kicad/eeschema/sim/sim_model.cpp

2017 lines
87 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2022 Mikolaj Wielgus
* Copyright (C) 2022 CERN
* Copyright (C) 2022-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* https://www.gnu.org/licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <lib_symbol.h>
#include <sch_symbol.h>
#include <string_utils.h>
#include <wx/regex.h>
#include <sim/sim_model.h>
#include <sim/sim_model_behavioral.h>
#include <sim/sim_model_ideal.h>
#include <sim/sim_model_l_mutual.h>
#include <sim/sim_model_ngspice.h>
#include <sim/sim_model_r_pot.h>
#include <sim/sim_model_kibis.h>
#include <sim/sim_model_source.h>
#include <sim/sim_model_raw_spice.h>
#include <sim/sim_model_subckt.h>
#include <sim/sim_model_switch.h>
#include <sim/sim_model_tline.h>
#include <sim/sim_model_xspice.h>
#include <sim/sim_lib_mgr.h>
#include <sim/sim_library_kibis.h>
#include <boost/algorithm/string.hpp>
#include <fmt/core.h>
#include <pegtl/contrib/parse_tree.hpp>
#include <iterator>
#include "sim_model_spice_fallback.h"
using TYPE = SIM_MODEL::TYPE;
SIM_MODEL::DEVICE_INFO SIM_MODEL::DeviceInfo( DEVICE_T aDeviceType )
{
switch( aDeviceType )
{
// | fieldValue | description | showInMenu |
// -------------------------------------------------------
//
case DEVICE_T::NONE: return { "", "", true };
case DEVICE_T::R: return { "R", "Resistor", true };
case DEVICE_T::C: return { "C", "Capacitor", true };
case DEVICE_T::L: return { "L", "Inductor", true };
case DEVICE_T::K: return { "K", "Mutual Inductance Statement", true };
case DEVICE_T::TLINE: return { "TLINE", "Transmission Line", true };
case DEVICE_T::SW: return { "SW", "Switch", true };
case DEVICE_T::D: return { "D", "Diode", true };
case DEVICE_T::NPN: return { "NPN", "NPN BJT", true };
case DEVICE_T::PNP: return { "PNP", "PNP BJT", true };
case DEVICE_T::NJFET: return { "NJFET", "N-channel JFET", true };
case DEVICE_T::PJFET: return { "PJFET", "P-channel JFET", true };
case DEVICE_T::NMOS: return { "NMOS", "N-channel MOSFET", true };
case DEVICE_T::PMOS: return { "PMOS", "P-channel MOSFET", true };
case DEVICE_T::NMES: return { "NMES", "N-channel MESFET", true };
case DEVICE_T::PMES: return { "PMES", "P-channel MESFET", true };
case DEVICE_T::V: return { "V", "Voltage Source", true };
case DEVICE_T::I: return { "I", "Current Source", true };
case DEVICE_T::E: return { "E", "Voltage Source", false };
case DEVICE_T::F: return { "F", "Current Source", false };
case DEVICE_T::G: return { "G", "Current Source", false };
case DEVICE_T::H: return { "H", "Voltage Source", false };
case DEVICE_T::KIBIS: return { "IBIS", "IBIS Model", false };
case DEVICE_T::SUBCKT: return { "SUBCKT", "Subcircuit", false };
case DEVICE_T::XSPICE: return { "XSPICE", "XSPICE Code Model", true };
case DEVICE_T::SPICE: return { "SPICE", "Raw Spice Element", true };
default: wxFAIL; return {};
}
}
SIM_MODEL::INFO SIM_MODEL::TypeInfo( TYPE aType )
{
switch( aType )
{
// | deviceType | fieldValue | description |
// ---------------------------------------------------------------------
