kicad/pcbnew/drc/drc_test_provider_diff_pair...

726 lines
24 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2004-2023 KiCad Developers.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <board.h>
#include <board_design_settings.h>
#include <pcb_track.h>
#include <drc/drc_engine.h>
#include <drc/drc_item.h>
#include <drc/drc_rule.h>
#include <drc/drc_test_provider.h>
#include <drc/drc_rtree.h>
#include <geometry/shape_segment.h>
#include <connectivity/connectivity_data.h>
#include <connectivity/from_to_cache.h>
#include <view/view_overlay.h>
/*
Differential pair gap/coupling test.
Errors generated:
- DRCE_DIFF_PAIR_GAP_OUT_OF_RANGE
- DRCE_DIFF_PAIR_UNCOUPLED_LENGTH_TOO_LONG
- DRCE_TOO_MANY_VIAS
Todo:
- arc support.
- improve recognition of coupled segments (now anything that's parallel is considered
coupled, causing DRC errors on meanders)
*/
namespace test {
class DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING : public DRC_TEST_PROVIDER
{
public:
DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING () :
m_board( nullptr )
{
}
virtual ~DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override
{
return wxT( "diff_pair_coupling" );
};
virtual const wxString GetDescription() const override
{
return wxT( "Tests differential pair coupling" );
}
private:
BOARD* m_board;
};
};
static bool commonParallelProjection( SEG p, SEG n, SEG &pClip, SEG& nClip )
{
SEG n_proj_p( p.LineProject( n.A ), p.LineProject( n.B ) );
int64_t t_a = 0;
int64_t t_b = p.TCoef( p.B );
int64_t tproj_a = p.TCoef( n_proj_p.A );
int64_t tproj_b = p.TCoef( n_proj_p.B );
if( t_b < t_a )
std::swap( t_b, t_a );
if( tproj_b < tproj_a )
std::swap( tproj_b, tproj_a );
if( t_b <= tproj_a )
return false;
if( t_a >= tproj_b )
return false;
int64_t t[4] = { 0, p.TCoef( p.B ), p.TCoef( n_proj_p.A ), p.TCoef( n_proj_p.B ) };
std::vector<int64_t> tv( t, t + 4 );
std::sort( tv.begin(), tv.end() ); // fixme: awful and disgusting way of finding 2 midpoints
int64_t pLenSq = p.SquaredLength();
VECTOR2I dp = p.B - p.A;
pClip.A.x = p.A.x + rescale( (int64_t)dp.x, tv[1], pLenSq );
pClip.A.y = p.A.y + rescale( (int64_t)dp.y, tv[1], pLenSq );
pClip.B.x = p.A.x + rescale( (int64_t)dp.x, tv[2], pLenSq );
pClip.B.y = p.A.y + rescale( (int64_t)dp.y, tv[2], pLenSq );
nClip.A = n.LineProject( pClip.A );
nClip.B = n.LineProject( pClip.B );
return true;
}
static bool commonParallelProjection( const PCB_ARC& p, const PCB_ARC& n, SHAPE_ARC &pClip, SHAPE_ARC& nClip )
{
VECTOR2I p_center = p.GetCenter();
VECTOR2I n_center = n.GetCenter();
double p_radius = p.GetRadius();
double n_radius = n.GetRadius();
VECTOR2I p_start( p.GetStart() );
VECTOR2I p_end( p.GetEnd() );
if( !p.IsCCW() )
std::swap( p_start, p_end );
VECTOR2I n_start( n.GetStart() );
VECTOR2I n_end( n.GetEnd() );
if( !n.IsCCW() )
std::swap( n_start, n_end );
SHAPE_ARC p_arc( p_start, p.GetMid(), p_end, 0 );
SHAPE_ARC n_arc( n_start, n.GetMid(), n_end, 0 );
EDA_ANGLE p_start_angle = p_arc.GetStartAngle();
// Rotate the arcs to a common 0 starting angle
p_arc.Rotate( -p_start_angle, p_center );
n_arc.Rotate( -p_start_angle, n_center );
EDA_ANGLE p_end_angle = p_arc.GetEndAngle();
EDA_ANGLE n_start_angle = n_arc.GetStartAngle();
EDA_ANGLE n_end_angle = n_arc.GetEndAngle();
EDA_ANGLE clip_total_angle;
EDA_ANGLE clip_start_angle;
if( n_start_angle > p_end_angle )
{
// n is fully outside of p
if( n_end_angle > p_end_angle )
return false;
// n starts before angle 0 and ends in the middle of p
clip_total_angle = n_end_angle + p_start_angle;
clip_start_angle = p_start_angle;
}
else
{
clip_start_angle = n_start_angle + p_start_angle;
// n is fully inside of p
if( n_end_angle < p_end_angle )
clip_total_angle = n_end_angle - n_start_angle;
else // n starts after 0 and ends after p
clip_total_angle = p_end_angle - n_start_angle;
