kicad/pcbnew/router/pns_node.cpp

1697 lines
42 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2019 CERN
* Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vector>
#include <cassert>
#include <utility>
#include <math/vector2d.h>
#include <geometry/seg.h>
#include <geometry/shape_line_chain.h>
#include <zone.h>
#include <wx/log.h>
#include "pns_arc.h"
#include "pns_item.h"
#include "pns_itemset.h"
#include "pns_line.h"
#include "pns_node.h"
#include "pns_via.h"
#include "pns_solid.h"
#include "pns_joint.h"
#include "pns_index.h"
#include "pns_debug_decorator.h"
#include "pns_router.h"
#include "pns_utils.h"
namespace PNS {
#ifdef DEBUG
static std::unordered_set<const NODE*> allocNodes;
#endif
NODE::NODE()
{
m_depth = 0;
m_root = this;
m_parent = nullptr;
m_maxClearance = 800000; // fixme: depends on how thick traces are.
m_ruleResolver = nullptr;
m_index = new INDEX;
#ifdef DEBUG
allocNodes.insert( this );
#endif
}
NODE::~NODE()
{
if( !m_children.empty() )
{
wxLogTrace( wxT( "PNS" ), wxT( "attempting to free a node that has kids." ) );
assert( false );
}
#ifdef DEBUG
if( allocNodes.find( this ) == allocNodes.end() )
{
wxLogTrace( wxT( "PNS" ), wxT( "attempting to free an already-free'd node." ) );
assert( false );
}
allocNodes.erase( this );
#endif
m_joints.clear();
std::vector<const ITEM*> toDelete;
toDelete.reserve( m_index->Size() );
for( ITEM* item : *m_index )
{
if( item->BelongsTo( this ) && item->OfKind( ITEM::HOLE_T ) )
{
#ifdef DEBUG
HOLE* hole = static_cast<HOLE*>( item );
// If a hole is no longer owned by the same NODE as its parent then we're in a
// heap of trouble.
if( hole->ParentPadVia() && !hole->ParentPadVia()->BelongsTo( this ) )
assert( false );
#endif
toDelete.push_back( item );
}
}
for( const ITEM* item : toDelete )
{
wxLogTrace( wxT( "PNS" ), wxT( "del item %p type %s" ), item, item->KindStr().c_str() );
delete item;
}
if( m_ruleResolver )
{
m_ruleResolver->ClearCacheForItems( toDelete );
}
releaseGarbage();
unlinkParent();
delete m_index;
}
int NODE::GetClearance( const ITEM* aA, const ITEM* aB, bool aUseClearanceEpsilon ) const
{
if( !m_ruleResolver )
return 100000;
if( aA->IsVirtual() || aB->IsVirtual() )
return 0;
int cl = m_ruleResolver->Clearance( aA, aB, aUseClearanceEpsilon );
return cl;
}
NODE* NODE::Branch()
{
NODE* child = new NODE;
m_children.insert( child );
child->m_depth = m_depth + 1;
child->m_parent = this;
child->m_ruleResolver = m_ruleResolver;
child->m_root = isRoot() ? this : m_root;
child->m_maxClearance = m_maxClearance;
// Immediate offspring of the root branch needs not copy anything. For the rest, deep-copy
// joints, overridden item maps and pointers to stored items.
if( !isRoot() )
{
JOINT_MAP::iterator j;
for( ITEM* item : *m_index )
child->m_index->Add( item );
child->m_joints = m_joints;
child->m_override = m_override;
}
#if 0
wxLogTrace( wxT( "PNS" ), wxT( "%d items, %d joints, %d overrides" ),
child->m_index->Size(),
(int) child->m_joints.size(),
(int) child->m_override.size() );
#endif
return child;
}
void NODE::unlinkParent()
{
if( isRoot() )
return;
m_parent->m_children.erase( this );
}
OBSTACLE_VISITOR::OBSTACLE_VISITOR( const ITEM* aItem ) :
m_item( aItem ),
m_node( nullptr ),
m_override( nullptr )
{
}
void OBSTACLE_VISITOR::SetWorld( const NODE* aNode, const NODE* aOverride )
{
m_node = aNode;
m_override = aOverride;
}
bool OBSTACLE_VISITOR::visit( ITEM* aCandidate )
{
// check if there is a more recent branch with a newer (possibly modified) version of this
// item.
if( m_override && m_override->Overrides( aCandidate ) )
return true;
return false;
}
// function object that visits potential obstacles and performs the actual collision refining
struct NODE::DEFAULT_OBSTACLE_VISITOR : public OBSTACLE_VISITOR
{
COLLISION_SEARCH_CONTEXT* m_ctx;
DEFAULT_OBSTACLE_VISITOR( COLLISION_SEARCH_CONTEXT* aCtx, const ITEM* aItem ) :
OBSTACLE_VISITOR( aItem ),
m_ctx( aCtx )
{
}
virtual ~DEFAULT_OBSTACLE_VISITOR()
{
}
bool operator()( ITEM* aCandidate ) override
{
if( !aCandidate->OfKind( m_ctx->options.m_kindMask ) )
return true;
// Collisions with self aren't a thing; don't spend time on them.
