1965 lines
50 KiB
C++
1965 lines
50 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2015-2017 CERN
|
|
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
|
* @author Alejandro García Montoro <alejandro.garciamontoro@gmail.com>
|
|
*
|
|
* Point in polygon algorithm adapted from Clipper Library (C) Angus Johnson,
|
|
* subject to Clipper library license.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
|
|
#include <vector>
|
|
#include <cstdio>
|
|
#include <set>
|
|
#include <list>
|
|
#include <algorithm>
|
|
#include <unordered_set>
|
|
#include <memory>
|
|
|
|
#include <md5_hash.h>
|
|
#include <map>
|
|
|
|
#include <make_unique.h>
|
|
|
|
#include <geometry/geometry_utils.h>
|
|
#include <geometry/shape.h>
|
|
#include <geometry/shape_line_chain.h>
|
|
#include <geometry/shape_poly_set.h>
|
|
#include <geometry/polygon_triangulation.h>
|
|
|
|
using namespace ClipperLib;
|
|
|
|
SHAPE_POLY_SET::SHAPE_POLY_SET() :
|
|
SHAPE( SH_POLY_SET )
|
|
{
|
|
}
|
|
|
|
|
|
SHAPE_POLY_SET::SHAPE_POLY_SET( const SHAPE_POLY_SET& aOther, bool aDeepCopy ) :
|
|
SHAPE( SH_POLY_SET ), m_polys( aOther.m_polys )
|
|
{
|
|
if( aOther.IsTriangulationUpToDate() )
|
|
{
|
|
for( unsigned i = 0; i < aOther.TriangulatedPolyCount(); i++ )
|
|
m_triangulatedPolys.push_back(
|
|
std::make_unique<TRIANGULATED_POLYGON>( *aOther.TriangulatedPolygon( i ) ) );
|
|
|
|
m_hash = aOther.GetHash();
|
|
m_triangulationValid = true;
|
|
}
|
|
}
|
|
|
|
|
|
SHAPE_POLY_SET::~SHAPE_POLY_SET()
|
|
{
|
|
}
|
|
|
|
|
|
SHAPE* SHAPE_POLY_SET::Clone() const
|
|
{
|
|
return new SHAPE_POLY_SET( *this );
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::GetRelativeIndices( int aGlobalIdx,
|
|
SHAPE_POLY_SET::VERTEX_INDEX* aRelativeIndices ) const
|
|
{
|
|
int polygonIdx = 0;
|
|
unsigned int contourIdx = 0;
|
|
int vertexIdx = 0;
|
|
|
|
int currentGlobalIdx = 0;
|
|
|
|
for( polygonIdx = 0; polygonIdx < OutlineCount(); polygonIdx++ )
|
|
{
|
|
const POLYGON currentPolygon = CPolygon( polygonIdx );
|
|
|
|
for( contourIdx = 0; contourIdx < currentPolygon.size(); contourIdx++ )
|
|
{
|
|
SHAPE_LINE_CHAIN currentContour = currentPolygon[contourIdx];
|
|
int totalPoints = currentContour.PointCount();
|
|
|
|
for( vertexIdx = 0; vertexIdx < totalPoints; vertexIdx++ )
|
|
{
|
|
// Check if the current vertex is the globally indexed as aGlobalIdx
|
|
if( currentGlobalIdx == aGlobalIdx )
|
|
{
|
|
aRelativeIndices->m_polygon = polygonIdx;
|
|
aRelativeIndices->m_contour = contourIdx;
|
|
aRelativeIndices->m_vertex = vertexIdx;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Advance
|
|
currentGlobalIdx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::GetGlobalIndex( SHAPE_POLY_SET::VERTEX_INDEX aRelativeIndices,
|
|
int& aGlobalIdx )
|
|
{
|
|
int selectedVertex = aRelativeIndices.m_vertex;
|
|
unsigned int selectedContour = aRelativeIndices.m_contour;
|
|
unsigned int selectedPolygon = aRelativeIndices.m_polygon;
|
|
|
|
// Check whether the vertex indices make sense in this poly set
|
|
if( selectedPolygon < m_polys.size() && selectedContour < m_polys[selectedPolygon].size()
|
|
&& selectedVertex < m_polys[selectedPolygon][selectedContour].PointCount() )
|
|
{
|
|
POLYGON currentPolygon;
|
|
|
|
aGlobalIdx = 0;
|
|
|
|
for( unsigned int polygonIdx = 0; polygonIdx < selectedPolygon; polygonIdx++ )
|
|
{
|
|
currentPolygon = Polygon( polygonIdx );
|
|
|
|
for( unsigned int contourIdx = 0; contourIdx < currentPolygon.size(); contourIdx++ )
|
|
{
|
|
aGlobalIdx += currentPolygon[contourIdx].PointCount();
|
|
}
|
|
}
|
|
|
|
currentPolygon = Polygon( selectedPolygon );
|
|
|
|
for( unsigned int contourIdx = 0; contourIdx < selectedContour; contourIdx++ )
|
|
{
|
|
aGlobalIdx += currentPolygon[contourIdx].PointCount();
|
|
}
|
|
|
|
aGlobalIdx += selectedVertex;
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::NewOutline()
|
|
{
|
|
SHAPE_LINE_CHAIN empty_path;
|
|
POLYGON poly;
|
|
|
|
empty_path.SetClosed( true );
|
|
poly.push_back( empty_path );
|
|
m_polys.push_back( poly );
|
|
return m_polys.size() - 1;
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::NewHole( int aOutline )
|
|
{
|
|
SHAPE_LINE_CHAIN empty_path;
|
|
|
|
empty_path.SetClosed( true );
|
|
|
|
// Default outline is the last one
|
|
if( aOutline < 0 )
|
|
aOutline += m_polys.size();
|
|
|
|
// Add hole to the selected outline
|
|
m_polys[aOutline].push_back( empty_path );
|
|
|
|
return m_polys.back().size() - 2;
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::Append( int x, int y, int aOutline, int aHole, bool aAllowDuplication )
|
|
{
|
|
if( aOutline < 0 )
|
|
aOutline += m_polys.size();
|
|
|
|
int idx;
|
|
|
|
if( aHole < 0 )
|
|
idx = 0;
|
|
else
|
|
idx = aHole + 1;
|
|
|
|
assert( aOutline < (int) m_polys.size() );
|
|
assert( idx < (int) m_polys[aOutline].size() );
|
|
|
|
m_polys[aOutline][idx].Append( x, y, aAllowDuplication );
|
|
|
|
return m_polys[aOutline][idx].PointCount();
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::InsertVertex( int aGlobalIndex, VECTOR2I aNewVertex )
|
|
{
|
|
VERTEX_INDEX index;
|
|
|
|
if( aGlobalIndex < 0 )
|
|
aGlobalIndex = 0;
|
|
|
|
if( aGlobalIndex >= TotalVertices() )
|
|
{
|
|
Append( aNewVertex );
|
|
}
|
|
else
|
|
{
|
|
// Assure the position to be inserted exists; throw an exception otherwise
|
|
if( GetRelativeIndices( aGlobalIndex, &index ) )
|
|
m_polys[index.m_polygon][index.m_contour].Insert( index.m_vertex, aNewVertex );
|
|
else
|
|
throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) );
|
|
}
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::VertexCount( int aOutline, int aHole ) const
|
|
{
|
|
if( m_polys.size() == 0 ) // Empty poly set
|
|
return 0;
|
|
|
|
if( aOutline < 0 ) // Use last outline
|
|
aOutline += m_polys.size();
|
|
|
|
int idx;
|
|
|
|
if( aHole < 0 )
|
|
idx = 0;
|
|
else
|
|
idx = aHole + 1;
|
|
|
|
if( aOutline >= (int) m_polys.size() ) // not existing outline
|
|
return 0;
|
|
|
|
if( idx >= (int) m_polys[aOutline].size() ) // not existing hole
|
|
return 0;
|
|
|
|
return m_polys[aOutline][idx].PointCount();
|
|
}
|
|
|
|
|
|
SHAPE_POLY_SET SHAPE_POLY_SET::Subset( int aFirstPolygon, int aLastPolygon )
|
|
{
|
|
assert( aFirstPolygon >= 0 && aLastPolygon <= OutlineCount() );
|
|
|
|
SHAPE_POLY_SET newPolySet;
|
|
|
|
for( int index = aFirstPolygon; index < aLastPolygon; index++ )
|
|
{
|
|
newPolySet.m_polys.push_back( Polygon( index ) );
|
|
}
|
|
|
|
return newPolySet;
|
|
}
|
|
|
|
|
|
VECTOR2I& SHAPE_POLY_SET::Vertex( int aIndex, int aOutline, int aHole )
|
|
{
|
|
if( aOutline < 0 )
|
|
aOutline += m_polys.size();
|
|
|
|
int idx;
|
|
|
|
if( aHole < 0 )
|
|
idx = 0;
|
|
else
|
|
idx = aHole + 1;
|
|
|
|
assert( aOutline < (int) m_polys.size() );
|
|
assert( idx < (int) m_polys[aOutline].size() );
|
|
|
|
return m_polys[aOutline][idx].Point( aIndex );
|
|
}
|
|
|
|
|
|