}
// One arc starts exactly where the other ends
if( clip_total_angle == ANGLE_0 )
return false;
VECTOR2I n_start_pt = n_center + VECTOR2I( KiROUND( n_radius ), 0 );
VECTOR2I p_start_pt = p_center + VECTOR2I( KiROUND( p_radius ), 0 );
RotatePoint( n_start_pt, n_center, clip_start_angle );
RotatePoint( p_start_pt, p_center, clip_start_angle );
pClip = SHAPE_ARC( p_center, p_start_pt, clip_total_angle );
nClip = SHAPE_ARC( n_center, n_start_pt, clip_total_angle );
return true;
}
struct DIFF_PAIR_KEY
{
bool operator<( const DIFF_PAIR_KEY& b ) const
{
if( netP < b.netP )
{
return true;
}
else if( netP > b.netP )
{
return false;
}
else // netP == b.netP
{
if( netN < b.netN )
return true;
else if( netN > b.netN )
return false;
else if( gapRuleName.IsEmpty() )
return gapRuleName < b.gapRuleName;
else
return uncoupledRuleName < b.uncoupledRuleName;
}
}
int netP, netN;
wxString gapRuleName;
wxString uncoupledRuleName;
std::optional<MINOPTMAX<int>> gapConstraint;
DRC_RULE* gapRule;
std::optional<MINOPTMAX<int>> uncoupledConstraint;
DRC_RULE* uncoupledRule;
};
struct DIFF_PAIR_COUPLED_SEGMENTS
{
SEG coupledN;
SEG coupledP;
bool isArc;
SHAPE_ARC coupledArcN;
SHAPE_ARC coupledArcP;
PCB_TRACK* parentN;
PCB_TRACK* parentP;
int computedGap;
PCB_LAYER_ID layer;
bool couplingFailMin;
bool couplingFailMax;
DIFF_PAIR_COUPLED_SEGMENTS() :
isArc( false ),
parentN( nullptr ),
parentP( nullptr ),
computedGap( 0 ),
layer( UNDEFINED_LAYER ),
couplingFailMin( false ),
couplingFailMax( false )
{}
};
struct DIFF_PAIR_ITEMS
{
std::set<BOARD_CONNECTED_ITEM*> itemsP, itemsN;
std::vector<DIFF_PAIR_COUPLED_SEGMENTS> coupled;
int totalCoupled;
int totalLengthN;
int totalLengthP;
};
static void extractDiffPairCoupledItems( DIFF_PAIR_ITEMS& aDp )
{
for( BOARD_CONNECTED_ITEM* itemP : aDp.itemsP )
{
PCB_TRACK* sp = dyn_cast<PCB_TRACK*>( itemP );
std::optional<DIFF_PAIR_COUPLED_SEGMENTS> bestCoupled;
int bestGap = std::numeric_limits<int>::max();
if( !sp )
continue;
for ( BOARD_CONNECTED_ITEM* itemN : aDp.itemsN )
{
PCB_TRACK* sn = dyn_cast<PCB_TRACK*> ( itemN );
if( !sn )
continue;
if( ( sn->GetLayerSet() & sp->GetLayerSet() ).none() )
continue;
SEG ssp ( sp->GetStart(), sp->GetEnd() );
SEG ssn ( sn->GetStart(), sn->GetEnd() );
// Segments that are ~ 1 IU in length per side are approximately parallel (tolerance is 1 IU)
// with everything and their parallel projection is < 1 IU, leading to bad distance calculations
if( ssp.SquaredLength() > 2 && ssn.SquaredLength() > 2 && ssp.ApproxParallel(ssn) )
{
DIFF_PAIR_COUPLED_SEGMENTS cpair;
bool coupled = commonParallelProjection( ssp, ssn, cpair.coupledP, cpair.coupledN );
if( coupled )
{
cpair.parentP = sp;
cpair.parentN = sn;
cpair.layer = sp->GetLayer();
cpair.computedGap = (cpair.coupledP.A - cpair.coupledN.A).EuclideanNorm();
cpair.computedGap -= ( sp->GetWidth() + sn->GetWidth() ) / 2;
if( cpair.computedGap < bestGap )
{
bestGap = cpair.computedGap;
bestCoupled = cpair;
}
}
}
}
if( bestCoupled )
{
auto excludeSelf = [&]( BOARD_ITEM* aItem )
{
if( aItem == bestCoupled->parentN || aItem == bestCoupled->parentP )
return false;
if( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_VIA_T
|| aItem->Type() == PCB_ARC_T )
{
BOARD_CONNECTED_ITEM* bci = static_cast<BOARD_CONNECTED_ITEM*>( aItem );
if( bci->GetNetCode() == bestCoupled->parentN->GetNetCode()
|| bci->GetNetCode() == bestCoupled->parentP->GetNetCode() )
{
return false;
}
}
return true;
};
SHAPE_SEGMENT checkSegStart( bestCoupled->coupledP.A, bestCoupled->coupledN.A );
SHAPE_SEGMENT checkSegEnd( bestCoupled->coupledP.B, bestCoupled->coupledN.B );
DRC_RTREE* tree = bestCoupled->parentP->GetBoard()->m_CopperItemRTreeCache.get();
// check if there's anything in between the segments suspected to be coupled. If
// there's nothing, assume they are really coupled.