if( m_item == aCandidate )
return true;
if( visit( aCandidate ) )
return true;
if( !aCandidate->Collide( m_item, m_node, m_ctx ) )
return true;
if( m_ctx->options.m_limitCount > 0 && m_ctx->obstacles.size() >= m_ctx->options.m_limitCount )
return false;
return true;
};
};
int NODE::QueryColliding( const ITEM* aItem, NODE::OBSTACLES& aObstacles,
const COLLISION_SEARCH_OPTIONS& aOpts ) const
{
COLLISION_SEARCH_CONTEXT ctx( aObstacles, aOpts );
/// By default, virtual items cannot collide
if( aItem->IsVirtual() )
return 0;
DEFAULT_OBSTACLE_VISITOR visitor( &ctx, aItem );
#ifdef DEBUG
assert( allocNodes.find( this ) != allocNodes.end() );
#endif
visitor.SetWorld( this, nullptr );
// first, look for colliding items in the local index
m_index->Query( aItem, m_maxClearance, visitor );
// if we haven't found enough items, look in the root branch as well.
if( !isRoot() && ( ctx.obstacles.size() < aOpts.m_limitCount || aOpts.m_limitCount < 0 ) )
{
visitor.SetWorld( m_root, this );
m_root->m_index->Query( aItem, m_maxClearance, visitor );
}
return aObstacles.size();
}
NODE::OPT_OBSTACLE NODE::NearestObstacle( const LINE* aLine,
const COLLISION_SEARCH_OPTIONS& aOpts )
{
DIRECTION_45::CORNER_MODE cornerMode = ROUTER::GetInstance()->Settings().GetCornerMode();
const int clearanceEpsilon = GetRuleResolver()->ClearanceEpsilon();
OBSTACLES obstacleList;
for( int i = 0; i < aLine->CLine().SegmentCount(); i++ )
{
// Note: Clearances between &s and other items are cached,
// which means they'll be the same for all segments in the line.
// Disabling the cache will lead to slowness.
const SEGMENT s( *aLine, aLine->CLine().CSegment( i ) );
QueryColliding( &s, obstacleList, aOpts );
}
if( aLine->EndsWithVia() )
QueryColliding( &aLine->Via(), obstacleList, aOpts );
if( obstacleList.empty() )
return OPT_OBSTACLE();
OBSTACLE nearest;
nearest.m_head = nullptr;
nearest.m_item = nullptr;
nearest.m_distFirst = INT_MAX;
nearest.m_maxFanoutWidth = 0;
auto updateNearest =
[&]( const SHAPE_LINE_CHAIN::INTERSECTION& pt, const OBSTACLE& obstacle )
{
int dist = aLine->CLine().PathLength( pt.p, pt.index_their );
if( dist < nearest.m_distFirst )
{
nearest = obstacle;
nearest.m_distFirst = dist;
nearest.m_ipFirst = pt.p;
}
};
SHAPE_LINE_CHAIN obstacleHull;
DEBUG_DECORATOR* debugDecorator = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator();
std::vector<SHAPE_LINE_CHAIN::INTERSECTION> intersectingPts;
int layer = aLine->Layer();
for( const OBSTACLE& obstacle : obstacleList )
{
if( aOpts.m_restrictedSet && !aOpts.m_restrictedSet->empty() && aOpts.m_restrictedSet->count( obstacle.m_item ) == 0 )
continue;
int clearance = GetClearance( obstacle.m_item, aLine, aOpts.m_useClearanceEpsilon )
+ aLine->Width() / 2;
obstacleHull = obstacle.m_item->Hull( clearance, 0, layer );
if( cornerMode == DIRECTION_45::MITERED_90 || cornerMode == DIRECTION_45::ROUNDED_90 )
{
BOX2I bbox = obstacleHull.BBox();
obstacleHull.Clear();
obstacleHull.Append( bbox.GetLeft(), bbox.GetTop() );
obstacleHull.Append( bbox.GetRight(), bbox.GetTop() );
obstacleHull.Append( bbox.GetRight(), bbox.GetBottom() );
obstacleHull.Append( bbox.GetLeft(), bbox.GetBottom() );
}
//debugDecorator->AddLine( obstacleHull, 2, 40000, "obstacle-hull-test" );
//debugDecorator->AddLine( aLine->CLine(), 5, 40000, "obstacle-test-line" );
intersectingPts.clear();
HullIntersection( obstacleHull, aLine->CLine(), intersectingPts );
for( const auto& ip : intersectingPts )
{
//debugDecorator->AddPoint( ip.p, ip.valid?3:6, 100000, (const char *) wxString::Format("obstacle-isect-point-%d" ).c_str() );
if( ip.valid )
updateNearest( ip, obstacle );
}
if( aLine->EndsWithVia() )
{
const VIA& via = aLine->Via();
int viaClearance = GetClearance( obstacle.m_item, &via, aOpts.m_useClearanceEpsilon )
+ via.Diameter() / 2;
obstacleHull = obstacle.m_item->Hull( viaClearance, 0, layer );
if( cornerMode == DIRECTION_45::MITERED_90 || cornerMode == DIRECTION_45::ROUNDED_90 )
{
BOX2I bbox = obstacleHull.BBox();
obstacleHull.Clear();
obstacleHull.Append( bbox.GetLeft(), bbox.GetTop() );
obstacleHull.Append( bbox.GetRight(), bbox.GetTop() );
obstacleHull.Append( bbox.GetRight(), bbox.GetBottom() );
obstacleHull.Append( bbox.GetLeft(), bbox.GetBottom() );
}
//debugDecorator->AddLine( obstacleHull, 3 );
intersectingPts.clear();
HullIntersection( obstacleHull, aLine->CLine(), intersectingPts );
for( const SHAPE_LINE_CHAIN::INTERSECTION& ip : intersectingPts )
updateNearest( ip, obstacle );
}
}
if( nearest.m_distFirst == INT_MAX )
nearest = (*obstacleList.begin());
return nearest;
}
NODE::OPT_OBSTACLE NODE::CheckColliding( const ITEM_SET& aSet, int aKindMask )
{
for( const ITEM* item : aSet.CItems() )
{
OPT_OBSTACLE obs = CheckColliding( item, aKindMask );
if( obs )
return obs;
}
return OPT_OBSTACLE();
}
NODE::OPT_OBSTACLE NODE::CheckColliding( const ITEM* aItemA, int aKindMask )
{
COLLISION_SEARCH_OPTIONS opts;
opts.m_kindMask = aKindMask;
opts.m_limitCount = 1;
return CheckColliding( aItemA, opts );
}
NODE::OPT_OBSTACLE NODE::CheckColliding( const ITEM* aItemA, const COLLISION_SEARCH_OPTIONS& aOpts )
{
OBSTACLES obs;
if( aItemA->Kind() == ITEM::LINE_T )
{
int n = 0;
const LINE* line = static_cast<const LINE*>( aItemA );
const SHAPE_LINE_CHAIN& l = line->CLine();
for( int i = 0; i < l.SegmentCount(); i++ )
{
// Note: Clearances between &s and other items are cached,
// which means they'll be the same for all segments in the line.
