth->Type() == T_region_class_class )
Unexpected( tok );
RULE* rule;
rule = new RULE( growth, T_rule );
growth->Append( rule );
doRULE( rule );
break;
case T_layer_rule:
// only T_class_class takes a T_layer_rule
if( growth->Type() == T_region_class_class )
Unexpected( tok );
LAYER_RULE* layer_rule;
layer_rule = new LAYER_RULE( growth );
growth->Append( layer_rule );
doLAYER_RULE( layer_rule );
break;
default:
Unexpected( tok );
}
}
}
void SPECCTRA_DB::doCLASSES( CLASSES* growth )
{
T tok = NextTok();
// require at least 2 class_ids
if( !IsSymbol( tok ) )
Expecting( "class_id" );
growth->class_ids.push_back( CurText() );
do
{
tok = NextTok();
if( !IsSymbol( tok ) )
Expecting( "class_id" );
growth->class_ids.push_back( CurText() );
} while( ( tok = NextTok() ) != T_RIGHT );
}
void SPECCTRA_DB::doGRID( GRID* growth )
{
T tok = NextTok();
switch( tok )
{
case T_via:
case T_wire:
case T_via_keepout:
case T_snap:
case T_place:
growth->m_grid_type = tok;
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->m_dimension = strtod( CurText(), 0 );
tok = NextTok();
if( tok == T_LEFT )
{
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok == T_direction )
{
if( growth->m_grid_type == T_place )
Unexpected( tok );
tok = NextTok();
if( tok != T_x && tok != T_y )
Unexpected( CurText() );
growth->m_direction = tok;
if( NextTok() != T_RIGHT )
Expecting(T_RIGHT);
}
else if( tok == T_offset )
{
if( growth->m_grid_type == T_place )
Unexpected( tok );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->m_offset = strtod( CurText(), 0 );
if( NextTok() != T_RIGHT )
Expecting( T_RIGHT );
}
else if( tok == T_image_type )
{
if( growth->m_grid_type != T_place )
Unexpected( tok );
tok = NextTok();
if( tok != T_smd && tok != T_pin )
Unexpected( CurText() );
growth->m_image_type = tok;
if( NextTok() != T_RIGHT )
Expecting( T_RIGHT );
}
}
}
break;
default:
Unexpected( tok );
}
}
void SPECCTRA_DB::doLAYER_RULE( LAYER_RULE* growth )
{
T tok;
NeedSYMBOL();
do
{
growth->m_layer_ids.push_back( CurText() );
} while( IsSymbol( tok = NextTok() ) );
if( tok != T_LEFT )
Expecting( T_LEFT );
if( NextTok() != T_rule )
Expecting( T_rule );
growth->m_rule = new RULE( growth, T_rule );
doRULE( growth->m_rule );
NeedRIGHT();
}
void SPECCTRA_DB::doPLACE( PLACE* growth )
{
T tok = NextTok();
if( !IsSymbol( tok ) )
Expecting( "component_id" );
growth->m_component_id = CurText();
tok = NextTok();
if( tok == T_NUMBER )
{
POINT point;
point.x = strtod( CurText(), 0 );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
point.y = strtod( CurText(), 0 );
growth->SetVertex( point );
tok = NextTok();
if( tok != T_front && tok != T_back )
Expecting( "front|back" );
growth->m_side = tok;
if( NextTok() != T_NUMBER )
Expecting( "rotation" );
growth->SetRotation( strtod( CurText(), 0 ) );
}
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_mirror:
tok = NextTok();
if( tok == T_x || tok == T_y || tok == T_xy || tok == T_off )
growth->m_mirror = tok;
else
Expecting( "x|y|xy|off" );
break;
case T_status:
tok = NextTok();
if( tok==T_added || tok==T_deleted || tok==T_substituted )
growth->m_status = tok;
else
Expecting("added|deleted|substituted");
break;
case T_logical_part:
if( growth->m_logical_part.size() )
Unexpected( tok );
tok = NextTok();
if( !IsSymbol( tok ) )
Expecting( "logical_part_id");
growth->m_logical_part = CurText();
break;
case T_place_rule:
if( growth->m_place_rules )
Unexpected( tok );
growth->m_place_rules = new RULE( growth, T_place_rule );
doRULE( growth->m_place_rules );
break;
case T_property:
if( growth->m_properties.size() )
Unexpected( tok );
doPROPERTIES( &growth->m_properties );
break;
case T_lock_type:
tok = NextTok();
if( tok == T_position || tok == T_gate || tok == T_subgate || tok == T_pin )
growth->m_lock_type = tok;
else
Expecting( "position|gate|subgate|pin" );
break;
case T_rule:
if( growth->m_rules || growth->m_region )
Unexpected( tok );
growth->m_rules = new RULE( growth, T_rule );
doRULE( growth->m_rules );
break;
case T_region:
if( growth->m_rules || growth->m_region )
Unexpected( tok );
growth->m_region = new REGION( growth );
doREGION( growth->m_region );
break;
case T_pn:
if( growth->m_part_number.size() )
Unexpected( tok );
NeedSYMBOLorNUMBER();
growth->m_part_number = CurText();
NeedRIGHT();
break;
default:
Unexpected( tok );
}
}
}
void SPECCTRA_DB::doCOMPONENT( COMPONENT* growth )
{
T tok = NextTok();