if( !tree->CheckColliding( &checkSegStart, sp->GetLayer(), 0, excludeSelf )
&& !tree->CheckColliding( &checkSegEnd, sp->GetLayer(), 0, excludeSelf ) )
{
aDp.coupled.push_back( *bestCoupled );
}
}
}
for( BOARD_CONNECTED_ITEM* itemP : aDp.itemsP )
{
PCB_ARC* sp = dyn_cast<PCB_ARC*>( itemP );
std::optional<DIFF_PAIR_COUPLED_SEGMENTS> bestCoupled;
int bestGap = std::numeric_limits<int>::max();
if( !sp )
continue;
for ( BOARD_CONNECTED_ITEM* itemN : aDp.itemsN )
{
PCB_ARC* sn = dyn_cast<PCB_ARC*> ( itemN );
if( !sn )
continue;
if( ( sn->GetLayerSet() & sp->GetLayerSet() ).none() )
continue;
// Segments that are ~ 1 IU in length per side are approximately parallel (tolerance is 1 IU)
// with everything and their parallel projection is < 1 IU, leading to bad distance calculations
if( sp->GetLength() > 2 && sn->GetLength() > 2 && ( sp->GetCenter() - sn->GetCenter() ).SquaredEuclideanNorm() < 4 )
{
DIFF_PAIR_COUPLED_SEGMENTS cpair;
cpair.isArc = true;
bool coupled = commonParallelProjection( *sp, *sn, cpair.coupledArcP, cpair.coupledArcN );
if( coupled )
{
cpair.parentP = sp;
cpair.parentN = sn;
cpair.layer = sp->GetLayer();
cpair.computedGap = KiROUND( std::abs( cpair.coupledArcP.GetRadius()
- cpair.coupledArcN.GetRadius() ) );
cpair.computedGap -= ( sp->GetWidth() + sn->GetWidth() ) / 2;
if( cpair.computedGap < bestGap )
{
bestGap = cpair.computedGap;
bestCoupled = cpair;
}
}
}
}
if( bestCoupled )
{
auto excludeSelf =
[&] ( BOARD_ITEM *aItem )
{
if( aItem == bestCoupled->parentN || aItem == bestCoupled->parentP )
return false;
if( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_VIA_T || aItem->Type() == PCB_ARC_T )
{
BOARD_CONNECTED_ITEM* bci = static_cast<BOARD_CONNECTED_ITEM*>( aItem );
if( bci->GetNetCode() == bestCoupled->parentN->GetNetCode()
|| bci->GetNetCode() == bestCoupled->parentP->GetNetCode() )
{
return false;
}
}
return true;
};
SHAPE_SEGMENT checkSegStart( bestCoupled->coupledP.A, bestCoupled->coupledN.A );
SHAPE_SEGMENT checkSegEnd( bestCoupled->coupledP.B, bestCoupled->coupledN.B );
DRC_RTREE* tree = bestCoupled->parentP->GetBoard()->m_CopperItemRTreeCache.get();
// check if there's anything in between the segments suspected to be coupled. If
// there's nothing, assume they are really coupled.