//
case TYPE::NONE: return { DEVICE_T::NONE, "", "" };
case TYPE::R: return { DEVICE_T::R, "", "Ideal" };
case TYPE::R_POT: return { DEVICE_T::R, "POT", "Potentiometer" };
case TYPE::R_BEHAVIORAL: return { DEVICE_T::R, "=", "Behavioral" };
case TYPE::C: return { DEVICE_T::C, "", "Ideal" };
case TYPE::C_BEHAVIORAL: return { DEVICE_T::C, "=", "Behavioral" };
case TYPE::L: return { DEVICE_T::L, "", "Ideal" };
case TYPE::L_BEHAVIORAL: return { DEVICE_T::L, "=", "Behavioral" };
case TYPE::K: return { DEVICE_T::K, "", "Mutual Inductance Statement" };
case TYPE::TLINE_Z0: return { DEVICE_T::TLINE, "", "Characteristic impedance" };
case TYPE::TLINE_RLGC: return { DEVICE_T::TLINE, "RLGC", "RLGC" };
case TYPE::SW_V: return { DEVICE_T::SW, "V", "Voltage-controlled" };
case TYPE::SW_I: return { DEVICE_T::SW, "I", "Current-controlled" };
case TYPE::D: return { DEVICE_T::D, "", "" };
case TYPE::NPN_VBIC: return { DEVICE_T::NPN, "VBIC", "VBIC" };
case TYPE::PNP_VBIC: return { DEVICE_T::PNP, "VBIC", "VBIC" };
case TYPE::NPN_GUMMELPOON: return { DEVICE_T::NPN, "GUMMELPOON", "Gummel-Poon" };
case TYPE::PNP_GUMMELPOON: return { DEVICE_T::PNP, "GUMMELPOON", "Gummel-Poon" };
//case TYPE::BJT_MEXTRAM: return {};
case TYPE::NPN_HICUM2: return { DEVICE_T::NPN, "HICUML2", "HICUM level 2" };
case TYPE::PNP_HICUM2: return { DEVICE_T::PNP, "HICUML2", "HICUM level 2" };
//case TYPE::BJT_HICUM_L0: return {};
case TYPE::NJFET_SHICHMANHODGES: return { DEVICE_T::NJFET, "SHICHMANHODGES", "Shichman-Hodges" };
case TYPE::PJFET_SHICHMANHODGES: return { DEVICE_T::PJFET, "SHICHMANHODGES", "Shichman-Hodges" };
case TYPE::NJFET_PARKERSKELLERN: return { DEVICE_T::NJFET, "PARKERSKELLERN", "Parker-Skellern" };
case TYPE::PJFET_PARKERSKELLERN: return { DEVICE_T::PJFET, "PARKERSKELLERN", "Parker-Skellern" };
case TYPE::NMES_STATZ: return { DEVICE_T::NMES, "STATZ", "Statz" };
case TYPE::PMES_STATZ: return { DEVICE_T::PMES, "STATZ", "Statz" };
case TYPE::NMES_YTTERDAL: return { DEVICE_T::NMES, "YTTERDAL", "Ytterdal" };
case TYPE::PMES_YTTERDAL: return { DEVICE_T::PMES, "YTTERDAL", "Ytterdal" };
case TYPE::NMES_HFET1: return { DEVICE_T::NMES, "HFET1", "HFET1" };
case TYPE::PMES_HFET1: return { DEVICE_T::PMES, "HFET1", "HFET1" };
case TYPE::NMES_HFET2: return { DEVICE_T::NMES, "HFET2", "HFET2" };
case TYPE::PMES_HFET2: return { DEVICE_T::PMES, "HFET2", "HFET2" };
case TYPE::NMOS_VDMOS: return { DEVICE_T::NMOS, "VDMOS", "VDMOS" };
case TYPE::PMOS_VDMOS: return { DEVICE_T::PMOS, "VDMOS", "VDMOS" };
case TYPE::NMOS_MOS1: return { DEVICE_T::NMOS, "MOS1", "Classical quadratic (MOS1)" };
case TYPE::PMOS_MOS1: return { DEVICE_T::PMOS, "MOS1", "Classical quadratic (MOS1)" };
case TYPE::NMOS_MOS2: return { DEVICE_T::NMOS, "MOS2", "Grove-Frohman (MOS2)" };
case TYPE::PMOS_MOS2: return { DEVICE_T::PMOS, "MOS2", "Grove-Frohman (MOS2)" };
case TYPE::NMOS_MOS3: return { DEVICE_T::NMOS, "MOS3", "MOS3" };
case TYPE::PMOS_MOS3: return { DEVICE_T::PMOS, "MOS3", "MOS3" };
case TYPE::NMOS_BSIM1: return { DEVICE_T::NMOS, "BSIM1", "BSIM1" };
case TYPE::PMOS_BSIM1: return { DEVICE_T::PMOS, "BSIM1", "BSIM1" };