if( !IsSymbol( tok ) && tok != T_NUMBER )
Expecting( "image_id" );
growth->m_image_id = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_place:
PLACE* place;
place = new PLACE( growth );
growth->m_places.push_back( place );
doPLACE( place );
break;
default:
Unexpected( tok );
}
}
}
void SPECCTRA_DB::doPLACEMENT( PLACEMENT* growth )
{
T tok;
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok == T_EOF )
Unexpected( T_EOF );
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_unit:
case T_resolution:
growth->m_unit = new UNIT_RES( growth, tok );
if( tok == T_resolution )
doRESOLUTION( growth->m_unit );
else
doUNIT( growth->m_unit );
break;
case T_place_control:
NeedRIGHT();
tok = NextTok();
if( tok != T_flip_style )
Expecting( T_flip_style );
tok = NextTok();
if( tok == T_mirror_first || tok == T_rotate_first )
growth->m_flip_style = tok;
else
Expecting( "mirror_first|rotate_first" );
NeedRIGHT();
NeedRIGHT();
break;
case T_component:
COMPONENT* component;
component = new COMPONENT( growth );
growth->m_components.push_back( component );
doCOMPONENT( component );
break;
default:
Unexpected( tok );
}
}
}
void SPECCTRA_DB::doPADSTACK( PADSTACK* growth )
{
T tok = NextTok();
/* (padstack <m_padstack_id >
[<unit_descriptor> ]
{(shape <shape_descriptor>
[<reduced_shape_descriptor> ]
[(connect [on | off])]
[{<window_descriptor> }]
)}
[<attach_descriptor> ]
[{<pad_via_site_descriptor> }]
[(rotate [on | off])]
[(absolute [on | off])]
[(rule <clearance_descriptor> )])
*/
// m_padstack_id may be a number
if( !IsSymbol( tok ) && tok != T_NUMBER )
Expecting( "m_padstack_id" );
growth->m_padstack_id = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_unit:
if( growth->m_unit )
Unexpected( tok );
growth->m_unit = new UNIT_RES( growth, tok );
doUNIT( growth->m_unit );
break;
case T_rotate:
tok = NextTok();
if( tok != T_on && tok != T_off )
Expecting( "on|off" );
growth->m_rotate = tok;
NeedRIGHT();
break;
case T_absolute:
tok = NextTok();
if( tok != T_on && tok != T_off )
Expecting( "on|off" );
growth->m_absolute = tok;
NeedRIGHT();
break;
case T_shape:
SHAPE* shape;
shape = new SHAPE( growth );
growth->Append( shape );
doSHAPE( shape );
break;
case T_attach:
tok = NextTok();
if( tok != T_off && tok != T_on )
Expecting( "off|on" );
growth->m_attach = tok;
tok = NextTok();
if( tok == T_LEFT )
{
if( NextTok() != T_use_via )
Expecting( T_use_via );
NeedSYMBOL();
growth->m_via_id = CurText();
NeedRIGHT();
NeedRIGHT();
}
break;
/*
case T_via_site: not supported
break;
*/
case T_rule:
if( growth->m_rules )
Unexpected( tok );
growth->m_rules = new RULE( growth, T_rule );
doRULE( growth->m_rules );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doSHAPE( SHAPE* growth )
{
T tok;
/* (shape <shape_descriptor>
[<reduced_shape_descriptor> ]
[(connect [on | off])]
[{<window_descriptor> }])
*/
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_polyline_path:
tok = T_path;
KI_FALLTHROUGH;
case T_rect:
case T_circle:
case T_path:
case T_polygon:
case T_qarc:
L_done_that:
if( growth->shape )
Unexpected( tok );
break;
default:
// the example in the spec uses "circ" instead of "circle". Bad!
if( !strcmp( "circ", CurText() ) )
{
tok = T_circle;
goto L_done_that;
}
}
switch( tok )
{
case T_rect:
growth->shape = new RECTANGLE( growth );
doRECTANGLE( (RECTANGLE*) growth->shape );
break;
case T_circle:
growth->shape = new CIRCLE( growth );
doCIRCLE( (CIRCLE*)growth->shape );
break;
case T_path:
case T_polygon:
growth->shape = new PATH( growth, tok );
doPATH( (PATH*)growth->shape );
break;
case T_qarc:
growth->shape = new QARC( growth );
doQARC( (QARC*)growth->shape );
break;
case T_connect:
tok = NextTok();
if( tok!=T_on && tok!=T_off )
Expecting( "on|off" );
growth->m_connect = tok;
NeedRIGHT();
break;
case T_window:
WINDOW* window;
window = new WINDOW( growth );
growth->m_windows.push_back( window );
doWINDOW( window );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doIMAGE( IMAGE* growth )
{
T tok = NextTok();
/* <image_descriptor >::=
(image <image_id >
[(side [front | back | both])]
[<unit_descriptor> ]
[<outline_descriptor> ]
{(pin <m_padstack_id > [(rotate <rotation> )]
[<reference_descriptor> | <pin_array_descriptor> ]
[<user_property_descriptor> ])}
[{<conductor_shape_descriptor> }]
[{<conductor_via_descriptor> }]
[<rule_descriptor> ]
[<place_rule_descriptor> ]
[{<keepout_descriptor> }]