const VECTOR2I& SHAPE_POLY_SET::CVertex( int aIndex, int aOutline, int aHole ) const
|
|
{
|
|
if( aOutline < 0 )
|
|
aOutline += m_polys.size();
|
|
|
|
int idx;
|
|
|
|
if( aHole < 0 )
|
|
idx = 0;
|
|
else
|
|
idx = aHole + 1;
|
|
|
|
assert( aOutline < (int) m_polys.size() );
|
|
assert( idx < (int) m_polys[aOutline].size() );
|
|
|
|
return m_polys[aOutline][idx].CPoint( aIndex );
|
|
}
|
|
|
|
|
|
VECTOR2I& SHAPE_POLY_SET::Vertex( int aGlobalIndex )
|
|
{
|
|
SHAPE_POLY_SET::VERTEX_INDEX index;
|
|
|
|
// Assure the passed index references a legal position; abort otherwise
|
|
if( !GetRelativeIndices( aGlobalIndex, &index ) )
|
|
throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) );
|
|
|
|
return m_polys[index.m_polygon][index.m_contour].Point( index.m_vertex );
|
|
}
|
|
|
|
|
|
const VECTOR2I& SHAPE_POLY_SET::CVertex( int aGlobalIndex ) const
|
|
{
|
|
SHAPE_POLY_SET::VERTEX_INDEX index;
|
|
|
|
// Assure the passed index references a legal position; abort otherwise
|
|
if( !GetRelativeIndices( aGlobalIndex, &index ) )
|
|
throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) );
|
|
|
|
return m_polys[index.m_polygon][index.m_contour].CPoint( index.m_vertex );
|
|
}
|
|
|
|
|
|
VECTOR2I& SHAPE_POLY_SET::Vertex( SHAPE_POLY_SET::VERTEX_INDEX index )
|
|
{
|
|
return Vertex( index.m_vertex, index.m_polygon, index.m_contour - 1 );
|
|
}
|
|
|
|
|
|
const VECTOR2I& SHAPE_POLY_SET::CVertex( SHAPE_POLY_SET::VERTEX_INDEX index ) const
|
|
{
|
|
return CVertex( index.m_vertex, index.m_polygon, index.m_contour - 1 );
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::GetNeighbourIndexes( int aGlobalIndex, int* aPrevious, int* aNext )
|
|
{
|
|
SHAPE_POLY_SET::VERTEX_INDEX index;
|
|
|
|
// If the edge does not exist, throw an exception, it is an illegal access memory error
|
|
if( !GetRelativeIndices( aGlobalIndex, &index ) )
|
|
return false;
|
|
|
|
// Calculate the previous and next index of aGlobalIndex, corresponding to
|
|
// the same contour;
|
|
VERTEX_INDEX inext = index;
|
|
int lastpoint = m_polys[index.m_polygon][index.m_contour].SegmentCount();
|
|
|
|
if( index.m_vertex == 0 )
|
|
{
|
|
index.m_vertex = lastpoint;
|
|
inext.m_vertex = 1;
|
|
}
|
|
else if( index.m_vertex == lastpoint )
|
|
{
|
|
index.m_vertex--;
|
|
inext.m_vertex = 0;
|
|
}
|
|
else
|
|
{
|
|
inext.m_vertex++;
|
|
index.m_vertex--;
|
|
}
|
|
|
|
if( aPrevious )
|
|
{
|
|
int previous;
|
|
GetGlobalIndex( index, previous );
|
|
*aPrevious = previous;
|
|
}
|
|
|
|
if( aNext )
|
|
{
|
|
int next;
|
|
GetGlobalIndex( inext, next );
|
|
*aNext = next;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::IsPolygonSelfIntersecting( int aPolygonIndex )
|
|
{
|
|
SEGMENT_ITERATOR iterator = IterateSegmentsWithHoles( aPolygonIndex );
|
|
SEGMENT_ITERATOR innerIterator;
|
|
|
|
for( iterator = IterateSegmentsWithHoles( aPolygonIndex ); iterator; iterator++ )
|
|
{
|
|
SEG firstSegment = *iterator;
|
|
|
|
// Iterate through all remaining segments.
|
|
innerIterator = iterator;
|
|
|
|
// Start in the next segment, we don't want to check collision between a segment and itself
|
|
for( innerIterator++; innerIterator; innerIterator++ )
|
|
{
|
|
SEG secondSegment = *innerIterator;
|
|
|
|
// Check whether the two segments built collide, only when they are not adjacent.
|
|
if( !iterator.IsAdjacent( innerIterator ) && firstSegment.Collide( secondSegment, 0 ) )
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::IsSelfIntersecting()
|
|
{
|
|
for( unsigned int polygon = 0; polygon < m_polys.size(); polygon++ )
|
|
{
|
|
if( IsPolygonSelfIntersecting( polygon ) )
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::AddOutline( const SHAPE_LINE_CHAIN& aOutline )
|
|
{
|
|
assert( aOutline.IsClosed() );
|
|
|
|
POLYGON poly;
|
|
|
|
poly.push_back( aOutline );
|
|
|
|
m_polys.push_back( poly );
|
|
|
|
return m_polys.size() - 1;
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline )
|
|
{
|
|
assert( m_polys.size() );
|
|
|
|
if( aOutline < 0 )
|
|
aOutline += m_polys.size();
|
|
|
|
POLYGON& poly = m_polys[aOutline];
|
|
|
|
assert( poly.size() );
|
|
|
|
poly.push_back( aHole );
|
|
|
|
return poly.size() - 1;
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType aType, const SHAPE_POLY_SET& aOtherShape,
|
|
POLYGON_MODE aFastMode )
|
|
{
|
|
booleanOp( aType, *this, aOtherShape, aFastMode );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType aType,
|
|
const SHAPE_POLY_SET& aShape,
|
|
const SHAPE_POLY_SET& aOtherShape,
|
|
POLYGON_MODE aFastMode )
|
|
{
|
|
Clipper c;
|
|
|
|
c.StrictlySimple( aFastMode == PM_STRICTLY_SIMPLE );
|
|
|
|
for( auto poly : aShape.m_polys )
|
|
{
|
|
for( size_t i = 0 ; i < poly.size(); i++ )
|
|
c.AddPath( poly[i].convertToClipper( i == 0 ), ptSubject, true );
|
|
}
|
|
|
|
for( auto poly : aOtherShape.m_polys )
|
|
{
|
|
for( size_t i = 0; i < poly.size(); i++ )
|
|
c.AddPath( poly[i].convertToClipper( i == 0 ), ptClip, true );
|
|
}
|
|
|
|
PolyTree solution;
|
|
|
|
c.Execute( aType, solution, pftNonZero, pftNonZero );
|
|
|
|
importTree( &solution );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::BooleanAdd( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
|
|
{
|
|
booleanOp( ctUnion, b, aFastMode );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::BooleanSubtract( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
|
|
{
|
|
booleanOp( ctDifference, b, aFastMode );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::BooleanIntersection( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
|
|
{
|
|
booleanOp( ctIntersection, b, aFastMode );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::BooleanAdd( const SHAPE_POLY_SET& a,
|
|
const SHAPE_POLY_SET& b,
|
|
POLYGON_MODE aFastMode )
|
|
{
|
|
booleanOp( ctUnion, a, b, aFastMode );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::BooleanSubtract( const SHAPE_POLY_SET& a,
|
|
const SHAPE_POLY_SET& b,
|
|
POLYGON_MODE aFastMode )
|
|
{
|
|
booleanOp( ctDifference, a, b, aFastMode );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::BooleanIntersection( const SHAPE_POLY_SET& a,
|
|
const SHAPE_POLY_SET& b,
|
|
POLYGON_MODE aFastMode )
|
|
{
|
|
booleanOp( ctIntersection, a, b, aFastMode );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::Inflate( int aFactor, int aCircleSegmentsCount )
|
|
{
|
|
// A static table to avoid repetitive calculations of the coefficient
|
|
// 1.0 - cos( M_PI/aCircleSegmentsCount)
|
|
// aCircleSegmentsCount is most of time <= 64 and usually 8, 12, 16, 32
|
|
#define SEG_CNT_MAX 64
|
|
static double arc_tolerance_factor[SEG_CNT_MAX + 1];
|
|
|
|
ClipperOffset c;
|
|
|
|
for( const POLYGON& poly : m_polys )
|
|
{
|
|
for( size_t i = 0; i < poly.size(); i++ )
|
|
c.AddPath( poly[i].convertToClipper( i == 0 ), jtRound, etClosedPolygon );
|
|
}
|
|
|
|
PolyTree solution;
|
|
|
|
// Calculate the arc tolerance (arc error) from the seg count by circle.