if( !tree->CheckColliding( &checkSegStart, sp->GetLayer(), 0, excludeSelf )
&& !tree->CheckColliding( &checkSegEnd, sp->GetLayer(), 0, excludeSelf ) )
{
aDp.coupled.push_back( *bestCoupled );
}
}
}
}
bool test::DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING::Run()
{
m_board = m_drcEngine->GetBoard();
int epsilon = m_board->GetDesignSettings().GetDRCEpsilon();
std::map<DIFF_PAIR_KEY, DIFF_PAIR_ITEMS> dpRuleMatches;
auto evaluateDpConstraints =
[&]( BOARD_ITEM *item ) -> bool
{
DIFF_PAIR_KEY key;
BOARD_CONNECTED_ITEM* citem = static_cast<BOARD_CONNECTED_ITEM*>( item );
NETINFO_ITEM* refNet = citem->GetNet();
if( refNet && DRC_ENGINE::IsNetADiffPair( m_board, refNet, key.netP, key.netN ) )
{
drc_dbg( 10, wxT( "eval dp %p\n" ), item );
const DRC_CONSTRAINT_T constraintsToCheck[] = {
DIFF_PAIR_GAP_CONSTRAINT,
MAX_UNCOUPLED_CONSTRAINT
};
for( int i = 0; i < 2; i++ )
{
DRC_CONSTRAINT constraint = m_drcEngine->EvalRules( constraintsToCheck[ i ],
item, nullptr,
item->GetLayer() );
if( constraint.IsNull() || constraint.GetSeverity() == RPT_SEVERITY_IGNORE )
continue;
drc_dbg( 10, wxT( "cns %d item %p\n" ), constraintsToCheck[i], item );
DRC_RULE* parentRule = constraint.GetParentRule();
wxString ruleName = parentRule ? parentRule->m_Name : constraint.GetName();
switch( constraintsToCheck[i] )
{
case DIFF_PAIR_GAP_CONSTRAINT:
key.gapConstraint = constraint.GetValue();
key.gapRule = parentRule;
key.gapRuleName = ruleName;
break;
case MAX_UNCOUPLED_CONSTRAINT:
key.uncoupledConstraint = constraint.GetValue();
key.uncoupledRule = parentRule;
key.uncoupledRuleName = ruleName;
break;
default:
break;
}
if( refNet->GetNetCode() == key.netN )
dpRuleMatches[key].itemsN.insert( citem );
else
dpRuleMatches[key].itemsP.insert( citem );
}
}
return true;
};
m_board->GetConnectivity()->GetFromToCache()->Rebuild( m_board );
forEachGeometryItem( { PCB_TRACE_T, PCB_VIA_T, PCB_ARC_T }, LSET::AllCuMask(),
evaluateDpConstraints );
drc_dbg( 10, wxT( "dp rule matches %d\n" ), (int) dpRuleMatches.size() );
reportAux( wxT( "DPs evaluated:" ) );
for( auto& [ key, itemSet ] : dpRuleMatches )
{
NETINFO_ITEM *niP = m_board->GetNetInfo().GetNetItem( key.netP );
NETINFO_ITEM *niN = m_board->GetNetInfo().GetNetItem( key.netN );
assert( niP );
assert( niN );
wxString nameP = niP->GetNetname();
wxString nameN = niN->GetNetname();
reportAux( wxString::Format( wxT( "Rule '%s', DP: (+) %s - (-) %s" ),
key.gapRuleName, nameP, nameN ) );
extractDiffPairCoupledItems( itemSet );
itemSet.totalCoupled = 0;
itemSet.totalLengthN = 0;
itemSet.totalLengthP = 0;
drc_dbg(10, wxT( " coupled prims : %d\n" ), (int) itemSet.coupled.size() );
for( BOARD_CONNECTED_ITEM* item : itemSet.itemsN )
{
if( PCB_TRACK* track = dynamic_cast<PCB_TRACK*>( item ) )
itemSet.totalLengthN += track->GetLength();
}
for( BOARD_CONNECTED_ITEM* item : itemSet.itemsP )
{
if( PCB_TRACK* track = dynamic_cast<PCB_TRACK*>( item ) )
itemSet.totalLengthP += track->GetLength();
}
for( DIFF_PAIR_COUPLED_SEGMENTS& dp : itemSet.coupled )
{
int length = dp.coupledN.Length();
wxCHECK2( dp.parentN && dp.parentP, continue );
std::shared_ptr<KIGFX::VIEW_OVERLAY> overlay = m_drcEngine->GetDebugOverlay();
if( overlay )
{
overlay->SetIsFill(false);
overlay->SetIsStroke(true);
overlay->SetStrokeColor( RED );
overlay->SetLineWidth( 100000 );
overlay->Line( dp.coupledP );
overlay->SetStrokeColor( BLUE );
overlay->Line( dp.coupledN );
}
drc_dbg( 10, wxT( " len %d gap %d l %d\n" ),
length,
dp.computedGap,
dp.parentP->GetLayer() );