[<image_property_descriptor> ]
)
*/
if( !IsSymbol( tok ) && tok != T_NUMBER )
Expecting( "image_id" );
growth->m_image_id = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_unit:
if( growth->m_unit )
Unexpected( tok );
growth->m_unit = new UNIT_RES( growth, tok );
doUNIT( growth->m_unit );
break;
case T_side:
tok = NextTok();
if( tok != T_front && tok != T_back && tok != T_both )
Expecting( "front|back|both" );
growth->m_side = tok;
NeedRIGHT();
break;
case T_outline:
SHAPE* outline;
outline = new SHAPE( growth, T_outline ); // use SHAPE for T_outline
growth->Append( outline );
doSHAPE( outline );
break;
case T_pin:
PIN* pin;
pin = new PIN( growth );
growth->m_pins.push_back( pin );
doPIN( pin );
break;
case T_rule:
if( growth->m_rules )
Unexpected( tok );
growth->m_rules = new RULE( growth, tok );
doRULE( growth->m_rules );
break;
case T_place_rule:
if( growth->m_place_rules )
Unexpected( tok );
growth->m_place_rules = new RULE( growth, tok );
doRULE( growth->m_place_rules );
break;
case T_keepout:
case T_place_keepout:
case T_via_keepout:
case T_wire_keepout:
case T_bend_keepout:
case T_elongate_keepout:
KEEPOUT* keepout;
keepout = new KEEPOUT( growth, tok );
growth->m_keepouts.push_back( keepout );
doKEEPOUT( keepout );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doPIN( PIN* growth )
{
T tok = NextTok();
/* (pin <m_padstack_id > [(rotate <rotation> )]
[<reference_descriptor> | <pin_array_descriptor> ]
[<user_property_descriptor> ])
*/
// a m_padstack_id may be a number
if( !IsSymbol( tok ) && tok!=T_NUMBER )
Expecting( "m_padstack_id" );
growth->m_padstack_id = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok == T_LEFT )
{
tok = NextTok();
if( tok != T_rotate )
Expecting( T_rotate );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->SetRotation( strtod( CurText(), 0 ) );
NeedRIGHT();
}
else
{
if( !IsSymbol( tok ) && tok != T_NUMBER )
Expecting( "pin_id" );
growth->m_pin_id = CurText();
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->m_vertex.x = strtod( CurText(), 0 );
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->m_vertex.y = strtod( CurText(), 0 );
}
}
}
void SPECCTRA_DB::doLIBRARY( LIBRARY* growth )
{
T tok;
/* <library_descriptor >::=
(library
[<unit_descriptor> ]
{<image_descriptor> }
[{<jumper_descriptor> }]
{<padstack_descriptor> }
{<via_array_template_descriptor> }
[<directory_descriptor> ]
[<extra_image_directory_descriptor> ]
[{<family_family_descriptor> }]
[{<image_image_descriptor> }]
)
*/
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_unit:
if( growth->m_unit )
Unexpected( tok );
growth->m_unit = new UNIT_RES( growth, tok );
doUNIT( growth->m_unit );
break;
case T_padstack:
PADSTACK* padstack;
padstack = new PADSTACK();
growth->AddPadstack( padstack );
doPADSTACK( padstack );
break;
case T_image:
IMAGE* image;
image = new IMAGE( growth );
growth->m_images.push_back( image );
doIMAGE( image );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doNET( NET* growth )
{
T tok = NextTok();
PIN_REFS* pin_refs;
/* <net_descriptor >::=
(net <net_id >
[(unassigned)]
[(net_number <integer >)]
[(pins {<pin_reference> }) | (order {<pin_reference> })]
[<component_order_descriptor> ]
[(type [fix | normal])]
[<user_property_descriptor> ]
[<circuit_descriptor> ]
[<rule_descriptor> ]
[{<layer_rule_descriptor> }]
[<fromto_descriptor> ]
[(expose {<pin_reference> })]
[(noexpose {<pin_reference> })]
[(source {<pin_reference> })]
[(load {<pin_reference> })]
[(terminator {<pin_reference> })]
[(supply [power | ground])]
)
*/
if( !IsSymbol( tok ) )
Expecting( "net_id" );
growth->m_net_id = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_unassigned:
growth->m_unassigned = true;
NeedRIGHT();
break;
case T_net_number:
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->m_net_number = atoi( CurText() );
NeedRIGHT();
break;
case T_pins:
case T_order:
growth->m_pins_type = tok;
pin_refs = &growth->m_pins;
goto L_pins;
case T_expose:
pin_refs = &growth->m_expose;
goto L_pins;
case T_noexpose:
pin_refs = &growth->m_noexpose;
goto L_pins;
case T_source:
pin_refs = &growth->m_source;
goto L_pins;
case T_load:
pin_refs = &growth->m_load;
goto L_pins;
case T_terminator:
pin_refs = &growth->m_terminator;
//goto L_pins;
L_pins:
{
PIN_REF empty( growth );
while( ( tok = NextTok() ) != T_RIGHT )
{
// copy the empty one, then fill its copy later thru pin_ref.