// Disabling the cache will lead to slowness.
const SEGMENT s( *line, l.CSegment( i ) );
n += QueryColliding( &s, obs, aOpts );
if( n )
return OPT_OBSTACLE( *obs.begin() );
}
if( line->EndsWithVia() )
{
n += QueryColliding( &line->Via(), obs, aOpts );
if( n )
return OPT_OBSTACLE( *obs.begin() );
}
}
else if( QueryColliding( aItemA, obs, aOpts ) > 0 )
{
return OPT_OBSTACLE( *obs.begin() );
}
return OPT_OBSTACLE();
}
struct HIT_VISITOR : public OBSTACLE_VISITOR
{
ITEM_SET& m_items;
const VECTOR2I& m_point;
HIT_VISITOR( ITEM_SET& aTab, const VECTOR2I& aPoint ) :
OBSTACLE_VISITOR( nullptr ),
m_items( aTab ),
m_point( aPoint )
{}
virtual ~HIT_VISITOR()
{
}
bool operator()( ITEM* aItem ) override
{
SHAPE_CIRCLE cp( m_point, 0 );
int cl = 0;
if( aItem->Shape()->Collide( &cp, cl ) )
m_items.Add( aItem );
return true;
}
};
const ITEM_SET NODE::HitTest( const VECTOR2I& aPoint ) const
{
ITEM_SET items;
// fixme: we treat a point as an infinitely small circle - this is inefficient.
SHAPE_CIRCLE s( aPoint, 0 );
HIT_VISITOR visitor( items, aPoint );
visitor.SetWorld( this, nullptr );
m_index->Query( &s, m_maxClearance, visitor );
if( !isRoot() ) // fixme: could be made cleaner
{
ITEM_SET items_root;
visitor.SetWorld( m_root, nullptr );
HIT_VISITOR visitor_root( items_root, aPoint );
m_root->m_index->Query( &s, m_maxClearance, visitor_root );
for( ITEM* item : items_root.Items() )
{
if( !Overrides( item ) )
items.Add( item );
}
}
return items;
}
void NODE::addSolid( SOLID* aSolid )
{
if( aSolid->HasHole() )
{
assert( aSolid->Hole()->BelongsTo( aSolid ) );
addHole( aSolid->Hole() );
}
if( aSolid->IsRoutable() )
linkJoint( aSolid->Pos(), aSolid->Layers(), aSolid->Net(), aSolid );
aSolid->SetOwner( this );
m_index->Add( aSolid );
}
void NODE::Add( std::unique_ptr< SOLID > aSolid )
{
aSolid->SetOwner( this );
addSolid( aSolid.release() );
}
void NODE::addVia( VIA* aVia )
{
if( aVia->HasHole() )
{
if( ! aVia->Hole()->BelongsTo( aVia ) )
{
assert( false );
}
addHole( aVia->Hole() );
}
linkJoint( aVia->Pos(), aVia->Layers(), aVia->Net(), aVia );
aVia->SetOwner( this );
m_index->Add( aVia );
}
void NODE::addHole( HOLE* aHole )
{
// do we need holes in the connection graph?