case TYPE::NMOS_BSIM2: return { DEVICE_T::NMOS, "BSIM2", "BSIM2" };
case TYPE::PMOS_BSIM2: return { DEVICE_T::PMOS, "BSIM2", "BSIM2" };
case TYPE::NMOS_MOS6: return { DEVICE_T::NMOS, "MOS6", "MOS6" };
case TYPE::PMOS_MOS6: return { DEVICE_T::PMOS, "MOS6", "MOS6" };
case TYPE::NMOS_BSIM3: return { DEVICE_T::NMOS, "BSIM3", "BSIM3" };
case TYPE::PMOS_BSIM3: return { DEVICE_T::PMOS, "BSIM3", "BSIM3" };
case TYPE::NMOS_MOS9: return { DEVICE_T::NMOS, "MOS9", "MOS9" };
case TYPE::PMOS_MOS9: return { DEVICE_T::PMOS, "MOS9", "MOS9" };
case TYPE::NMOS_B4SOI: return { DEVICE_T::NMOS, "B4SOI", "BSIM4 SOI (B4SOI)" };
case TYPE::PMOS_B4SOI: return { DEVICE_T::PMOS, "B4SOI", "BSIM4 SOI (B4SOI)" };
case TYPE::NMOS_BSIM4: return { DEVICE_T::NMOS, "BSIM4", "BSIM4" };
case TYPE::PMOS_BSIM4: return { DEVICE_T::PMOS, "BSIM4", "BSIM4" };
//case TYPE::NMOS_EKV2_6: return {};
//case TYPE::PMOS_EKV2_6: return {};
//case TYPE::NMOS_PSP: return {};
//case TYPE::PMOS_PSP: return {};
case TYPE::NMOS_B3SOIFD: return { DEVICE_T::NMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" };
case TYPE::PMOS_B3SOIFD: return { DEVICE_T::PMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" };
case TYPE::NMOS_B3SOIDD: return { DEVICE_T::NMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" };
case TYPE::PMOS_B3SOIDD: return { DEVICE_T::PMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" };
case TYPE::NMOS_B3SOIPD: return { DEVICE_T::NMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" };
case TYPE::PMOS_B3SOIPD: return { DEVICE_T::PMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" };
//case TYPE::NMOS_STAG: return {};
//case TYPE::PMOS_STAG: return {};
case TYPE::NMOS_HISIM2: return { DEVICE_T::NMOS, "HISIM2", "HiSIM2" };
case TYPE::PMOS_HISIM2: return { DEVICE_T::PMOS, "HISIM2", "HiSIM2" };
case TYPE::NMOS_HISIMHV1: return { DEVICE_T::NMOS, "HISIMHV1", "HiSIM_HV1" };
case TYPE::PMOS_HISIMHV1: return { DEVICE_T::PMOS, "HISIMHV1", "HiSIM_HV1" };
case TYPE::NMOS_HISIMHV2: return { DEVICE_T::NMOS, "HISIMHV2", "HiSIM_HV2" };
case TYPE::PMOS_HISIMHV2: return { DEVICE_T::PMOS, "HISIMHV2", "HiSIM_HV2" };
case TYPE::V: return { DEVICE_T::V, "DC", "DC", };
case TYPE::V_SIN: return { DEVICE_T::V, "SIN", "Sine" };
case TYPE::V_PULSE: return { DEVICE_T::V, "PULSE", "Pulse" };
case TYPE::V_EXP: return { DEVICE_T::V, "EXP", "Exponential" };
case TYPE::V_AM: return { DEVICE_T::V, "AM", "Amplitude modulated" };
case TYPE::V_SFFM: return { DEVICE_T::V, "SFFM", "Single-frequency FM" };
case TYPE::V_VCL: return { DEVICE_T::E, "", "Voltage-controlled" };
case TYPE::V_CCL: return { DEVICE_T::H, "", "Current-controlled" };
case TYPE::V_PWL: return { DEVICE_T::V, "PWL", "Piecewise linear" };
case TYPE::V_WHITENOISE: return { DEVICE_T::V, "WHITENOISE", "White noise" };
case TYPE::V_PINKNOISE: return { DEVICE_T::V, "PINKNOISE", "Pink noise (1/f)" };
case TYPE::V_BURSTNOISE: return { DEVICE_T::V, "BURSTNOISE", "Burst noise" };
case TYPE::V_RANDUNIFORM: return { DEVICE_T::V, "RANDUNIFORM", "Random uniform" };