pin_refs->push_back( empty );
PIN_REF* pin_ref = &pin_refs->back();
readCOMPnPIN( &pin_ref->component_id, &pin_ref->pin_id );
}
}
break;
case T_comp_order:
if( growth->m_comp_order )
Unexpected( tok );
growth->m_comp_order = new COMP_ORDER( growth );
doCOMP_ORDER( growth->m_comp_order );
break;
case T_type:
tok = NextTok();
if( tok!=T_fix && tok!=T_normal )
Expecting( "fix|normal" );
growth->type = tok;
NeedRIGHT();
break;
/* @todo
case T_circuit:
break;
*/
case T_rule:
if( growth->m_rules )
Unexpected( tok );
growth->m_rules = new RULE( growth, T_rule );
doRULE( growth->m_rules );
break;
case T_layer_rule:
LAYER_RULE* layer_rule;
layer_rule = new LAYER_RULE( growth );
growth->m_layer_rules.push_back( layer_rule );
doLAYER_RULE( layer_rule );
break;
case T_fromto:
FROMTO* fromto;
fromto = new FROMTO( growth );
growth->m_fromtos.push_back( fromto );
doFROMTO( fromto );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doTOPOLOGY( TOPOLOGY* growth )
{
T tok;
/* <topology_descriptor >::=
(topology {[<fromto_descriptor> |
<component_order_descriptor> ]})
*/
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_fromto:
FROMTO* fromto;
fromto = new FROMTO( growth );
growth->m_fromtos.push_back( fromto );
doFROMTO( fromto );
break;
case T_comp_order:
COMP_ORDER* comp_order;
comp_order = new COMP_ORDER( growth );
growth->m_comp_orders.push_back( comp_order );
doCOMP_ORDER( comp_order );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doCLASS( CLASS* growth )
{
T tok;
/* <class_descriptor >::=
(class
<class_id > {[{<net_id >} | {<composite_name_list> }]}
[<circuit_descriptor> ]
[<rule_descriptor> ]
[{<layer_rule_descriptor> }]
[<topology_descriptor> ]
)
*/
NeedSYMBOL();
growth->m_class_id = CurText();
// do net_ids, do not support <composite_name_list>s at this time
while( IsSymbol( tok = NextTok() ) )
{
growth->m_net_ids.push_back( CurText() );
}
while( tok != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_rule:
if( growth->m_rules )
Unexpected( tok );
growth->m_rules = new RULE( growth, T_rule );
doRULE( growth->m_rules );
break;
case T_layer_rule:
LAYER_RULE* layer_rule;
layer_rule = new LAYER_RULE( growth );
growth->m_layer_rules.push_back( layer_rule );
doLAYER_RULE( layer_rule );
break;
case T_topology:
if( growth->m_topology )
Unexpected( tok );
growth->m_topology = new TOPOLOGY( growth );
doTOPOLOGY( growth->m_topology );
break;
case T_circuit: // handle all the circuit_descriptor here as strings
{
std::string builder;
int bracketNesting = 1; // we already saw the opening T_LEFT
tok = T_NONE;
while( bracketNesting != 0 && tok != T_EOF )
{
tok = NextTok();
if( tok == T_LEFT )
++bracketNesting;
else if( tok == T_RIGHT )
--bracketNesting;
if( bracketNesting >= 1 )
{
T previousTok = (T) PrevTok();
if( previousTok != T_LEFT && previousTok != T_circuit && tok != T_RIGHT )
builder += ' ';
if( tok == T_STRING )
builder += m_quote_char;
builder += CurText();
if( tok == T_STRING )
builder += m_quote_char;
}
// When the nested rule is closed with a T_RIGHT and we are back down
// to bracketNesting == 0, then save the builder and break;
if( bracketNesting == 0 )
{
growth->m_circuit.push_back( builder );
break;
}
}
if( tok == T_EOF )
Unexpected( T_EOF );
break;
} // scope bracket
default:
Unexpected( CurText() );
} // switch
tok = NextTok();
} // while
}
void SPECCTRA_DB::doNETWORK( NETWORK* growth )
{
T tok;
/* <network_descriptor >::=
(network
{<net_descriptor>}
[{<class_descriptor> }]
[{<class_class_descriptor> }]
[{<group_descriptor> }]
[{<group_set_descriptor> }]
[{<pair_descriptor> }]
[{<bundle_descriptor> }]
)
*/
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_net:
NET* net;
net = new NET( growth );
growth->m_nets.push_back( net );
doNET( net );
break;
case T_class:
CLASS* myclass;
myclass = new CLASS( growth );
growth->m_classes.push_back( myclass );
doCLASS( myclass );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doCOMP_ORDER( COMP_ORDER* growth )
{
T tok;
/* <component_order_descriptor >::=
(comp_order {<placement_id> })
*/
while( IsSymbol( tok = NextTok() ) )
growth->m_placement_ids.push_back( CurText() );
if( tok != T_RIGHT )
Expecting( T_RIGHT );
}
void SPECCTRA_DB::doFROMTO( FROMTO* growth )
{
T tok;
/* <fromto_descriptor >::=
{(fromto
[<pin_reference> | <virtual_pin_descriptor> ] | <component_id >]
[<pin_reference> | <virtual_pin_descriptor> | <component_id >]
[(type [fix | normal | soft])]
[(net <net_id >)]
[<rule_descriptor> ]
[<circuit_descriptor> ]
[{<layer_rule_descriptor> }]
)}
*/
// read the first two grammar items in as 2 single tokens, i.e. do not
// split apart the <pin_reference>s into 3 separate tokens. Do this by
// turning off the string delimiter in the lexer.