//linkJoint( aHole->Pos(), aHole->Layers(), aHole->Net(), aHole );
aHole->SetOwner( this );
m_index->Add( aHole );
}
void NODE::Add( std::unique_ptr< VIA > aVia )
{
addVia( aVia.release() );
}
void NODE::add( ITEM* aItem, bool aAllowRedundant )
{
switch( aItem->Kind() )
{
case ITEM::ARC_T:
addArc( static_cast<ARC*>( aItem ) );
break;
case ITEM::SEGMENT_T:
addSegment( static_cast<SEGMENT*>( aItem ) );
break;
case ITEM::VIA_T:
addVia( static_cast<VIA*>( aItem ) );
break;
case ITEM::SOLID_T:
addSolid( static_cast<SOLID*>( aItem ) );
break;
case ITEM::HOLE_T:
// added by parent VIA_T or SOLID_T (pad)
break;
default:
assert( false );
}
}
void NODE::Add( LINE& aLine, bool aAllowRedundant )
{
assert( !aLine.IsLinked() );
SHAPE_LINE_CHAIN& l = aLine.Line();
for( size_t i = 0; i < l.ArcCount(); i++ )
{
auto s = l.Arc( i );
ARC* rarc;
if( !aAllowRedundant && ( rarc = findRedundantArc( s.GetP0(), s.GetP1(), aLine.Layers(),
aLine.Net() ) ) )
{
aLine.Link( rarc );
}
else
{
auto newarc = std::make_unique< ARC >( aLine, s );
aLine.Link( newarc.get() );
Add( std::move( newarc ), true );
}
}
for( int i = 0; i < l.SegmentCount(); i++ )
{
if( l.IsArcSegment( i ) )
continue;
SEG s = l.CSegment( i );
if( s.A != s.B )
{
SEGMENT* rseg;
if( !aAllowRedundant && ( rseg = findRedundantSegment( s.A, s.B, aLine.Layers(),
aLine.Net() ) ) )
{
// another line could be referencing this segment too :(
aLine.Link( rseg );
}
else
{
std::unique_ptr<SEGMENT> newseg = std::make_unique<SEGMENT>( aLine, s );
aLine.Link( newseg.get() );
Add( std::move( newseg ), true );
}
}
}
}
void NODE::addSegment( SEGMENT* aSeg )
{
aSeg->SetOwner( this );
linkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg );
linkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg );
m_index->Add( aSeg );
}
bool NODE::Add( std::unique_ptr< SEGMENT > aSegment, bool aAllowRedundant )
{
if( aSegment->Seg().A == aSegment->Seg().B )
{
wxLogTrace( wxT( "PNS" ),
wxT( "attempting to add a segment with same end coordinates, ignoring." ) );
return false;
}
if( !aAllowRedundant && findRedundantSegment( aSegment.get() ) )
return false;
addSegment( aSegment.release() );
return true;
}
void NODE::addArc( ARC* aArc )
{
aArc->SetOwner( this );
linkJoint( aArc->Anchor( 0 ), aArc->Layers(), aArc->Net(), aArc );
linkJoint( aArc->Anchor( 1 ), aArc->Layers(), aArc->Net(), aArc );
m_index->Add( aArc );
}
bool NODE::Add( std::unique_ptr< ARC > aArc, bool aAllowRedundant )
{
const SHAPE_ARC& arc = aArc->CArc();
if( !aAllowRedundant && findRedundantArc( arc.GetP0(), arc.GetP1(), aArc->Layers(),
aArc->Net() ) )
{
return false;
}
addArc( aArc.release() );
return true;
}
void NODE::AddEdgeExclusion( std::unique_ptr<SHAPE> aShape )
{
m_edgeExclusions.push_back( std::move( aShape ) );
}
bool NODE::QueryEdgeExclusions( const VECTOR2I& aPos ) const
{
for( const std::unique_ptr<SHAPE>& edgeExclusion : m_edgeExclusions )
{
if( edgeExclusion->Collide( aPos ) )
return true;
}
return false;
}
void NODE::doRemove( ITEM* aItem )
{
// case 1: removing an item that is stored in the root node from any branch:
// mark it as overridden, but do not remove
if( aItem->BelongsTo( m_root ) && !isRoot() )
{
m_override.insert( aItem );
if( aItem->HasHole() )
m_override.insert( aItem->Hole() );
}
// case 2: the item belongs to this branch or a parent, non-root branch,
// or the root itself and we are the root: remove from the index
else if( !aItem->BelongsTo( m_root ) || isRoot() )
{
m_index->Remove( aItem );
if( aItem->HasHole() )
m_index->Remove( aItem->Hole() );
}
// the item belongs to this particular branch: un-reference it
if( aItem->BelongsTo( this ) )
{
aItem->SetOwner( nullptr );
m_root->m_garbageItems.insert( aItem );
HOLE *hole = aItem->Hole();
if( hole )
{
m_index->Remove( hole ); // hole is not directly owned by NODE but by the parent SOLID/VIA.
hole->SetOwner( aItem );
}
}
}
void NODE::removeSegmentIndex( SEGMENT* aSeg )
{
unlinkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg );
unlinkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg );
}
void NODE::removeArcIndex( ARC* aArc )
{
unlinkJoint( aArc->Anchor( 0 ), aArc->Layers(), aArc->Net(), aArc );
unlinkJoint( aArc->Anchor( 1 ), aArc->Layers(), aArc->Net(), aArc );
}
void NODE::rebuildJoint( const JOINT* aJoint, const ITEM* aItem )
{
// We have to split a single joint (associated with a via or a pad, binding together multiple
// layers) into multiple independent joints. As I'm a lazy bastard, I simply delete the
// via/solid and all its links and re-insert them.