case TYPE::V_RANDGAUSSIAN: return { DEVICE_T::V, "RANDGAUSSIAN", "Random Gaussian" };
case TYPE::V_RANDEXP: return { DEVICE_T::V, "RANDEXP", "Random exponential" };
case TYPE::V_RANDPOISSON: return { DEVICE_T::V, "RANDPOISSON", "Random Poisson" };
case TYPE::V_BEHAVIORAL: return { DEVICE_T::V, "=", "Behavioral" };
case TYPE::I: return { DEVICE_T::I, "DC", "DC", };
case TYPE::I_SIN: return { DEVICE_T::I, "SIN", "Sine" };
case TYPE::I_PULSE: return { DEVICE_T::I, "PULSE", "Pulse" };
case TYPE::I_EXP: return { DEVICE_T::I, "EXP", "Exponential" };
case TYPE::I_AM: return { DEVICE_T::I, "AM", "Amplitude modulated" };
case TYPE::I_SFFM: return { DEVICE_T::I, "SFFM", "Single-frequency FM" };
case TYPE::I_VCL: return { DEVICE_T::G, "", "Voltage-controlled" };
case TYPE::I_CCL: return { DEVICE_T::F, "", "Current-controlled" };
case TYPE::I_PWL: return { DEVICE_T::I, "PWL", "Piecewise linear" };
case TYPE::I_WHITENOISE: return { DEVICE_T::I, "WHITENOISE", "White noise" };
case TYPE::I_PINKNOISE: return { DEVICE_T::I, "PINKNOISE", "Pink noise (1/f)" };
case TYPE::I_BURSTNOISE: return { DEVICE_T::I, "BURSTNOISE", "Burst noise" };
case TYPE::I_RANDUNIFORM: return { DEVICE_T::I, "RANDUNIFORM", "Random uniform" };
case TYPE::I_RANDGAUSSIAN: return { DEVICE_T::I, "RANDGAUSSIAN", "Random Gaussian" };
case TYPE::I_RANDEXP: return { DEVICE_T::I, "RANDEXP", "Random exponential" };
case TYPE::I_RANDPOISSON: return { DEVICE_T::I, "RANDPOISSON", "Random Poisson" };
case TYPE::I_BEHAVIORAL: return { DEVICE_T::I, "=", "Behavioral" };
case TYPE::SUBCKT: return { DEVICE_T::SUBCKT, "", "Subcircuit" };
case TYPE::XSPICE: return { DEVICE_T::XSPICE, "", "" };
case TYPE::KIBIS_DEVICE: return { DEVICE_T::KIBIS, "DEVICE", "Device" };
case TYPE::KIBIS_DRIVER_DC: return { DEVICE_T::KIBIS, "DCDRIVER", "DC driver" };
case TYPE::KIBIS_DRIVER_RECT: return { DEVICE_T::KIBIS, "RECTDRIVER", "Rectangular wave driver" };
case TYPE::KIBIS_DRIVER_PRBS: return { DEVICE_T::KIBIS, "PRBSDRIVER", "PRBS driver" };
case TYPE::RAWSPICE: return { DEVICE_T::SPICE, "", "" };
default: wxFAIL; return {};
}
}
SIM_MODEL::SPICE_INFO SIM_MODEL::SpiceInfo( TYPE aType )
{
switch( aType )
{
// | itemType | modelType | fnName | level |isDefaultLvl|hasExpr|version|
// -------------------------------------------------------------------------
case TYPE::R: return { "R", "" };
case TYPE::R_POT: return { "A", "" };
case TYPE::R_BEHAVIORAL: return { "R", "", "", "0", false, true };
case TYPE::C: return { "C", "" };
case TYPE::C_BEHAVIORAL: return { "C", "", "", "0", false, true };
case TYPE::L: return { "L", "" };
case TYPE::L_BEHAVIORAL: return { "L", "", "", "0", false, true };
case TYPE::K: return { "K", "" };
//case TYPE::TLINE_Z0: return { "T" };
case TYPE::TLINE_Z0: return { "O", "LTRA" };
case TYPE::TLINE_RLGC: return { "O", "LTRA" };
case TYPE::SW_V: return { "S", "SW" };
case TYPE::SW_I: return { "W", "CSW" };
case TYPE::D: return { "D", "D" };
case TYPE::NPN_VBIC: return { "Q", "NPN", "", "4" };
case TYPE::PNP_VBIC: return { "Q", "PNP", "", "4" };
case TYPE::NPN_GUMMELPOON: return { "Q", "NPN", "", "1", true };