char old = SetStringDelimiter( 0 );
if( !IsSymbol(NextTok() ) )
{
SetStringDelimiter( old );
Expecting( T_SYMBOL );
}
growth->m_fromText = CurText();
if( !IsSymbol(NextTok() ) )
{
SetStringDelimiter( old );
Expecting( T_SYMBOL );
}
growth->m_toText = CurText();
SetStringDelimiter( old );
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_type:
tok = NextTok();
if( tok != T_fix && tok != T_normal && tok != T_soft )
Expecting( "fix|normal|soft" );
growth->m_fromto_type = tok;
NeedRIGHT();
break;
case T_rule:
if( growth->m_rules )
Unexpected( tok );
growth->m_rules = new RULE( growth, T_rule );
doRULE( growth->m_rules );
break;
case T_layer_rule:
LAYER_RULE* layer_rule;
layer_rule = new LAYER_RULE( growth );
growth->m_layer_rules.push_back( layer_rule );
doLAYER_RULE( layer_rule );
break;
case T_net:
if( growth->m_net_id.size() )
Unexpected( tok );
NeedSYMBOL();
growth->m_net_id = CurText();
NeedRIGHT();
break;
// circuit descriptor not supported at this time
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doWIRE( WIRE* growth )
{
T tok;
/* <wire_shape_descriptor >::=
(wire
<shape_descriptor>
[(net <net_id >)]
[(turret <turret#> )]
[(type [fix | route | normal | protect])]
[(attr [test | fanout | bus | jumper])]
[(shield <net_id >)]
[{<window_descriptor> }]
[(connect
(terminal <object_type> [<pin_reference> ])
(terminal <object_type> [<pin_reference> ])
)]
[(supply)]
)
*/
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_rect:
if( growth->m_shape )
Unexpected( tok );
growth->m_shape = new RECTANGLE( growth );
doRECTANGLE( (RECTANGLE*) growth->m_shape );
break;
case T_circle:
if( growth->m_shape )
Unexpected( tok );
growth->m_shape = new CIRCLE( growth );
doCIRCLE( (CIRCLE*) growth->m_shape );
break;
case T_polyline_path:
tok = T_path;
KI_FALLTHROUGH;
case T_path:
case T_polygon:
if( growth->m_shape )
Unexpected( tok );
growth->m_shape = new PATH( growth, tok );
doPATH( (PATH*) growth->m_shape );
break;
case T_qarc:
if( growth->m_shape )
Unexpected( tok );
growth->m_shape = new QARC( growth );
doQARC( (QARC*) growth->m_shape );
break;
case T_net:
NeedSYMBOLorNUMBER();
growth->m_net_id = CurText();
NeedRIGHT();
break;
case T_turret:
if( NextTok() != T_NUMBER )
Expecting( T_NUMBER );
growth->m_turret = atoi( CurText() );
NeedRIGHT();
break;
case T_type:
tok = NextTok();
if( tok != T_fix && tok != T_route && tok != T_normal && tok != T_protect )
Expecting( "fix|route|normal|protect" );
growth->m_wire_type = tok;
NeedRIGHT();
break;
case T_attr:
tok = NextTok();
if( tok != T_test && tok != T_fanout && tok != T_bus && tok != T_jumper )
Expecting( "test|fanout|bus|jumper" );
growth->m_attr = tok;
NeedRIGHT();
break;
case T_shield:
NeedSYMBOL();
growth->m_shield = CurText();
NeedRIGHT();
break;
case T_window:
WINDOW* window;
window = new WINDOW( growth );
growth->m_windows.push_back( window );
doWINDOW( window );
break;
case T_connect:
if( growth->m_connect )
Unexpected( tok );
growth->m_connect = new CONNECT( growth );
doCONNECT( growth->m_connect );
break;
case T_supply:
growth->m_supply = true;
NeedRIGHT();
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doWIRE_VIA( WIRE_VIA* growth )
{
T tok;
POINT point;
/* <wire_via_descriptor >::=
(via
<m_padstack_id > {<vertex> }
[(net <net_id >)]
[(via_number <via#> )]
[(type [fix | route | normal | protect])]
[(attr [test | fanout | jumper |
virtual_pin <m_virtual_pin_name> ])]
[(contact {<layer_id >})]
[(supply)]
)
(virtual_pin
<m_virtual_pin_name> <vertex> (net <net_id >)
)
*/
NeedSYMBOL();
growth->m_padstack_id = CurText();
while( ( tok = NextTok() ) == T_NUMBER )
{
point.x = strtod( CurText(), 0 );
if( NextTok() != T_NUMBER )
Expecting( "vertex.y" );
point.y = strtod( CurText(), 0 );
growth->m_vertexes.push_back( point );
}
while( tok != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_net:
NeedSYMBOL();
growth->m_net_id = CurText();
NeedRIGHT();
break;
case T_via_number:
if( NextTok() != T_NUMBER )
Expecting( "<via#>" );
growth->m_via_number = atoi( CurText() );
NeedRIGHT();
break;
case T_type:
tok = NextTok();
if( tok != T_fix && tok != T_route && tok != T_normal && tok != T_protect )
Expecting( "fix|route|normal|protect" );
growth->m_via_type = tok;
NeedRIGHT();
break;
case T_attr:
tok = NextTok();
if( tok != T_test && tok != T_fanout && tok != T_jumper && tok != T_virtual_pin )
Expecting( "test|fanout|jumper|virtual_pin" );
growth->m_attr = tok;
if( tok == T_virtual_pin )
{
NeedSYMBOL();
growth->m_virtual_pin_name = CurText();
}
NeedRIGHT();
break;
case T_contact:
NeedSYMBOL();
tok = T_SYMBOL;
while( IsSymbol( tok ) )
{
growth->m_contact_layers.push_back( CurText() );