std::vector<ITEM*> links( aJoint->LinkList() );
JOINT::HASH_TAG tag;
NET_HANDLE net = aItem->Net();
tag.net = net;
tag.pos = aJoint->Pos();
bool split;
do
{
split = false;
auto range = m_joints.equal_range( tag );
if( range.first == m_joints.end() )
break;
// find and remove all joints containing the via to be removed
for( auto f = range.first; f != range.second; ++f )
{
if( aItem->LayersOverlap( &f->second ) )
{
m_joints.erase( f );
split = true;
break;
}
}
} while( split );
// and re-link them, using the former via's link list
for( ITEM* link : links )
{
if( link != aItem )
linkJoint( tag.pos, link->Layers(), net, link );
}
}
void NODE::removeViaIndex( VIA* aVia )
{
const JOINT* jt = FindJoint( aVia->Pos(), aVia->Layers().Start(), aVia->Net() );
assert( jt );
rebuildJoint( jt, aVia );
}
void NODE::removeSolidIndex( SOLID* aSolid )
{
if( !aSolid->IsRoutable() )
return;
// fixme: redundant code
const JOINT* jt = FindJoint( aSolid->Pos(), aSolid->Layers().Start(), aSolid->Net() );
assert( jt );
rebuildJoint( jt, aSolid );
}
void NODE::Replace( ITEM* aOldItem, std::unique_ptr< ITEM > aNewItem )
{
Remove( aOldItem );
add( aNewItem.release() );
}
void NODE::Replace( LINE& aOldLine, LINE& aNewLine )
{
Remove( aOldLine );
Add( aNewLine );
}
void NODE::Remove( SOLID* aSolid )
{
removeSolidIndex( aSolid );
doRemove( aSolid );
}
void NODE::Remove( VIA* aVia )
{
removeViaIndex( aVia );
doRemove( aVia );
if( !aVia->Owner() )
{
assert( aVia->Hole()->BelongsTo( aVia ) );
}
}
void NODE::Remove( SEGMENT* aSegment )
{
removeSegmentIndex( aSegment );
doRemove( aSegment );
}
void NODE::Remove( ARC* aArc )
{
removeArcIndex( aArc );
doRemove( aArc );
}
void NODE::Remove( ITEM* aItem )
{
switch( aItem->Kind() )
{
case ITEM::ARC_T:
Remove( static_cast<ARC*>( aItem ) );
break;
case ITEM::SOLID_T:
{
SOLID* solid = static_cast<SOLID*>( aItem );
if( solid->HasHole() )
{
Remove( solid->Hole() );
solid->Hole()->SetOwner( solid );
}
Remove( static_cast<SOLID*>( aItem ) );
break;
}
case ITEM::SEGMENT_T:
Remove( static_cast<SEGMENT*>( aItem ) );
break;
case ITEM::LINE_T:
{
LINE* l = static_cast<LINE*>( aItem );
for ( LINKED_ITEM* s : l->Links() )
Remove( s );
break;
}
case ITEM::VIA_T:
{
VIA* via = static_cast<VIA*>( aItem );
if( via->HasHole() )
{
Remove( via->Hole() );
via->Hole()->SetOwner( via );
}
Remove( static_cast<VIA*>( aItem ) );
break;
}
default:
break;
}
}
void NODE::Remove( LINE& aLine )
{
// LINE does not have a separate remover, as LINEs are never truly a member of the tree
std::vector<LINKED_ITEM*>& segRefs = aLine.Links();
for( LINKED_ITEM* li : segRefs )
{
if( li->OfKind( ITEM::SEGMENT_T ) )
Remove( static_cast<SEGMENT*>( li ) );
else if( li->OfKind( ITEM::ARC_T ) )
Remove( static_cast<ARC*>( li ) );
}
aLine.SetOwner( nullptr );
aLine.ClearLinks();
}
void NODE::followLine( LINKED_ITEM* aCurrent, bool aScanDirection, int& aPos, int aLimit,
VECTOR2I* aCorners, LINKED_ITEM** aSegments, bool* aArcReversed,
bool& aGuardHit, bool aStopAtLockedJoints, bool aFollowLockedSegments )
{
bool prevReversed = false;
const VECTOR2I guard = aCurrent->Anchor( aScanDirection );
for( int count = 0 ; ; ++count )
{
const VECTOR2I p = aCurrent->Anchor( aScanDirection ^ prevReversed );
const JOINT* jt = FindJoint( p, aCurrent );
wxCHECK( jt, /* void */ );
aCorners[aPos] = jt->Pos();
aSegments[aPos] = aCurrent;
aArcReversed[aPos] = false;
if( aCurrent->Kind() == ITEM::ARC_T )
{
if( ( aScanDirection && jt->Pos() == aCurrent->Anchor( 0 ) )
|| ( !aScanDirection && jt->Pos() == aCurrent->Anchor( 1 ) ) )
aArcReversed[aPos] = true;
}
aPos += ( aScanDirection ? 1 : -1 );
if( count && guard == p )
{
if( aPos >= 0 && aPos < aLimit )
aSegments[aPos] = nullptr;
aGuardHit = true;
break;
}
bool locked = aStopAtLockedJoints ? jt->IsLocked() : false;
if( locked || !jt->IsLineCorner( aFollowLockedSegments ) || aPos < 0 || aPos == aLimit )
break;
aCurrent = jt->NextSegment( aCurrent, aFollowLockedSegments );
prevReversed = ( aCurrent && jt->Pos() == aCurrent->Anchor( aScanDirection ) );
}
}
const LINE NODE::AssembleLine( LINKED_ITEM* aSeg, int* aOriginSegmentIndex,
bool aStopAtLockedJoints, bool aFollowLockedSegments )
{
const int MaxVerts = 1024 * 16;
std::array<VECTOR2I, MaxVerts + 1> corners;
std::array<LINKED_ITEM*, MaxVerts + 1> segs;
std::array<bool, MaxVerts + 1> arcReversed;
LINE pl;
bool guardHit = false;
int i_start = MaxVerts / 2;
int i_end = i_start + 1;
pl.SetWidth( aSeg->Width() );
pl.SetLayers( aSeg->Layers() );
pl.SetNet( aSeg->Net() );
pl.SetOwner( this );
followLine( aSeg, false, i_start, MaxVerts, corners.data(), segs.data(), arcReversed.data(),
guardHit, aStopAtLockedJoints, aFollowLockedSegments );
if( !guardHit )
{
followLine( aSeg, true, i_end, MaxVerts, corners.data(), segs.data(), arcReversed.data(),
guardHit, aStopAtLockedJoints, aFollowLockedSegments );
}
int n = 0;
LINKED_ITEM* prev_seg = nullptr;
bool originSet = false;
SHAPE_LINE_CHAIN& line = pl.Line();
for( int i = i_start + 1; i < i_end; i++ )
{
const VECTOR2I& p = corners[i];
LINKED_ITEM* li = segs[i];
if( !li || li->Kind() != ITEM::ARC_T )
line.Append( p );
if( li && prev_seg != li )
{
if( li->Kind() == ITEM::ARC_T )
{
const ARC* arc = static_cast<const ARC*>( li );
const SHAPE_ARC* sa = static_cast<const SHAPE_ARC*>( arc->Shape() );
int nSegs = line.PointCount();
VECTOR2I last = nSegs ? line.CPoint( -1 ) : VECTOR2I();
ssize_t lastShape = nSegs ? line.ArcIndex( static_cast<ssize_t>( nSegs ) - 1 ) : -1;
line.Append( arcReversed[i] ? sa->Reversed() : *sa );
}
pl.Link( li );
// latter condition to avoid loops
if( li == aSeg && aOriginSegmentIndex && !originSet )
{
wxASSERT( n < line.SegmentCount() ||
( n == line.SegmentCount() && li->Kind() == ITEM::SEGMENT_T ) );
*aOriginSegmentIndex = line.PointCount() - 1;
originSet = true;
}
}
prev_seg = li;
}
// Remove duplicate verts, but do NOT remove colinear segments here!