case TYPE::PNP_GUMMELPOON: return { "Q", "PNP", "", "1", true };
case TYPE::NPN_HICUM2: return { "Q", "NPN", "", "8" };
case TYPE::PNP_HICUM2: return { "Q", "PNP", "", "8" };
case TYPE::NJFET_SHICHMANHODGES: return { "J", "NJF", "", "1", true };
case TYPE::PJFET_SHICHMANHODGES: return { "J", "PJF", "", "1", true };
case TYPE::NJFET_PARKERSKELLERN: return { "J", "NJF", "", "2" };
case TYPE::PJFET_PARKERSKELLERN: return { "J", "PJF", "", "2" };
case TYPE::NMES_STATZ: return { "Z", "NMF", "", "1", true };
case TYPE::PMES_STATZ: return { "Z", "PMF", "", "1", true };
case TYPE::NMES_YTTERDAL: return { "Z", "NMF", "", "2" };
case TYPE::PMES_YTTERDAL: return { "Z", "PMF", "", "2" };
case TYPE::NMES_HFET1: return { "Z", "NMF", "", "5" };
case TYPE::PMES_HFET1: return { "Z", "PMF", "", "5" };
case TYPE::NMES_HFET2: return { "Z", "NMF", "", "6" };
case TYPE::PMES_HFET2: return { "Z", "PMF", "", "6" };
case TYPE::NMOS_VDMOS: return { "M", "VDMOS NCHAN" };
case TYPE::PMOS_VDMOS: return { "M", "VDMOS PCHAN" };
case TYPE::NMOS_MOS1: return { "M", "NMOS", "", "1", true };
case TYPE::PMOS_MOS1: return { "M", "PMOS", "", "1", true };
case TYPE::NMOS_MOS2: return { "M", "NMOS", "", "2" };
case TYPE::PMOS_MOS2: return { "M", "PMOS", "", "2" };
case TYPE::NMOS_MOS3: return { "M", "NMOS", "", "3" };
case TYPE::PMOS_MOS3: return { "M", "PMOS", "", "3" };
case TYPE::NMOS_BSIM1: return { "M", "NMOS", "", "4" };
case TYPE::PMOS_BSIM1: return { "M", "PMOS", "", "4" };
case TYPE::NMOS_BSIM2: return { "M", "NMOS", "", "5" };
case TYPE::PMOS_BSIM2: return { "M", "PMOS", "", "5" };
case TYPE::NMOS_MOS6: return { "M", "NMOS", "", "6" };
case TYPE::PMOS_MOS6: return { "M", "PMOS", "", "6" };
case TYPE::NMOS_BSIM3: return { "M", "NMOS", "", "8" };
case TYPE::PMOS_BSIM3: return { "M", "PMOS", "", "8" };
case TYPE::NMOS_MOS9: return { "M", "NMOS", "", "9" };
case TYPE::PMOS_MOS9: return { "M", "PMOS", "", "9" };
case TYPE::NMOS_B4SOI: return { "M", "NMOS", "", "10" };
case TYPE::PMOS_B4SOI: return { "M", "PMOS", "", "10" };
case TYPE::NMOS_BSIM4: return { "M", "NMOS", "", "14" };
case TYPE::PMOS_BSIM4: return { "M", "PMOS", "", "14" };
//case TYPE::NMOS_EKV2_6: return {};
//case TYPE::PMOS_EKV2_6: return {};
//case TYPE::NMOS_PSP: return {};
//case TYPE::PMOS_PSP: return {};
case TYPE::NMOS_B3SOIFD: return { "M", "NMOS", "", "55" };
case TYPE::PMOS_B3SOIFD: return { "M", "PMOS", "", "55" };
case TYPE::NMOS_B3SOIDD: return { "M", "NMOS", "", "56" };
case TYPE::PMOS_B3SOIDD: return { "M", "PMOS", "", "56" };
case TYPE::NMOS_B3SOIPD: return { "M", "NMOS", "", "57" };
case TYPE::PMOS_B3SOIPD: return { "M", "PMOS", "", "57" };
//case TYPE::NMOS_STAG: return {};
//case TYPE::PMOS_STAG: return {};
case TYPE::NMOS_HISIM2: return { "M", "NMOS", "", "68" };
case TYPE::PMOS_HISIM2: return { "M", "PMOS", "", "68" };
case TYPE::NMOS_HISIMHV1: return { "M", "NMOS", "", "73", false, false, "1.2.4" };
case TYPE::PMOS_HISIMHV1: return { "M", "PMOS", "", "73", false, false, "1.2.4" };
case TYPE::NMOS_HISIMHV2: return { "M", "NMOS", "", "73", false, false, "2.2.0" };