tok = NextTok();
}
if( tok != T_RIGHT )
Expecting( T_RIGHT );
break;
case T_supply:
growth->m_supply = true;
NeedRIGHT();
break;
default:
Unexpected( CurText() );
}
tok = NextTok();
}
}
void SPECCTRA_DB::doWIRING( WIRING* growth )
{
T tok;
/* <wiring_descriptor >::=
(wiring
[<unit_descriptor> | <resolution_descriptor> | null]
{<wire_descriptor> }
[<test_points_descriptor> ]
{[<supply_pin_descriptor> ]}
)
*/
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_unit:
if( growth->unit )
Unexpected( tok );
growth->unit = new UNIT_RES( growth, tok );
doUNIT( growth->unit );
break;
case T_resolution:
if( growth->unit )
Unexpected( tok );
growth->unit = new UNIT_RES( growth, tok );
doRESOLUTION( growth->unit );
break;
case T_wire:
WIRE* wire;
wire = new WIRE( growth );
growth->wires.push_back( wire );
doWIRE( wire );
break;
case T_via:
WIRE_VIA* wire_via;
wire_via = new WIRE_VIA( growth );
growth->wire_vias.push_back( wire_via );
doWIRE_VIA( wire_via );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doANCESTOR( ANCESTOR* growth )
{
T tok;
/* <ancestor_file_descriptor >::=
(ancestor <file_path_name> (created_time <time_stamp> )
[(comment <comment_string> )])
*/
NeedSYMBOL();
growth->filename = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_created_time:
readTIME( &growth->time_stamp );
NeedRIGHT();
break;
case T_comment:
NeedSYMBOL();
growth->comment = CurText();
NeedRIGHT();
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doHISTORY( HISTORY* growth )
{
T tok;
/* <history_descriptor >::=
(history [{<ancestor_file_descriptor> }] <self_descriptor> )
*/
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_ancestor:
ANCESTOR* ancestor;
ancestor = new ANCESTOR( growth );
growth->ancestors.push_back( ancestor );
doANCESTOR( ancestor );
break;
case T_self:
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_created_time:
readTIME( &growth->time_stamp );
NeedRIGHT();
break;
case T_comment:
NeedSYMBOL();
growth->comments.push_back( CurText() );
NeedRIGHT();
break;
default:
Unexpected( CurText() );
}
}
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doSESSION( SESSION* growth )
{
T tok;
/* <session_file_descriptor >::=
(session <session_id >
(base_design <path/filename >)
[<history_descriptor> ]
[<session_structure_descriptor> ]
[<placement_descriptor> ]
[<floor_plan_descriptor> ]
[<net_pin_changes_descriptor> ]
[<was_is_descriptor> ]
<swap_history_descriptor> ]
[<route_descriptor> ]
)
*/
NeedSYMBOL();
growth->session_id = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_base_design:
NeedSYMBOL();
growth->base_design = CurText();
NeedRIGHT();
break;
case T_history:
if( growth->history )
Unexpected( tok );
growth->history = new HISTORY( growth );
doHISTORY( growth->history );
break;
case T_structure:
if( growth->structure )
Unexpected( tok );
growth->structure = new STRUCTURE( growth );
doSTRUCTURE( growth->structure );
break;
case T_placement:
if( growth->placement )
Unexpected( tok );
growth->placement = new PLACEMENT( growth );
doPLACEMENT( growth->placement );
break;
case T_was_is:
if( growth->was_is )
Unexpected( tok );
growth->was_is = new WAS_IS( growth );
doWAS_IS( growth->was_is );
break;
case T_routes:
if( growth->route )
Unexpected( tok );
growth->route = new ROUTE( growth );
doROUTE( growth->route );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doWAS_IS( WAS_IS* growth )
{
T tok;
PIN_PAIR empty( growth );
PIN_PAIR* pin_pair;
/* <was_is_descriptor >::=
(was_is {(pins <pin_reference> <pin_reference> )})
*/
// none of the pins is ok too
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_pins:
// copy the empty one, then fill its copy later thru pin_pair.
growth->pin_pairs.push_back( empty );
pin_pair= &growth->pin_pairs.back();
NeedSYMBOL(); // readCOMPnPIN() expects 1st token to have been read
readCOMPnPIN( &pin_pair->was.component_id, &pin_pair->was.pin_id );
NeedSYMBOL(); // readCOMPnPIN() expects 1st token to have been read
readCOMPnPIN( &pin_pair->is.component_id, &pin_pair->is.pin_id );
NeedRIGHT();
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doROUTE( ROUTE* growth )
{
T tok;
/* <route_descriptor >::=
(routes
<resolution_descriptor>
<parser_descriptor>
<structure_out_descriptor>
<library_out_descriptor>
<network_out_descriptor>
<test_points_descriptor>
)
*/
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_resolution:
if( growth->resolution )
Unexpected( tok );
growth->resolution = new UNIT_RES( growth, tok );
doRESOLUTION( growth->resolution );
break;
case T_parser:
if( growth->parser )
{
#if 0 // Electra 2.9.1 emits two (parser ) elements in a row.
// Work around their bug for now.