pl.Line().RemoveDuplicatePoints();
// TODO: maintain actual segment index under simplification system
if( aOriginSegmentIndex && *aOriginSegmentIndex >= pl.SegmentCount() )
*aOriginSegmentIndex = pl.SegmentCount() - 1;
wxASSERT_MSG( pl.SegmentCount() != 0, "assembled line should never be empty" );
return pl;
}
void NODE::FindLineEnds( const LINE& aLine, JOINT& aA, JOINT& aB )
{
aA = *FindJoint( aLine.CPoint( 0 ), &aLine );
aB = *FindJoint( aLine.CPoint( -1 ), &aLine );
}
int NODE::FindLinesBetweenJoints( const JOINT& aA, const JOINT& aB, std::vector<LINE>& aLines )
{
for( ITEM* item : aA.LinkList() )
{
if( item->Kind() == ITEM::SEGMENT_T || item->Kind() == ITEM::ARC_T )
{
LINKED_ITEM* li = static_cast<LINKED_ITEM*>( item );
LINE line = AssembleLine( li );
if( !line.Layers().Overlaps( aB.Layers() ) )
continue;
JOINT j_start, j_end;
FindLineEnds( line, j_start, j_end );
int id_start = line.CLine().Find( aA.Pos() );
int id_end = line.CLine().Find( aB.Pos() );
if( id_end < id_start )
std::swap( id_end, id_start );
if( id_start >= 0 && id_end >= 0 )
{
line.ClipVertexRange( id_start, id_end );
aLines.push_back( line );
}
}
}
return 0;
}
void NODE::FixupVirtualVias()
{
const SEGMENT* locked_seg = nullptr;
std::vector<VVIA*> vvias;
for( auto& jointPair : m_joints )
{
JOINT joint = jointPair.second;
if( joint.Layers().IsMultilayer() )
continue;
int n_seg = 0, n_solid = 0, n_vias = 0;
int prev_w = -1;
int max_w = -1;
bool is_width_change = false;
bool is_locked = false;
for( const ITEM* item : joint.LinkList() )
{
if( item->OfKind( ITEM::VIA_T ) )
{
n_vias++;
}
else if( item->OfKind( ITEM::SOLID_T ) )
{
n_solid++;
}
else if( const auto t = dyn_cast<const PNS::SEGMENT*>( item ) )
{
int w = t->Width();
if( prev_w >= 0 && w != prev_w )
{
is_width_change = true;
}
max_w = std::max( w, max_w );
prev_w = w;
is_locked = t->IsLocked();
locked_seg = t;
}
}
if( ( is_width_change || n_seg >= 3 || is_locked ) && n_solid == 0 && n_vias == 0 )
{
// fixme: the hull margin here is an ugly temporary workaround. The real fix
// is to use octagons for via force propagation.
vvias.push_back( new VVIA( joint.Pos(), joint.Layers().Start(),
max_w + 2 * PNS_HULL_MARGIN, joint.Net() ) );
}
if( is_locked )
{
const VECTOR2I& secondPos = ( locked_seg->Seg().A == joint.Pos() ) ?
locked_seg->Seg().B :
locked_seg->Seg().A;
vvias.push_back( new VVIA( secondPos, joint.Layers().Start(),
max_w + 2 * PNS_HULL_MARGIN, joint.Net() ) );
}
}
for( auto vvia : vvias )
{
Add( ItemCast<VIA>( std::move( std::unique_ptr<VVIA>( vvia ) ) ) );
}
}
const JOINT* NODE::FindJoint( const VECTOR2I& aPos, int aLayer, NET_HANDLE aNet ) const
{
JOINT::HASH_TAG tag;
tag.net = aNet;
tag.pos = aPos;
JOINT_MAP::const_iterator f = m_joints.find( tag ), end = m_joints.end();
if( f == end && !isRoot() )
{
end = m_root->m_joints.end();
f = m_root->m_joints.find( tag ); // m_root->FindJoint(aPos, aLayer, aNet);
}
if( f == end )
return nullptr;
while( f != end )
{
if( f->second.Layers().Overlaps( aLayer ) )
return &f->second;
++f;
}
return nullptr;
}
void NODE::LockJoint( const VECTOR2I& aPos, const ITEM* aItem, bool aLock )
{
JOINT& jt = touchJoint( aPos, aItem->Layers(), aItem->Net() );
jt.Lock( aLock );
}
JOINT& NODE::touchJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, NET_HANDLE aNet )
{
JOINT::HASH_TAG tag;
tag.pos = aPos;
tag.net = aNet;
// try to find the joint in this node.