|
|
// the seg count is nn = M_PI / acos(1.0 - c.ArcTolerance / abs(aFactor))
|
|
// see:
|
|
// www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Properties/ArcTolerance.htm
|
|
|
|
if( aCircleSegmentsCount < 6 ) // avoid incorrect aCircleSegmentsCount values
|
|
aCircleSegmentsCount = 6;
|
|
|
|
double coeff;
|
|
|
|
if( aCircleSegmentsCount > SEG_CNT_MAX || arc_tolerance_factor[aCircleSegmentsCount] == 0 )
|
|
{
|
|
coeff = 1.0 - cos( M_PI / aCircleSegmentsCount );
|
|
|
|
if( aCircleSegmentsCount <= SEG_CNT_MAX )
|
|
arc_tolerance_factor[aCircleSegmentsCount] = coeff;
|
|
}
|
|
else
|
|
coeff = arc_tolerance_factor[aCircleSegmentsCount];
|
|
|
|
c.ArcTolerance = std::abs( aFactor ) * coeff;
|
|
|
|
c.Execute( solution, aFactor );
|
|
|
|
importTree( &solution );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::importTree( PolyTree* tree )
|
|
{
|
|
m_polys.clear();
|
|
|
|
for( PolyNode* n = tree->GetFirst(); n; n = n->GetNext() )
|
|
{
|
|
if( !n->IsHole() )
|
|
{
|
|
POLYGON paths;
|
|
paths.reserve( n->Childs.size() + 1 );
|
|
paths.push_back( n->Contour );
|
|
|
|
for( unsigned int i = 0; i < n->Childs.size(); i++ )
|
|
paths.push_back( n->Childs[i]->Contour );
|
|
|
|
m_polys.push_back( paths );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
struct FractureEdge
|
|
{
|
|
FractureEdge( bool connected, SHAPE_LINE_CHAIN* owner, int index ) :
|
|
m_connected( connected ),
|
|
m_next( NULL )
|
|
{
|
|
m_p1 = owner->CPoint( index );
|
|
m_p2 = owner->CPoint( index + 1 );
|
|
}
|
|
|
|
FractureEdge( int y = 0 ) :
|
|
m_connected( false ),
|
|
m_next( NULL )
|
|
{
|
|
m_p1.x = m_p2.y = y;
|
|
}
|
|
|
|
FractureEdge( bool connected, const VECTOR2I& p1, const VECTOR2I& p2 ) :
|
|
m_connected( connected ),
|
|
m_p1( p1 ),
|
|
m_p2( p2 ),
|
|
m_next( NULL )
|
|
{
|
|
}
|
|
|
|
bool matches( int y ) const
|
|
{
|
|
int y_min = std::min( m_p1.y, m_p2.y );
|
|
int y_max = std::max( m_p1.y, m_p2.y );
|
|
|
|
return ( y >= y_min ) && ( y <= y_max );
|
|
}
|
|
|
|
bool m_connected;
|
|
VECTOR2I m_p1, m_p2;
|
|
FractureEdge* m_next;
|
|
};
|
|
|
|
|
|
typedef std::vector<FractureEdge*> FractureEdgeSet;
|
|
|
|
|
|
static int processEdge( FractureEdgeSet& edges, FractureEdge* edge )
|
|
{
|
|
int x = edge->m_p1.x;
|
|
int y = edge->m_p1.y;
|
|
int min_dist = std::numeric_limits<int>::max();
|
|
int x_nearest = 0;
|
|
|
|
FractureEdge* e_nearest = NULL;
|
|
|
|
for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
|
{
|
|
if( !(*i)->matches( y ) )
|
|
continue;
|
|
|
|
int x_intersect;
|
|
|
|
if( (*i)->m_p1.y == (*i)->m_p2.y ) // horizontal edge
|
|
x_intersect = std::max( (*i)->m_p1.x, (*i)->m_p2.x );
|
|
else
|
|
x_intersect = (*i)->m_p1.x + rescale( (*i)->m_p2.x - (*i)->m_p1.x, y - (*i)->m_p1.y,
|
|
(*i)->m_p2.y - (*i)->m_p1.y );
|
|
|
|
int dist = ( x - x_intersect );
|
|
|
|
if( dist >= 0 && dist < min_dist && (*i)->m_connected )
|
|
{
|
|
min_dist = dist;
|
|
x_nearest = x_intersect;
|
|
e_nearest = (*i);
|
|
}
|
|
}
|
|
|
|
if( e_nearest && e_nearest->m_connected )
|
|
{
|
|
int count = 0;
|
|
|
|
FractureEdge* lead1 =
|
|
new FractureEdge( true, VECTOR2I( x_nearest, y ), VECTOR2I( x, y ) );
|
|
FractureEdge* lead2 =
|
|
new FractureEdge( true, VECTOR2I( x, y ), VECTOR2I( x_nearest, y ) );
|
|
FractureEdge* split_2 =
|
|
new FractureEdge( true, VECTOR2I( x_nearest, y ), e_nearest->m_p2 );
|
|
|
|
edges.push_back( split_2 );
|
|
edges.push_back( lead1 );
|
|
edges.push_back( lead2 );
|
|
|
|
FractureEdge* link = e_nearest->m_next;
|
|
|
|
e_nearest->m_p2 = VECTOR2I( x_nearest, y );
|
|
e_nearest->m_next = lead1;
|
|
lead1->m_next = edge;
|
|
|
|
FractureEdge* last;
|
|
|
|
for( last = edge; last->m_next != edge; last = last->m_next )
|
|
{
|
|
last->m_connected = true;
|
|
count++;
|
|
}
|
|
|
|
last->m_connected = true;
|
|
last->m_next = lead2;
|
|
lead2->m_next = split_2;
|
|
split_2->m_next = link;
|
|
|
|
return count + 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::fractureSingle( POLYGON& paths )
|
|
{
|
|
FractureEdgeSet edges;
|
|
FractureEdgeSet border_edges;
|
|
FractureEdge* root = NULL;
|
|
|
|
bool first = true;
|
|
|
|
if( paths.size() == 1 )
|
|
return;
|
|
|
|
int num_unconnected = 0;
|
|
|
|
for( SHAPE_LINE_CHAIN& path : paths )
|
|
{
|
|
int index = 0;
|
|
|
|
FractureEdge* prev = NULL, * first_edge = NULL;
|
|
|
|
int x_min = std::numeric_limits<int>::max();
|
|
|
|
for( int i = 0; i < path.PointCount(); i++ )
|
|
{
|
|
const VECTOR2I& p = path.CPoint( i );
|
|
|
|
if( p.x < x_min )
|
|
x_min = p.x;
|
|
}
|
|
|
|
for( int i = 0; i < path.PointCount(); i++ )
|
|
{
|
|
FractureEdge* fe = new FractureEdge( first, &path, index++ );
|
|
|
|
if( !root )
|
|
root = fe;
|
|
|
|
if( !first_edge )
|
|
first_edge = fe;
|
|
|
|
if( prev )
|
|
prev->m_next = fe;
|
|
|
|
if( i == path.PointCount() - 1 )
|
|
fe->m_next = first_edge;
|
|
|
|
prev = fe;
|
|
edges.push_back( fe );
|
|
|
|
if( !first )
|
|
{
|
|
if( fe->m_p1.x == x_min )
|
|
border_edges.push_back( fe );
|
|
}
|
|
|
|
if( !fe->m_connected )
|
|
num_unconnected++;
|
|
}
|
|
|
|
first = false; // first path is always the outline
|
|
}
|
|
|
|
// keep connecting holes to the main outline, until there's no holes left...