if( key.gapConstraint )
{
if( key.gapConstraint->HasMin()
&& key.gapConstraint->Min() >= 0
&& ( dp.computedGap < key.gapConstraint->Min() - epsilon ) )
{
dp.couplingFailMin = true;
}
if( key.gapConstraint->HasMax()
&& key.gapConstraint->Max() >= 0
&& ( dp.computedGap > key.gapConstraint->Max() + epsilon ) )
{
dp.couplingFailMax = true;
}
}
if( !dp.couplingFailMin && !dp.couplingFailMax )
itemSet.totalCoupled += length;
}
int totalLen = std::max( itemSet.totalLengthN, itemSet.totalLengthP );
reportAux( wxString::Format( wxT( " - coupled length: %s, total length: %s" ),
MessageTextFromValue( itemSet.totalCoupled ),
MessageTextFromValue( totalLen ) ) );
int totalUncoupled = totalLen - itemSet.totalCoupled;
bool uncoupledViolation = false;
if( key.uncoupledConstraint && ( !itemSet.itemsP.empty() || !itemSet.itemsN.empty() ) )
{
const MINOPTMAX<int>& val = *key.uncoupledConstraint;
if( val.HasMax() && val.Max() >= 0 && totalUncoupled > val.Max() )
{
auto drce = DRC_ITEM::Create( DRCE_DIFF_PAIR_UNCOUPLED_LENGTH_TOO_LONG );
wxString msg = formatMsg( _( "(%s maximum uncoupled length %s; actual %s)" ),
key.uncoupledRuleName,
val.Max(),
totalUncoupled );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + msg );
BOARD_CONNECTED_ITEM* item = nullptr;
auto p_it = itemSet.itemsP.begin();
auto n_it = itemSet.itemsN.begin();
if( p_it != itemSet.itemsP.end() )
{
item = *p_it;
drce->AddItem( *p_it );
p_it++;
}
if( n_it != itemSet.itemsN.end() )
{
item = *n_it;
drce->AddItem( *n_it );
n_it++;
}
while( p_it != itemSet.itemsP.end() )
drce->AddItem( *p_it++ );
while( n_it != itemSet.itemsN.end() )
drce->AddItem( *n_it++ );
uncoupledViolation = true;
drce->SetViolatingRule( key.uncoupledRule );
reportViolation( drce, item->GetPosition(), item->GetLayer() );
}
}
if( key.gapConstraint && ( uncoupledViolation || !key.uncoupledConstraint ) )
{
for( DIFF_PAIR_COUPLED_SEGMENTS& dp : itemSet.coupled )
{
wxCHECK2( dp.parentP && dp.parentN, continue );
if( ( dp.couplingFailMin || dp.couplingFailMax ) )
{
// We have a candidate violation, now we need to re-query for a constraint
// given the actual items, because there may be a location-based rule in play.
DRC_CONSTRAINT constraint = m_drcEngine->EvalRules( DIFF_PAIR_GAP_CONSTRAINT,
dp.parentP, dp.parentN,
dp.parentP->GetLayer() );
MINOPTMAX<int> val = constraint.GetValue();
if( !val.HasMin() || val.Min() < 0 || dp.computedGap >= val.Min() )
dp.couplingFailMin = false;
if( !val.HasMax() || val.Max() < 0 || dp.computedGap <= val.Max() )
dp.couplingFailMax = false;
if( !dp.couplingFailMin && !dp.couplingFailMax )
continue;
auto drcItem = DRC_ITEM::Create( DRCE_DIFF_PAIR_GAP_OUT_OF_RANGE );
wxString msg;
if( dp.couplingFailMin )
{
msg = formatMsg( _( "(%s minimum gap %s; actual %s)" ),
key.gapRuleName,
val.Min(),
dp.computedGap );
}
else if( dp.couplingFailMax )
{
msg = formatMsg( _( "(%s maximum gap %s; actual %s)" ),
key.gapRuleName,
val.Max(),
dp.computedGap );
}
drcItem->SetErrorMessage( drcItem->GetErrorText() + wxS( " " ) + msg );
BOARD_CONNECTED_ITEM* item = nullptr;
if( dp.parentP )
{
item = dp.parentP;
drcItem->AddItem( dp.parentP );
}
if( dp.parentN )
{
item = dp.parentN;
drcItem->AddItem( dp.parentN );
}
drcItem->SetViolatingRule( key.gapRule );
reportViolation( drcItem, item->GetPosition(), item->GetLayer() );
}
}
}
}
reportRuleStatistics();
return true;
}
namespace detail
{
static DRC_REGISTER_TEST_PROVIDER<test::DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING> dummy;
}