JOINT_MAP::iterator f = m_joints.find( tag );
std::pair<JOINT_MAP::iterator, JOINT_MAP::iterator> range;
// not found and we are not root? find in the root and copy results here.
if( f == m_joints.end() && !isRoot() )
{
range = m_root->m_joints.equal_range( tag );
for( f = range.first; f != range.second; ++f )
m_joints.insert( *f );
}
// now insert and combine overlapping joints
JOINT jt( aPos, aLayers, aNet );
bool merged;
do
{
merged = false;
range = m_joints.equal_range( tag );
if( range.first == m_joints.end() )
break;
for( f = range.first; f != range.second; ++f )
{
if( aLayers.Overlaps( f->second.Layers() ) )
{
jt.Merge( f->second );
m_joints.erase( f );
merged = true;
break;
}
}
} while( merged );
return m_joints.insert( TagJointPair( tag, jt ) )->second;
}
void JOINT::Dump() const
{
wxLogTrace( wxT( "PNS" ), wxT( "joint layers %d-%d, net %d, pos %s, links: %d" ),
m_layers.Start(),
m_layers.End(),
m_tag.net,
m_tag.pos.Format().c_str(),
LinkCount() );
}
void NODE::linkJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, NET_HANDLE aNet,
ITEM* aWhere )
{
JOINT& jt = touchJoint( aPos, aLayers, aNet );
jt.Link( aWhere );
}
void NODE::unlinkJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, NET_HANDLE aNet,
ITEM* aWhere )
{
// fixme: remove dangling joints
JOINT& jt = touchJoint( aPos, aLayers, aNet );
jt.Unlink( aWhere );
}
void NODE::Dump( bool aLong )
{
#if 0
std::unordered_set<SEGMENT*> all_segs;
SHAPE_INDEX_LIST<ITEM*>::iterator i;
for( i = m_items.begin(); i != m_items.end(); i++ )
{
if( (*i)->GetKind() == ITEM::SEGMENT_T )
all_segs.insert( static_cast<SEGMENT*>( *i ) );
}
if( !isRoot() )
{
for( i = m_root->m_items.begin(); i != m_root->m_items.end(); i++ )
{
if( (*i)->GetKind() == ITEM::SEGMENT_T && !overrides( *i ) )
all_segs.insert( static_cast<SEGMENT*>(*i) );
}
}
JOINT_MAP::iterator j;
if( aLong )
{
for( j = m_joints.begin(); j != m_joints.end(); ++j )
{
wxLogTrace( wxT( "PNS" ), wxT( "joint : %s, links : %d\n" ),
j->second.GetPos().Format().c_str(), j->second.LinkCount() );
JOINT::LINKED_ITEMS::const_iterator k;
for( k = j->second.GetLinkList().begin(); k != j->second.GetLinkList().end(); ++k )
{
const ITEM* m_item = *k;
switch( m_item->GetKind() )
{
case ITEM::SEGMENT_T:
{
const SEGMENT* seg = static_cast<const SEGMENT*>( m_item );
wxLogTrace( wxT( "PNS" ), wxT( " -> seg %s %s\n" ),
seg->GetSeg().A.Format().c_str(),
seg->GetSeg().B.Format().c_str() );
break;
}
default:
break;
}
}
}
}
int lines_count = 0;
while( !all_segs.empty() )
{
SEGMENT* s = *all_segs.begin();
LINE* l = AssembleLine( s );
LINE::LinkedSegments* seg_refs = l->GetLinkedSegments();
if( aLong )
{
wxLogTrace( wxT( "PNS" ), wxT( "Line: %s, net %d " ),
l->GetLine().Format().c_str(), l->GetNet() );
}
for( std::vector<SEGMENT*>::iterator j = seg_refs->begin(); j != seg_refs->end(); ++j )
{
wxLogTrace( wxT( "PNS" ), wxT( "%s " ), (*j)->GetSeg().A.Format().c_str() );
if( j + 1 == seg_refs->end() )
wxLogTrace( wxT( "PNS" ), wxT( "%s\n" ), (*j)->GetSeg().B.Format().c_str() );
all_segs.erase( *j );
}
lines_count++;
}
wxLogTrace( wxT( "PNS" ), wxT( "Local joints: %d, lines : %d \n" ),
m_joints.size(), lines_count );
#endif
}
void NODE::GetUpdatedItems( ITEM_VECTOR& aRemoved, ITEM_VECTOR& aAdded )
{
if( isRoot() )
return;
if( m_override.size() )
aRemoved.reserve( m_override.size() );
if( m_index->Size() )
aAdded.reserve( m_index->Size() );
for( ITEM* item : m_override )
aRemoved.push_back( item );
for( ITEM* item : *m_index )
aAdded.push_back( item );
}
void NODE::releaseChildren()
{
// copy the kids as the NODE destructor erases the item from the parent node.