|
|
while( num_unconnected > 0 )
|
|
{
|
|
int x_min = std::numeric_limits<int>::max();
|
|
|
|
FractureEdge* smallestX = NULL;
|
|
|
|
// find the left-most hole edge and merge with the outline
|
|
for( FractureEdgeSet::iterator i = border_edges.begin(); i != border_edges.end(); ++i )
|
|
{
|
|
int xt = (*i)->m_p1.x;
|
|
|
|
if( ( xt < x_min ) && !(*i)->m_connected )
|
|
{
|
|
x_min = xt;
|
|
smallestX = *i;
|
|
}
|
|
}
|
|
|
|
num_unconnected -= processEdge( edges, smallestX );
|
|
}
|
|
|
|
paths.clear();
|
|
SHAPE_LINE_CHAIN newPath;
|
|
|
|
newPath.SetClosed( true );
|
|
|
|
FractureEdge* e;
|
|
|
|
for( e = root; e->m_next != root; e = e->m_next )
|
|
newPath.Append( e->m_p1 );
|
|
|
|
newPath.Append( e->m_p1 );
|
|
|
|
for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
|
delete *i;
|
|
|
|
paths.push_back( newPath );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::Fracture( POLYGON_MODE aFastMode )
|
|
{
|
|
Simplify( aFastMode ); // remove overlapping holes/degeneracy
|
|
|
|
for( POLYGON& paths : m_polys )
|
|
{
|
|
fractureSingle( paths );
|
|
}
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::unfractureSingle( SHAPE_POLY_SET::POLYGON& aPoly )
|
|
{
|
|
assert( aPoly.size() == 1 );
|
|
|
|
struct EDGE
|
|
{
|
|
int m_index = 0;
|
|
SHAPE_LINE_CHAIN* m_poly = nullptr;
|
|
bool m_duplicate = false;
|
|
|
|
EDGE( SHAPE_LINE_CHAIN* aPolygon, int aIndex ) :
|
|
m_index( aIndex ),
|
|
m_poly( aPolygon )
|
|
{}
|
|
|
|
bool compareSegs( const SEG& s1, const SEG& s2 ) const
|
|
{
|
|
return (s1.A == s2.B && s1.B == s2.A);
|
|
}
|
|
|
|
bool operator==( const EDGE& aOther ) const
|
|
{
|
|
return compareSegs( m_poly->CSegment( m_index ),
|
|
aOther.m_poly->CSegment( aOther.m_index ) );
|
|
}
|
|
|
|
bool operator!=( const EDGE& aOther ) const
|
|
{
|
|
return !compareSegs( m_poly->CSegment( m_index ),
|
|
aOther.m_poly->CSegment( aOther.m_index ) );
|
|
}
|
|
|
|
struct HASH
|
|
{
|
|
std::size_t operator()( const EDGE& aEdge ) const
|
|
{
|
|
const auto& a = aEdge.m_poly->CSegment( aEdge.m_index );
|
|
|
|
return (std::size_t) ( a.A.x + a.B.x + a.A.y + a.B.y );
|
|
}
|
|
};
|
|
};
|
|
|
|
struct EDGE_LIST_ENTRY
|
|
{
|
|
int index;
|
|
EDGE_LIST_ENTRY* next;
|
|
};
|
|
|
|
std::unordered_set<EDGE, EDGE::HASH> uniqueEdges;
|
|
|
|
auto lc = aPoly[0];
|
|
lc.Simplify();
|
|
|
|
auto edgeList = std::make_unique<EDGE_LIST_ENTRY []>( lc.SegmentCount() );
|
|
|
|
for( int i = 0; i < lc.SegmentCount(); i++ )
|
|
{
|
|
edgeList[i].index = i;
|
|
edgeList[i].next = &edgeList[ (i != lc.SegmentCount() - 1) ? i + 1 : 0 ];
|
|
}
|
|
|
|
std::unordered_set<EDGE_LIST_ENTRY*> queue;
|
|
|
|
for( int i = 0; i < lc.SegmentCount(); i++ )
|
|
{
|
|
EDGE e( &lc, i );
|
|
uniqueEdges.insert( e );
|
|
}
|
|
|
|
for( int i = 0; i < lc.SegmentCount(); i++ )
|
|
{
|
|
EDGE e( &lc, i );
|
|
auto it = uniqueEdges.find( e );
|
|
|
|
if( it != uniqueEdges.end() && it->m_index != i )
|
|
{
|
|
int e1 = it->m_index;
|
|
int e2 = i;
|
|
|
|
if( e1 > e2 )
|
|
std::swap( e1, e2 );
|
|
|
|
int e1_prev = e1 - 1;
|
|
|
|
if( e1_prev < 0 )
|
|
e1_prev = lc.SegmentCount() - 1;
|
|
|
|
int e2_prev = e2 - 1;
|
|
|
|
if( e2_prev < 0 )
|
|
e2_prev = lc.SegmentCount() - 1;
|
|
|
|
int e1_next = e1 + 1;
|
|
|
|
if( e1_next == lc.SegmentCount() )
|
|
e1_next = 0;
|
|
|
|
int e2_next = e2 + 1;
|
|
|
|
if( e2_next == lc.SegmentCount() )
|
|
e2_next = 0;
|
|
|
|
edgeList[e1_prev].next = &edgeList[ e2_next ];
|
|
edgeList[e2_prev].next = &edgeList[ e1_next ];
|
|
edgeList[i].next = nullptr;
|
|
edgeList[it->m_index].next = nullptr;
|
|
}
|
|
}
|
|
|
|
for( int i = 0; i < lc.SegmentCount(); i++ )
|
|
{
|
|
if( edgeList[i].next )
|
|
queue.insert( &edgeList[i] );
|
|
}
|
|
|
|
auto edgeBuf = std::make_unique<EDGE_LIST_ENTRY* []>( lc.SegmentCount() );
|
|
|
|
int n = 0;
|
|
int outline = -1;
|
|
|
|
POLYGON result;
|
|
|
|
while( queue.size() )
|
|
{
|
|
auto e_first = (*queue.begin() );
|
|
auto e = e_first;
|
|
int cnt = 0;
|
|
|
|
do {
|
|
edgeBuf[cnt++] = e;
|
|
e = e->next;
|
|
} while( e && e != e_first );
|
|
|
|
SHAPE_LINE_CHAIN outl;
|
|
|
|
for( int i = 0; i < cnt; i++ )
|
|
{
|
|
auto p = lc.CPoint( edgeBuf[i]->index );
|
|
outl.Append( p );
|
|
queue.erase( edgeBuf[i] );
|
|
}
|
|
|
|
outl.SetClosed( true );
|
|
|
|
bool cw = outl.Area() > 0.0;
|
|
|
|
if( cw )
|
|
outline = n;
|
|
|
|
result.push_back( outl );
|
|
n++;
|
|
}
|
|
|
|
if( outline > 0 )
|
|
std::swap( result[0], result[outline] );
|
|
|
|
aPoly = result;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::HasHoles() const
|
|
{
|
|
// Iterate through all the polygons on the set
|
|
for( const POLYGON& paths : m_polys )
|
|
{
|
|
// If any of them has more than one contour, it is a hole.