Unexpected( tok );
#else
delete growth->parser;
#endif
}
growth->parser = new PARSER( growth );
doPARSER( growth->parser );
break;
case T_structure_out:
if( growth->structure_out )
Unexpected( tok );
growth->structure_out = new STRUCTURE_OUT( growth );
doSTRUCTURE_OUT( growth->structure_out );
break;
case T_library_out:
if( growth->library )
Unexpected( tok );
growth->library = new LIBRARY( growth, tok );
doLIBRARY( growth->library );
break;
case T_network_out:
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
if( tok != T_net ) // it is class NET_OUT, but token T_net
Unexpected( CurText() );
NET_OUT* net_out;
net_out = new NET_OUT( growth );
growth->net_outs.push_back( net_out );
doNET_OUT( net_out );
}
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doNET_OUT( NET_OUT* growth )
{
T tok;
/* <net_out_descriptor >::=
(net <net_id >
[(net_number <integer >)]
[<rule_descriptor> ]
{[<wire_shape_descriptor> | <wire_guide_descriptor> |
<wire_via_descriptor> | <bond_shape_descriptor> ]}
{[<supply_pin_descriptor> ]}
)
*/
NeedSYMBOLorNUMBER();
growth->net_id = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( tok != T_LEFT )
Expecting( T_LEFT );
tok = NextTok();
switch( tok )
{
case T_net_number:
tok = NextTok();
if( tok!= T_NUMBER )
Expecting( T_NUMBER );
growth->net_number = atoi( CurText() );
NeedRIGHT();
break;
case T_rule:
if( growth->rules )
Unexpected( tok );
growth->rules = new RULE( growth, tok );
doRULE( growth->rules );
break;
case T_wire:
WIRE* wire;
wire = new WIRE( growth );
growth->wires.push_back( wire );
doWIRE( wire );
break;
case T_via:
WIRE_VIA* wire_via;
wire_via = new WIRE_VIA( growth );
growth->wire_vias.push_back( wire_via );
doWIRE_VIA( wire_via );
break;
case T_supply_pin:
SUPPLY_PIN* supply_pin;
supply_pin = new SUPPLY_PIN( growth );
growth->supply_pins.push_back( supply_pin );
doSUPPLY_PIN( supply_pin );
break;
default:
Unexpected( CurText() );
}
}
}
void SPECCTRA_DB::doSUPPLY_PIN( SUPPLY_PIN* growth )
{
T tok;
PIN_REF empty(growth);
/* <supply_pin_descriptor >::=
(supply_pin {<pin_reference> } [(net <net_id >)])
*/
NeedSYMBOL();
growth->net_id = CurText();
while( ( tok = NextTok() ) != T_RIGHT )
{
if( IsSymbol(tok) )
{
growth->pin_refs.push_back( empty );
PIN_REF* pin_ref = &growth->pin_refs.back();
readCOMPnPIN( &pin_ref->component_id, &pin_ref->pin_id );
}
else if( tok == T_LEFT )
{
tok = NextTok();
if( tok != T_net )
Expecting( T_net );
growth->net_id = CurText();
NeedRIGHT();
}
else
Unexpected( CurText() );
}
}
void SPECCTRA_DB::ExportPCB( const wxString& aFilename, bool aNameChange )
{
if( m_pcb )
{
FILE_OUTPUTFORMATTER formatter( aFilename, wxT( "wt" ), m_quote_char[0] );
if( aNameChange )
m_pcb->m_pcbname = TO_UTF8( aFilename );
m_pcb->Format( &formatter, 0 );
}
}
void SPECCTRA_DB::ExportSESSION( const wxString& aFilename )
{
if( m_session )
{
FILE_OUTPUTFORMATTER formatter( aFilename, wxT( "wt" ), m_quote_char[0] );
m_session->Format( &formatter, 0 );
}
}
PCB* SPECCTRA_DB::MakePCB()
{
PCB* pcb = new PCB();
pcb->m_parser = new PARSER( pcb );
pcb->m_resolution = new UNIT_RES( pcb, T_resolution );
pcb->m_unit = new UNIT_RES( pcb, T_unit );
pcb->m_structure = new STRUCTURE( pcb );
pcb->m_structure->m_boundary = new BOUNDARY( pcb->m_structure );
pcb->m_structure->m_via = new VIA( pcb->m_structure );
pcb->m_structure->m_rules = new RULE( pcb->m_structure, T_rule );
pcb->m_placement = new PLACEMENT( pcb );
pcb->m_library = new LIBRARY( pcb );
pcb->m_network = new NETWORK( pcb );
pcb->m_wiring = new WIRING( pcb );
return pcb;
}
//-----<ELEM>---------------------------------------------------------------
ELEM::ELEM( T aType, ELEM* aParent ) :
type( aType ),
parent( aParent )
{
}
ELEM::~ELEM()
{
}
const char* ELEM::Name() const
{
return SPECCTRA_DB::TokenName( type );
}
UNIT_RES* ELEM::GetUnits() const
{
if( parent )
return parent->GetUnits();
return &UNIT_RES::Default;
}
void ELEM::Format( OUTPUTFORMATTER* out, int nestLevel )
{
out->Print( nestLevel, "(%s\n", Name() );
FormatContents( out, nestLevel+1 );
out->Print( nestLevel, ")\n" );
}
void ELEM_HOLDER::FormatContents( OUTPUTFORMATTER* out, int nestLevel )
{
for( int i = 0; i < Length(); ++i )
At(i)->Format( out, nestLevel );
}
int ELEM_HOLDER::FindElem( T aType, int instanceNum )
{
int repeats=0;
for( unsigned i = 0; i < kids.size(); ++i )
{
if( kids[i].Type() == aType )
{
if( repeats == instanceNum )
return i;
++repeats;
}
}
return -1;
}
// a reasonably small memory price to pay for improved performance
STRING_FORMATTER ELEM::sf;
UNIT_RES UNIT_RES::Default( nullptr, T_resolution );
int PADSTACK::Compare( PADSTACK* lhs, PADSTACK* rhs )
{
if( !lhs->m_hash.size() )
lhs->m_hash = lhs->makeHash();
if( !rhs->m_hash.size() )
rhs->m_hash = rhs->makeHash();
int result = lhs->m_hash.compare( rhs->m_hash );
if( result )
return result;
// Via names hold the drill diameters, so we have to include those to discern
// between two vias with same copper size but with different drill sizes.