std::set<NODE*> kids = m_children;
for( NODE* node : kids )
{
node->releaseChildren();
delete node;
}
}
void NODE::releaseGarbage()
{
if( !isRoot() )
return;
std::vector<const ITEM*> cacheCheckItems;
cacheCheckItems.reserve( m_garbageItems.size() );
for( ITEM* item : m_garbageItems )
{
if( !item->BelongsTo( this ) )
delete item;
}
m_garbageItems.clear();
if( m_ruleResolver )
{
m_ruleResolver->ClearCacheForItems( cacheCheckItems );
}
}
void NODE::Commit( NODE* aNode )
{
if( aNode->isRoot() )
return;
for( ITEM* item : aNode->m_override )
Remove( item );
for( ITEM* item : *aNode->m_index )
{
if( item->HasHole() )
{
item->Hole()->SetOwner( item );
}
item->SetRank( -1 );
item->Unmark();
add( item );
}
releaseChildren();
releaseGarbage();
}
void NODE::KillChildren()
{
releaseChildren();
}
void NODE::AllItemsInNet( NET_HANDLE aNet, std::set<ITEM*>& aItems, int aKindMask )
{
INDEX::NET_ITEMS_LIST* l_cur = m_index->GetItemsForNet( aNet );
if( l_cur )
{
for( ITEM* item : *l_cur )
{
if( item->OfKind( aKindMask ) && item->IsRoutable() )
aItems.insert( item );
}
}
if( !isRoot() )
{
INDEX::NET_ITEMS_LIST* l_root = m_root->m_index->GetItemsForNet( aNet );
if( l_root )
{
for( ITEM* item : *l_root )
{
if( !Overrides( item ) && item->OfKind( aKindMask ) && item->IsRoutable() )
aItems.insert( item );
}
}
}
}
void NODE::ClearRanks( int aMarkerMask )
{
for( ITEM* item : *m_index )
{
item->SetRank( -1 );
item->Mark( item->Marker() & ~aMarkerMask );
}
}
void NODE::RemoveByMarker( int aMarker )
{
std::vector<ITEM*> garbage;
for( ITEM* item : *m_index )
{
if( item->Marker() & aMarker )
garbage.emplace_back( item );
}
for( ITEM* item : garbage )
Remove( item );
}
SEGMENT* NODE::findRedundantSegment( const VECTOR2I& A, const VECTOR2I& B, const LAYER_RANGE& lr,
NET_HANDLE aNet )
{
const JOINT* jtStart = FindJoint( A, lr.Start(), aNet );
if( !jtStart )
return nullptr;
for( ITEM* item : jtStart->LinkList() )
{
if( item->OfKind( ITEM::SEGMENT_T ) )
{
SEGMENT* seg2 = (SEGMENT*)item;
const VECTOR2I a2( seg2->Seg().A );
const VECTOR2I b2( seg2->Seg().B );
if( seg2->Layers().Start() == lr.Start()
&& ( ( A == a2 && B == b2 ) || ( A == b2 && B == a2 ) ) )
{
return seg2;
}
}
}
return nullptr;
}
SEGMENT* NODE::findRedundantSegment( SEGMENT* aSeg )
{
return findRedundantSegment( aSeg->Seg().A, aSeg->Seg().B, aSeg->Layers(), aSeg->Net() );
}
ARC* NODE::findRedundantArc( const VECTOR2I& A, const VECTOR2I& B, const LAYER_RANGE& lr,
NET_HANDLE aNet )
{
const JOINT* jtStart = FindJoint( A, lr.Start(), aNet );
if( !jtStart )
return nullptr;
for( ITEM* item : jtStart->LinkList() )
{
if( item->OfKind( ITEM::ARC_T ) )
{
ARC* seg2 = static_cast<ARC*>( item );
const VECTOR2I a2( seg2->Anchor( 0 ) );
const VECTOR2I b2( seg2->Anchor( 1 ) );
if( seg2->Layers().Start() == lr.Start()
&& ( ( A == a2 && B == b2 ) || ( A == b2 && B == a2 ) ) )
{
return seg2;
}
}
}
return nullptr;
}
ARC* NODE::findRedundantArc( ARC* aArc )
{
return findRedundantArc( aArc->Anchor( 0 ), aArc->Anchor( 1 ), aArc->Layers(), aArc->Net() );
}
int NODE::QueryJoints( const BOX2I& aBox, std::vector<JOINT*>& aJoints, LAYER_RANGE aLayerMask,
int aKindMask )
{
int n = 0;
aJoints.clear();
for( JOINT_MAP::value_type& j : m_joints )
{
if( !j.second.Layers().Overlaps( aLayerMask ) )
continue;
if( aBox.Contains( j.second.Pos() ) && j.second.LinkCount( aKindMask ) )
{
aJoints.push_back( &j.second );
n++;
}
}
if( isRoot() )
return n;
for( JOINT_MAP::value_type& j : m_root->m_joints )
{
if( !Overrides( &j.second ) && j.second.Layers().Overlaps( aLayerMask ) )
{
if( aBox.Contains( j.second.Pos() ) && j.second.LinkCount( aKindMask ) )
{
aJoints.push_back( &j.second );
n++;
}
}
}
return n;
}
ITEM *NODE::FindItemByParent( const BOARD_ITEM* aParent )
{
if( aParent->IsConnected() )
{
const BOARD_CONNECTED_ITEM* cItem = static_cast<const BOARD_CONNECTED_ITEM*>( aParent );
INDEX::NET_ITEMS_LIST* l_cur = m_index->GetItemsForNet( cItem->GetNet() );
if( l_cur )
{
for( ITEM* item : *l_cur )
{
if( item->Parent() == aParent )
return item;
}
}
}
return nullptr;
}
std::vector<ITEM*> NODE::FindItemsByZone( const ZONE* aParent )
{
std::vector<ITEM*> ret;
for( ITEM* item : *m_index )
{
if( item->Parent() == aParent )
ret.push_back( item );
}
return ret;
}
}