|
|
if( paths.size() > 1 )
|
|
return true;
|
|
}
|
|
|
|
// Return false if and only if every polygon has just one outline, without holes.
|
|
return false;
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::Unfracture( POLYGON_MODE aFastMode )
|
|
{
|
|
for( POLYGON& path : m_polys )
|
|
{
|
|
unfractureSingle( path );
|
|
}
|
|
|
|
Simplify( aFastMode ); // remove overlapping holes/degeneracy
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::Simplify( POLYGON_MODE aFastMode )
|
|
{
|
|
SHAPE_POLY_SET empty;
|
|
|
|
booleanOp( ctUnion, empty, aFastMode );
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::NormalizeAreaOutlines()
|
|
{
|
|
// We are expecting only one main outline, but this main outline can have holes
|
|
// if holes: combine holes and remove them from the main outline.
|
|
// Note also we are using SHAPE_POLY_SET::PM_STRICTLY_SIMPLE in polygon
|
|
// calculations, but it is not mandatory. It is used mainly
|
|
// because there is usually only very few vertices in area outlines
|
|
SHAPE_POLY_SET::POLYGON& outline = Polygon( 0 );
|
|
SHAPE_POLY_SET holesBuffer;
|
|
|
|
// Move holes stored in outline to holesBuffer:
|
|
// The first SHAPE_LINE_CHAIN is the main outline, others are holes
|
|
while( outline.size() > 1 )
|
|
{
|
|
holesBuffer.AddOutline( outline.back() );
|
|
outline.pop_back();
|
|
}
|
|
|
|
Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
|
|
|
|
// If any hole, substract it to main outline
|
|
if( holesBuffer.OutlineCount() )
|
|
{
|
|
holesBuffer.Simplify( SHAPE_POLY_SET::PM_FAST );
|
|
BooleanSubtract( holesBuffer, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
|
|
}
|
|
|
|
RemoveNullSegments();
|
|
|
|
return OutlineCount();
|
|
}
|
|
|
|
|
|
const std::string SHAPE_POLY_SET::Format() const
|
|
{
|
|
std::stringstream ss;
|
|
|
|
ss << "polyset " << m_polys.size() << "\n";
|
|
|
|
for( unsigned i = 0; i < m_polys.size(); i++ )
|
|
{
|
|
ss << "poly " << m_polys[i].size() << "\n";
|
|
|
|
for( unsigned j = 0; j < m_polys[i].size(); j++ )
|
|
{
|
|
ss << m_polys[i][j].PointCount() << "\n";
|
|
|
|
for( int v = 0; v < m_polys[i][j].PointCount(); v++ )
|
|
ss << m_polys[i][j].CPoint( v ).x << " " << m_polys[i][j].CPoint( v ).y << "\n";
|
|
}
|
|
|
|
ss << "\n";
|
|
}
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::Parse( std::stringstream& aStream )
|
|
{
|
|
std::string tmp;
|
|
|
|
aStream >> tmp;
|
|
|
|
if( tmp != "polyset" )
|
|
return false;
|
|
|
|
aStream >> tmp;
|
|
|
|
int n_polys = atoi( tmp.c_str() );
|
|
|
|
if( n_polys < 0 )
|
|
return false;
|
|
|
|
for( int i = 0; i < n_polys; i++ )
|
|
{
|
|
POLYGON paths;
|
|
|
|
aStream >> tmp;
|
|
|
|
if( tmp != "poly" )
|
|
return false;
|
|
|
|
aStream >> tmp;
|
|
int n_outlines = atoi( tmp.c_str() );
|
|
|
|
if( n_outlines < 0 )
|
|
return false;
|
|
|
|
for( int j = 0; j < n_outlines; j++ )
|
|
{
|
|
SHAPE_LINE_CHAIN outline;
|
|
|
|
outline.SetClosed( true );
|
|
|
|
aStream >> tmp;
|
|
int n_vertices = atoi( tmp.c_str() );
|
|
|
|
for( int v = 0; v < n_vertices; v++ )
|
|
{
|
|
VECTOR2I p;
|
|
|
|
aStream >> tmp; p.x = atoi( tmp.c_str() );
|
|
aStream >> tmp; p.y = atoi( tmp.c_str() );
|
|
outline.Append( p );
|
|
}
|
|
|
|
paths.push_back( outline );
|
|
}
|
|
|
|
m_polys.push_back( paths );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
const BOX2I SHAPE_POLY_SET::BBox( int aClearance ) const
|
|
{
|
|
BOX2I bb;
|
|
|
|
for( unsigned i = 0; i < m_polys.size(); i++ )
|
|
{
|
|
if( i == 0 )
|
|
bb = m_polys[i][0].BBox();
|
|
else
|
|
bb.Merge( m_polys[i][0].BBox() );
|
|
}
|
|
|
|
bb.Inflate( aClearance );
|
|
return bb;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::PointOnEdge( const VECTOR2I& aP ) const
|
|
{
|
|
// Iterate through all the polygons in the set
|
|
for( const POLYGON& polygon : m_polys )
|
|
{
|
|
// Iterate through all the line chains in the polygon
|
|
for( const SHAPE_LINE_CHAIN& lineChain : polygon )
|
|
{
|
|
if( lineChain.PointOnEdge( aP ) )
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::Collide( const SEG& aSeg, int aClearance ) const
|
|
{
|
|
|
|
SHAPE_POLY_SET polySet = SHAPE_POLY_SET( *this );
|
|
|
|
// Inflate the polygon if necessary.
|
|
if( aClearance > 0 )
|
|
{
|
|
// fixme: the number of arc segments should not be hardcoded
|
|
polySet.Inflate( aClearance, 8 );
|
|
}
|
|
|
|
// We are going to check to see if the segment crosses an external
|
|
// boundary. However, if the full segment is inside the polyset, this
|
|
// will not be true. So we first test to see if one of the points is
|
|
// inside. If true, then we collide
|
|
if( polySet.Contains( aSeg.A ) )
|
|
return true;
|
|
|
|
for( SEGMENT_ITERATOR iterator = polySet.IterateSegmentsWithHoles(); iterator; iterator++ )
|
|
{
|
|
SEG polygonEdge = *iterator;
|
|
|
|
if( polygonEdge.Intersect( aSeg, true ) )
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::Collide( const VECTOR2I& aP, int aClearance ) const
|
|
{
|
|
SHAPE_POLY_SET polySet = SHAPE_POLY_SET( *this );
|
|
|
|
// Inflate the polygon if necessary.
|
|
if( aClearance > 0 )
|
|
{
|
|
// fixme: the number of arc segments should not be hardcoded
|
|
polySet.Inflate( aClearance, 8 );
|
|
}
|
|
|
|
// There is a collision if and only if the point is inside of the polygon.