result = lhs->m_padstack_id.compare( rhs->m_padstack_id );
return result;
}
int IMAGE::Compare( IMAGE* lhs, IMAGE* rhs )
{
if( !lhs->m_hash.size() )
lhs->m_hash = lhs->makeHash();
if( !rhs->m_hash.size() )
rhs->m_hash = rhs->makeHash();
int result = lhs->m_hash.compare( rhs->m_hash );
return result;
}
/*
int COMPONENT::Compare( COMPONENT* lhs, COMPONENT* rhs )
{
if( !lhs->hash.size() )
lhs->hash = lhs->makeHash();
if( !rhs->hash.size() )
rhs->hash = rhs->makeHash();
int result = lhs->hash.compare( rhs->hash );
return result;
}
*/
PARSER::PARSER( ELEM* aParent ) :
ELEM( T_parser, aParent )
{
string_quote = '"';
space_in_quoted_tokens = false;
case_sensitive = false;
wires_include_testpoint = false;
routes_include_testpoint = false;
routes_include_guides = false;
routes_include_image_conductor = false;
via_rotate_first = true;
generated_by_freeroute = false;
host_cad = "KiCad's Pcbnew";
wxString msg = GetBuildVersion();
host_version = TO_UTF8(msg);
}
void PARSER::FormatContents( OUTPUTFORMATTER* out, int nestLevel )
{
out->Print( nestLevel, "(string_quote %c)\n", string_quote );
out->Print( nestLevel, "(space_in_quoted_tokens %s)\n", space_in_quoted_tokens ? "on" : "off" );
out->Print( nestLevel, "(host_cad \"%s\")\n", host_cad.c_str() );
out->Print( nestLevel, "(host_version \"%s\")\n", host_version.c_str() );
for( STRINGS::iterator i = constants.begin(); i != constants.end(); )
{
const std::string& s1 = *i++;
const std::string& s2 = *i++;
const char* q1 = out->GetQuoteChar( s1.c_str() );
const char* q2 = out->GetQuoteChar( s2.c_str() );
out->Print( nestLevel, "(constant %s%s%s %s%s%s)\n",
q1, s1.c_str(), q1, q2, s2.c_str(), q2 );
}
if( routes_include_testpoint || routes_include_guides || routes_include_image_conductor )
{
out->Print( nestLevel, "(routes_include%s%s%s)\n",
routes_include_testpoint ? " testpoint" : "",
routes_include_guides ? " guides" : "",
routes_include_image_conductor ? " image_conductor" : "" );
}
if( wires_include_testpoint )
out->Print( nestLevel, "(wires_include testpoint)\n" );
if( !via_rotate_first )
out->Print( nestLevel, "(via_rotate_first off)\n" );
if( case_sensitive )
out->Print( nestLevel, "(case_sensitive %s)\n", case_sensitive ? "on" : "off" );
}
void PLACE::Format( OUTPUTFORMATTER* out, int nestLevel )
{
bool useMultiLine;
const char* quote = out->GetQuoteChar( m_component_id.c_str() );
if( m_place_rules || m_properties.size() || m_rules || m_region )
{
useMultiLine = true;
out->Print( nestLevel, "(%s %s%s%s\n", Name(), quote, m_component_id.c_str(), quote );
out->Print( nestLevel+1, "%s", "" );
}
else
{
useMultiLine = false;
out->Print( nestLevel, "(%s %s%s%s", Name(), quote, m_component_id.c_str(), quote );
}
if( m_hasVertex )
{
out->Print( 0, " %.6f %.6f", m_vertex.x, m_vertex.y );
out->Print( 0, " %s", GetTokenText( m_side ) );
out->Print( 0, " %.6f", m_rotation );
}
const char* space = " "; // one space, as c string.
if( m_mirror != T_NONE )
{
out->Print( 0, "%s(mirror %s)", space, GetTokenText( m_mirror ) );
space = "";
}
if( m_status != T_NONE )
{
out->Print( 0, "%s(status %s)", space, GetTokenText( m_status ) );
space = "";
}
if( m_logical_part.size() )
{
quote = out->GetQuoteChar( m_logical_part.c_str() );
out->Print( 0, "%s(logical_part %s%s%s)", space, quote, m_logical_part.c_str(), quote );
space = "";
}
if( useMultiLine )
{
out->Print( 0, "\n" );
if( m_place_rules )
m_place_rules->Format( out, nestLevel+1 );
if( m_properties.size() )
{
out->Print( nestLevel + 1, "(property \n" );
for( PROPERTIES::const_iterator i = m_properties.begin(); i != m_properties.end(); ++i )
i->Format( out, nestLevel + 2 );
out->Print( nestLevel + 1, ")\n" );
}
if( m_lock_type != T_NONE )
out->Print( nestLevel + 1, "(lock_type %s)\n", GetTokenText( m_lock_type ) );
if( m_rules )
m_rules->Format( out, nestLevel+1 );
if( m_region )
m_region->Format( out, nestLevel+1 );
if( m_part_number.size() )
{
quote = out->GetQuoteChar( m_part_number.c_str() );
out->Print( nestLevel + 1, "(PN %s%s%s)\n", quote, m_part_number.c_str(), quote );
}
}
else
{
if( m_lock_type != T_NONE )
{
out->Print( 0, "%s(lock_type %s)", space, GetTokenText( m_lock_type ) );
space = "";
}
if( m_part_number.size() )
{
quote = out->GetQuoteChar( m_part_number.c_str() );
out->Print( 0, "%s(PN %s%s%s)", space, quote, m_part_number.c_str(), quote );
}
}
out->Print( 0, ")\n" );
}
} // namespace DSN