|
|
return polySet.Contains( aP );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::RemoveAllContours()
|
|
{
|
|
m_polys.clear();
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::RemoveContour( int aContourIdx, int aPolygonIdx )
|
|
{
|
|
// Default polygon is the last one
|
|
if( aPolygonIdx < 0 )
|
|
aPolygonIdx += m_polys.size();
|
|
|
|
m_polys[aPolygonIdx].erase( m_polys[aPolygonIdx].begin() + aContourIdx );
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::RemoveNullSegments()
|
|
{
|
|
int removed = 0;
|
|
|
|
ITERATOR iterator = IterateWithHoles();
|
|
|
|
VECTOR2I contourStart = *iterator;
|
|
VECTOR2I segmentStart, segmentEnd;
|
|
|
|
VERTEX_INDEX indexStart;
|
|
|
|
while( iterator )
|
|
{
|
|
// Obtain first point and its index
|
|
segmentStart = *iterator;
|
|
indexStart = iterator.GetIndex();
|
|
|
|
// Obtain last point
|
|
if( iterator.IsEndContour() )
|
|
{
|
|
segmentEnd = contourStart;
|
|
|
|
// Advance
|
|
iterator++;
|
|
|
|
if( iterator )
|
|
contourStart = *iterator;
|
|
}
|
|
else
|
|
{
|
|
// Advance
|
|
iterator++;
|
|
|
|
if( iterator )
|
|
segmentEnd = *iterator;
|
|
}
|
|
|
|
// Remove segment start if both points are equal
|
|
if( segmentStart == segmentEnd )
|
|
{
|
|
RemoveVertex( indexStart );
|
|
removed++;
|
|
|
|
// Advance the iterator one position, as there is one vertex less.
|
|
if( iterator )
|
|
iterator++;
|
|
}
|
|
}
|
|
|
|
return removed;
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::DeletePolygon( int aIdx )
|
|
{
|
|
m_polys.erase( m_polys.begin() + aIdx );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::Append( const SHAPE_POLY_SET& aSet )
|
|
{
|
|
m_polys.insert( m_polys.end(), aSet.m_polys.begin(), aSet.m_polys.end() );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::Append( const VECTOR2I& aP, int aOutline, int aHole )
|
|
{
|
|
Append( aP.x, aP.y, aOutline, aHole );
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::CollideVertex( const VECTOR2I& aPoint,
|
|
SHAPE_POLY_SET::VERTEX_INDEX& aClosestVertex, int aClearance )
|
|
{
|
|
// Shows whether there was a collision
|
|
bool collision = false;
|
|
|
|
// Difference vector between each vertex and aPoint.
|
|
VECTOR2D delta;
|
|
double distance, clearance;
|
|
|
|
// Convert clearance to double for precission when comparing distances
|
|
clearance = aClearance;
|
|
|
|
for( ITERATOR iterator = IterateWithHoles(); iterator; iterator++ )
|
|
{
|
|
// Get the difference vector between current vertex and aPoint
|
|
delta = *iterator - aPoint;
|
|
|
|
// Compute distance
|
|
distance = delta.EuclideanNorm();
|
|
|
|
// Check for collisions
|
|
if( distance <= clearance )
|
|
{
|
|
collision = true;
|
|
|
|
// Update aClearance to look for closer vertices
|
|
clearance = distance;
|
|
|
|
// Store the indices that identify the vertex
|
|
aClosestVertex = iterator.GetIndex();
|
|
}
|
|
}
|
|
|
|
return collision;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::CollideEdge( const VECTOR2I& aPoint,
|
|
SHAPE_POLY_SET::VERTEX_INDEX& aClosestVertex, int aClearance )
|
|
{
|
|
// Shows whether there was a collision
|
|
bool collision = false;
|
|
|
|
SEGMENT_ITERATOR iterator;
|
|
|
|
for( iterator = IterateSegmentsWithHoles(); iterator; iterator++ )
|
|
{
|
|
SEG currentSegment = *iterator;
|
|
int distance = currentSegment.Distance( aPoint );
|
|
|
|
// Check for collisions
|
|
if( distance <= aClearance )
|
|
{
|
|
collision = true;
|
|
|
|
// Update aClearance to look for closer edges
|
|
aClearance = distance;
|
|
|
|
// Store the indices that identify the vertex
|
|
aClosestVertex = iterator.GetIndex();
|
|
}
|
|
}
|
|
|
|
return collision;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::Contains( const VECTOR2I& aP, int aSubpolyIndex, bool aIgnoreHoles ) const
|
|
{
|
|
if( m_polys.size() == 0 ) // empty set?
|
|
return false;
|
|
|
|
// If there is a polygon specified, check the condition against that polygon
|
|
if( aSubpolyIndex >= 0 )
|
|
return containsSingle( aP, aSubpolyIndex, aIgnoreHoles );
|
|
|
|
// In any other case, check it against all polygons in the set
|
|
for( int polygonIdx = 0; polygonIdx < OutlineCount(); polygonIdx++ )
|
|
{
|
|
if( containsSingle( aP, polygonIdx, aIgnoreHoles ) )
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::RemoveVertex( int aGlobalIndex )
|
|
{
|
|
VERTEX_INDEX index;
|
|
|
|
// Assure the to be removed vertex exists, abort otherwise
|
|
if( GetRelativeIndices( aGlobalIndex, &index ) )
|
|
RemoveVertex( index );
|
|
else
|
|
throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::RemoveVertex( VERTEX_INDEX aIndex )
|
|
{
|
|
m_polys[aIndex.m_polygon][aIndex.m_contour].Remove( aIndex.m_vertex );
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::containsSingle( const VECTOR2I& aP, int aSubpolyIndex, bool aIgnoreHoles ) const
|
|
{
|
|
// Check that the point is inside the outline
|
|
if( pointInPolygon( aP, m_polys[aSubpolyIndex][0] ) )
|
|
{
|
|
if( !aIgnoreHoles )
|
|
{
|
|
// Check that the point is not in any of the holes
|
|
for( int holeIdx = 0; holeIdx < HoleCount( aSubpolyIndex ); holeIdx++ )
|
|
{
|
|
const SHAPE_LINE_CHAIN hole = CHole( aSubpolyIndex, holeIdx );
|
|
|
|
// If the point is inside a hole (and not on its edge),
|
|
// it is outside of the polygon
|
|
if( pointInPolygon( aP, hole ) && !hole.PointOnEdge( aP ) )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::pointInPolygon( const VECTOR2I& aP, const SHAPE_LINE_CHAIN& aPath ) const
|
|
{
|
|
return aPath.PointInside( aP );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::Move( const VECTOR2I& aVector )
|
|
{
|
|
for( POLYGON& poly : m_polys )
|
|
{
|
|
for( SHAPE_LINE_CHAIN& path : poly )
|
|
{
|
|
path.Move( aVector );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::Rotate( double aAngle, const VECTOR2I& aCenter )
|
|
{
|
|
for( POLYGON& poly : m_polys )
|
|
{
|
|
for( SHAPE_LINE_CHAIN& path : poly )
|
|
{
|
|
path.Rotate( aAngle, aCenter );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::TotalVertices() const
|
|
{
|
|
int c = 0;
|
|
|
|
for( const POLYGON& poly : m_polys )
|
|
{
|
|
for( const SHAPE_LINE_CHAIN& path : poly )
|
|
{
|
|
c += path.PointCount();
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
SHAPE_POLY_SET::POLYGON SHAPE_POLY_SET::ChamferPolygon( unsigned int aDistance, int aIndex )
|
|
{
|
|
return chamferFilletPolygon( CORNER_MODE::CHAMFERED, aDistance, aIndex );
|
|
}
|
|
|
|
|
|
SHAPE_POLY_SET::POLYGON SHAPE_POLY_SET::FilletPolygon( unsigned int aRadius,
|
|
int aErrorMax,
|
|
int aIndex )
|
|
{
|
|
return chamferFilletPolygon( CORNER_MODE::FILLETED, aRadius, aIndex, aErrorMax );
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::DistanceToPolygon( VECTOR2I aPoint, int aPolygonIndex )
|
|
{
|
|
// We calculate the min dist between the segment and each outline segment
|
|
// However, if the segment to test is inside the outline, and does not cross
|
|
// any edge, it can be seen outside the polygon.
|
|
// Therefore test if a segment end is inside ( testing only one end is enough )
|
|
if( containsSingle( aPoint, aPolygonIndex ) )
|
|
return 0;
|
|
|
|
SEGMENT_ITERATOR iterator = IterateSegmentsWithHoles( aPolygonIndex );
|
|
|
|
SEG polygonEdge = *iterator;
|
|
int minDistance = polygonEdge.Distance( aPoint );
|
|
|
|
for( iterator++; iterator && minDistance > 0; iterator++ )
|
|
{
|
|
polygonEdge = *iterator;
|
|
|
|
int currentDistance = polygonEdge.Distance( aPoint );
|
|
|
|
if( currentDistance < minDistance )
|
|
minDistance = currentDistance;
|
|
}
|
|
|
|
return minDistance;
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::DistanceToPolygon( SEG aSegment, int aPolygonIndex, int aSegmentWidth )
|
|
{
|
|
// We calculate the min dist between the segment and each outline segment
|
|
// However, if the segment to test is inside the outline, and does not cross
|
|
// any edge, it can be seen outside the polygon.
|
|
// Therefore test if a segment end is inside ( testing only one end is enough )
|
|
if( containsSingle( aSegment.A, aPolygonIndex ) )
|
|
return 0;
|
|
|
|
SEGMENT_ITERATOR iterator = IterateSegmentsWithHoles( aPolygonIndex );
|
|
|
|
SEG polygonEdge = *iterator;
|
|
int minDistance = polygonEdge.Distance( aSegment );
|
|
|
|
for( iterator++; iterator && minDistance > 0; iterator++ )
|
|
{
|
|
polygonEdge = *iterator;
|
|
|
|
int currentDistance = polygonEdge.Distance( aSegment );
|
|
|
|
if( currentDistance < minDistance )
|
|
minDistance = currentDistance;
|
|
}
|
|
|
|
// Take into account the width of the segment
|
|
if( aSegmentWidth > 0 )
|
|
minDistance -= aSegmentWidth / 2;
|
|
|
|
// Return the maximum of minDistance and zero
|
|
return minDistance < 0 ? 0 : minDistance;
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::Distance( VECTOR2I aPoint )
|
|
{
|
|
int currentDistance;
|
|
int minDistance = DistanceToPolygon( aPoint, 0 );
|
|
|
|
// Iterate through all the polygons and get the minimum distance.
|
|
for( unsigned int polygonIdx = 1; polygonIdx < m_polys.size(); polygonIdx++ )
|
|
{
|
|
currentDistance = DistanceToPolygon( aPoint, polygonIdx );
|
|
|
|
if( currentDistance < minDistance )
|
|
minDistance = currentDistance;
|
|
}
|
|
|
|
return minDistance;
|
|
}
|
|
|
|
|
|
int SHAPE_POLY_SET::Distance( const SEG& aSegment, int aSegmentWidth )
|
|
{
|
|
int currentDistance;
|
|
int minDistance = DistanceToPolygon( aSegment, 0 );
|
|
|
|
// Iterate through all the polygons and get the minimum distance.
|
|
for( unsigned int polygonIdx = 1; polygonIdx < m_polys.size(); polygonIdx++ )
|
|
{
|
|
currentDistance = DistanceToPolygon( aSegment, polygonIdx, aSegmentWidth );
|
|
|
|
if( currentDistance < minDistance )
|
|
minDistance = currentDistance;
|
|
}
|
|
|
|
return minDistance;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::IsVertexInHole( int aGlobalIdx )
|
|
{
|
|
VERTEX_INDEX index;
|
|
|
|
// Get the polygon and contour where the vertex is. If the vertex does not exist, return false
|
|
if( !GetRelativeIndices( aGlobalIdx, &index ) )
|
|
return false;
|
|
|
|
// The contour is a hole if its index is greater than zero
|
|
return index.m_contour > 0;
|
|
}
|
|
|
|
|
|
SHAPE_POLY_SET SHAPE_POLY_SET::Chamfer( int aDistance )
|
|
{
|
|
SHAPE_POLY_SET chamfered;
|
|
|
|
for( unsigned int polygonIdx = 0; polygonIdx < m_polys.size(); polygonIdx++ )
|
|
chamfered.m_polys.push_back( ChamferPolygon( aDistance, polygonIdx ) );
|
|
|
|
return chamfered;
|
|
}
|
|
|
|
|
|
SHAPE_POLY_SET SHAPE_POLY_SET::Fillet( int aRadius, int aErrorMax )
|
|
{
|
|
SHAPE_POLY_SET filleted;
|
|
|
|
for( size_t polygonIdx = 0; polygonIdx < m_polys.size(); polygonIdx++ )
|
|
filleted.m_polys.push_back( FilletPolygon( aRadius, aErrorMax, polygonIdx ) );
|
|
|
|
return filleted;
|
|
}
|
|
|
|
|
|
SHAPE_POLY_SET::POLYGON SHAPE_POLY_SET::chamferFilletPolygon( CORNER_MODE aMode,
|
|
unsigned int aDistance,
|
|
int aIndex,
|
|
int aErrorMax )
|
|
{
|
|
// Null segments create serious issues in calculations. Remove them:
|
|
RemoveNullSegments();
|
|
|
|
SHAPE_POLY_SET::POLYGON currentPoly = Polygon( aIndex );
|
|
SHAPE_POLY_SET::POLYGON newPoly;
|
|
|
|
// If the chamfering distance is zero, then the polygon remain intact.
|
|
if( aDistance == 0 )
|
|
{
|
|
return currentPoly;
|
|
}
|
|
|
|
// Iterate through all the contours (outline and holes) of the polygon.
|
|
for( SHAPE_LINE_CHAIN& currContour : currentPoly )
|
|
{
|
|
// Generate a new contour in the new polygon
|
|
SHAPE_LINE_CHAIN newContour;
|
|
|
|
// Iterate through the vertices of the contour
|
|
for( int currVertex = 0; currVertex < currContour.PointCount(); currVertex++ )
|
|
{
|
|
// Current vertex
|
|
int x1 = currContour.Point( currVertex ).x;
|
|
int y1 = currContour.Point( currVertex ).y;
|
|
|
|
// Indices for previous and next vertices.
|
|
int prevVertex;
|
|
int nextVertex;
|
|
|
|
// Previous and next vertices indices computation. Necessary to manage the edge cases.
|
|
|
|
// Previous vertex is the last one if the current vertex is the first one
|
|
prevVertex = currVertex == 0 ? currContour.PointCount() - 1 : currVertex - 1;
|
|
|
|
// next vertex is the first one if the current vertex is the last one.
|
|
nextVertex = currVertex == currContour.PointCount() - 1 ? 0 : currVertex + 1;
|
|
|
|
// Previous vertex computation
|
|
double xa = currContour.Point( prevVertex ).x - x1;
|
|
double ya = currContour.Point( prevVertex ).y - y1;
|
|
|
|
// Next vertex computation
|
|
double xb = currContour.Point( nextVertex ).x - x1;
|
|
double yb = currContour.Point( nextVertex ).y - y1;
|
|
|
|
// Compute the new distances
|
|
double lena = hypot( xa, ya );
|
|
double lenb = hypot( xb, yb );
|
|
|
|
// Make the final computations depending on the mode selected, chamfered or filleted.
|
|
if( aMode == CORNER_MODE::CHAMFERED )
|
|
{
|
|
double distance = aDistance;
|
|
|
|
// Chamfer one half of an edge at most
|
|
if( 0.5 * lena < distance )
|
|
distance = 0.5 * lena;
|
|
|
|
if( 0.5 * lenb < distance )
|
|
distance = 0.5 * lenb;
|
|
|
|
int nx1 = round_nearest( distance * xa / lena );
|
|
int ny1 = round_nearest( distance * ya / lena );
|
|
|
|
newContour.Append( x1 + nx1, y1 + ny1 );
|
|
|
|
int nx2 = round_nearest( distance * xb / lenb );
|
|
int ny2 = round_nearest( distance * yb / lenb );
|
|
|
|
newContour.Append( x1 + nx2, y1 + ny2 );
|
|
}
|
|
else // CORNER_MODE = FILLETED
|
|
{
|
|
double cosine = ( xa * xb + ya * yb ) / ( lena * lenb );
|
|
|
|
double radius = aDistance;
|
|
double denom = sqrt( 2.0 / ( 1 + cosine ) - 1 );
|
|
|
|
// Do nothing in case of parallel edges
|
|
if( std::isinf( denom ) )
|
|
continue;
|
|
|
|
// Limit rounding distance to one half of an edge
|
|
if( 0.5 * lena * denom < radius )
|
|
radius = 0.5 * lena * denom;
|
|
|
|
if( 0.5 * lenb * denom < radius )
|
|
radius = 0.5 * lenb * denom;
|
|
|
|
// Calculate fillet arc absolute center point (xc, yx)
|
|
double k = radius / sqrt( .5 * ( 1 - cosine ) );
|
|
double lenab = sqrt( ( xa / lena + xb / lenb ) * ( xa / lena + xb / lenb ) +
|
|
( ya / lena + yb / lenb ) * ( ya / lena + yb / lenb ) );
|
|
double xc = x1 + k * ( xa / lena + xb / lenb ) / lenab;
|
|
double yc = y1 + k * ( ya / lena + yb / lenb ) / lenab;
|
|
|
|
// Calculate arc start and end vectors
|
|
k = radius / sqrt( 2 / ( 1 + cosine ) - 1 );
|
|
double xs = x1 + k * xa / lena - xc;
|
|
double ys = y1 + k * ya / lena - yc;
|
|
double xe = x1 + k * xb / lenb - xc;
|
|
double ye = y1 + k * yb / lenb - yc;
|
|
|
|
// Cosine of arc angle
|
|
double argument = ( xs * xe + ys * ye ) / ( radius * radius );
|
|
|
|
// Make sure the argument is in [-1,1], interval in which the acos function is
|
|
// defined
|
|
if( argument < -1 )
|
|
argument = -1;
|
|
else if( argument > 1 )
|
|
argument = 1;
|
|
|
|
double arcAngle = acos( argument );
|
|
double arcAngleDegrees = arcAngle * 180.0 / M_PI;
|
|
int segments = GetArcToSegmentCount( radius, aErrorMax, arcAngleDegrees );
|
|
|
|
double deltaAngle = arcAngle / segments;
|
|
double startAngle = atan2( -ys, xs );
|
|
|
|
// Flip arc for inner corners
|
|
if( xa * yb - ya * xb <= 0 )
|
|
deltaAngle *= -1;
|
|
|
|
double nx = xc + xs;
|
|
double ny = yc + ys;
|
|
|
|
newContour.Append( round_nearest( nx ), round_nearest( ny ) );
|
|
|
|
// Store the previous added corner to make a sanity check
|
|
int prevX = round_nearest( nx );
|
|
int prevY = round_nearest( ny );
|
|
|
|
for( int j = 0; j < segments; j++ )
|
|
{
|
|
nx = xc + cos( startAngle + ( j + 1 ) * deltaAngle ) * radius;
|
|
ny = yc - sin( startAngle + ( j + 1 ) * deltaAngle ) * radius;
|
|
|
|
// Sanity check: the rounding can produce repeated corners; do not add them.
|
|
if( round_nearest( nx ) != prevX || round_nearest( ny ) != prevY )
|
|
{
|
|
newContour.Append( round_nearest( nx ), round_nearest( ny ) );
|
|
prevX = round_nearest( nx );
|
|
prevY = round_nearest( ny );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Close the current contour and add it the new polygon
|
|
newContour.SetClosed( true );
|
|
newPoly.push_back( newContour );
|
|
}
|
|
|
|
return newPoly;
|
|
}
|
|
|
|
|
|
SHAPE_POLY_SET &SHAPE_POLY_SET::operator=( const SHAPE_POLY_SET& aOther )
|
|
{
|
|
static_cast<SHAPE&>(*this) = aOther;
|
|
m_polys = aOther.m_polys;
|
|
|
|
// reset poly cache:
|
|
m_hash = MD5_HASH{};
|
|
m_triangulationValid = false;
|
|
m_triangulatedPolys.clear();
|
|
return *this;
|
|
}
|
|
|
|
MD5_HASH SHAPE_POLY_SET::GetHash() const
|
|
{
|
|
if( !m_hash.IsValid() )
|
|
return checksum();
|
|
|
|
return m_hash;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::IsTriangulationUpToDate() const
|
|
{
|
|
if( !m_triangulationValid )
|
|
return false;
|
|
|
|
if( !m_hash.IsValid() )
|
|
return false;
|
|
|
|
auto hash = checksum();
|
|
|
|
return hash == m_hash;
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::CacheTriangulation()
|
|
{
|
|
bool recalculate = !m_hash.IsValid();
|
|
MD5_HASH hash;
|
|
|
|
if( !m_triangulationValid )
|
|
recalculate = true;
|
|
|
|
if( !recalculate )
|
|
{
|
|
hash = checksum();
|
|
|
|
if( m_hash != hash )
|
|
{
|
|
m_hash = hash;
|
|
recalculate = true;
|
|
}
|
|
}
|
|
|
|
if( !recalculate )
|
|
return;
|
|
|
|
SHAPE_POLY_SET tmpSet = *this;
|
|
|
|
if( tmpSet.HasHoles() )
|
|
tmpSet.Fracture( PM_FAST );
|
|
|
|
m_triangulatedPolys.clear();
|
|
m_triangulationValid = true;
|
|
|
|
for( int i = 0; i < tmpSet.OutlineCount(); i++ )
|
|
{
|
|
m_triangulatedPolys.push_back( std::make_unique<TRIANGULATED_POLYGON>() );
|
|
PolygonTriangulation tess( *m_triangulatedPolys.back() );
|
|
|
|
// If the tesselation fails, we re-fracture the polygon, which will
|
|
// first simplify the system before fracturing and removing the holes
|
|
if( !tess.TesselatePolygon( tmpSet.Polygon( i ).front() ) )
|
|
{
|
|
tmpSet.Fracture( PM_FAST );
|
|
|
|
// After fracturing, we may have zero or one polygon
|
|
// Check for zero polygons before tesselating and break regardless
|
|
if( !tmpSet.OutlineCount() || !tess.TesselatePolygon( tmpSet.Polygon( i ).front() ) )
|
|
{
|
|
m_triangulatedPolys.pop_back();
|
|
m_triangulationValid = false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( m_triangulationValid )
|
|
m_hash = checksum();
|
|
}
|
|
|
|
|
|
MD5_HASH SHAPE_POLY_SET::checksum() const
|
|
{
|
|
MD5_HASH hash;
|
|
|
|
hash.Hash( m_polys.size() );
|
|
|
|
for( const auto& outline : m_polys )
|
|
{
|
|
hash.Hash( outline.size() );
|
|
|
|
for( const auto& lc : outline )
|
|
{
|
|
hash.Hash( lc.PointCount() );
|
|
|
|
for( int i = 0; i < lc.PointCount(); i++ )
|
|
{
|
|
hash.Hash( lc.CPoint( i ).x );
|
|
hash.Hash( lc.CPoint( i ).y );
|
|
}
|
|
}
|
|
}
|
|
|
|
hash.Finalize();
|
|
|
|
return hash;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::HasTouchingHoles() const
|
|
{
|
|
for( int i = 0; i < OutlineCount(); i++ )
|
|
{
|
|
if( hasTouchingHoles( CPolygon( i ) ) )
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool SHAPE_POLY_SET::hasTouchingHoles( const POLYGON& aPoly ) const
|
|
{
|
|
std::set< long long > ptHashes;
|
|
|
|
for( const auto& lc : aPoly )
|
|
{
|
|
for( const VECTOR2I& pt : lc.CPoints() )
|
|
{
|
|
const long long ptHash = (long long) pt.x << 32 | pt.y;
|
|
|
|
if( ptHashes.count( ptHash ) > 0 )
|
|
{
|
|
return true;
|
|
}
|
|
|
|
ptHashes.insert( ptHash );
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|