case TYPE::PMOS_HISIMHV2: return { "M", "PMOS", "", "73", false, false, "2.2.0" };
case TYPE::V: return { "V", "", "DC" };
case TYPE::V_SIN: return { "V", "", "SIN" };
case TYPE::V_PULSE: return { "V", "", "PULSE" };
case TYPE::V_EXP: return { "V", "", "EXP" };
case TYPE::V_AM: return { "V", "", "AM" };
case TYPE::V_SFFM: return { "V", "", "SFFM" };
case TYPE::V_VCL: return { "E", "", "" };
case TYPE::V_CCL: return { "H", "", "" };
case TYPE::V_PWL: return { "V", "", "PWL" };
case TYPE::V_WHITENOISE: return { "V", "", "TRNOISE" };
case TYPE::V_PINKNOISE: return { "V", "", "TRNOISE" };
case TYPE::V_BURSTNOISE: return { "V", "", "TRNOISE" };
case TYPE::V_RANDUNIFORM: return { "V", "", "TRRANDOM" };
case TYPE::V_RANDGAUSSIAN: return { "V", "", "TRRANDOM" };
case TYPE::V_RANDEXP: return { "V", "", "TRRANDOM" };
case TYPE::V_RANDPOISSON: return { "V", "", "TRRANDOM" };
case TYPE::V_BEHAVIORAL: return { "B" };
case TYPE::I: return { "I", "", "DC" };
case TYPE::I_PULSE: return { "I", "", "PULSE" };
case TYPE::I_SIN: return { "I", "", "SIN" };
case TYPE::I_EXP: return { "I", "", "EXP" };
case TYPE::I_AM: return { "V", "", "AM" };
case TYPE::I_SFFM: return { "V", "", "SFFM" };
case TYPE::I_VCL: return { "G", "", "" };
case TYPE::I_CCL: return { "F", "", "" };
case TYPE::I_PWL: return { "I", "", "PWL" };
case TYPE::I_WHITENOISE: return { "I", "", "TRNOISE" };
case TYPE::I_PINKNOISE: return { "I", "", "TRNOISE" };
case TYPE::I_BURSTNOISE: return { "I", "", "TRNOISE" };
case TYPE::I_RANDUNIFORM: return { "I", "", "TRRANDOM" };
case TYPE::I_RANDGAUSSIAN: return { "I", "", "TRRANDOM" };
case TYPE::I_RANDEXP: return { "I", "", "TRRANDOM" };
case TYPE::I_RANDPOISSON: return { "I", "", "TRRANDOM" };
case TYPE::I_BEHAVIORAL: return { "B" };
case TYPE::SUBCKT: return { "X" };
case TYPE::XSPICE: return { "A" };
case TYPE::KIBIS_DEVICE: return { "X" };
case TYPE::KIBIS_DRIVER_DC: return { "X" };
case TYPE::KIBIS_DRIVER_RECT: return { "X" };
case TYPE::KIBIS_DRIVER_PRBS: return { "X" };
case TYPE::NONE:
case TYPE::RAWSPICE: return {};
default: wxFAIL; return {};
}
}
template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector<SCH_FIELD>& aFields,
REPORTER& aReporter );
template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector<LIB_FIELD>& aFields,
REPORTER& aReporter );
template <typename T>
TYPE SIM_MODEL::ReadTypeFromFields( const std::vector<T>& aFields, REPORTER& aReporter )
{
std::string deviceTypeFieldValue = GetFieldValue( &aFields, SIM_DEVICE_FIELD );
std::string typeFieldValue = GetFieldValue( &aFields, SIM_DEVICE_SUBTYPE_FIELD );
if( deviceTypeFieldValue != "" )
{
for( TYPE type : TYPE_ITERATOR() )
{
if( typeFieldValue == TypeInfo( type ).fieldValue )
{
if( deviceTypeFieldValue == DeviceInfo( TypeInfo( type ).deviceType ).fieldValue )
return type;
}
}
}
if( typeFieldValue != "" )
return TYPE::NONE;
if( aFields.size() > REFERENCE_FIELD )
{
aReporter.Report( wxString::Format( _( "No simulation model definition found for "
"symbol '%s'." ),
aFields[REFERENCE_FIELD].GetText() ),
RPT_SEVERITY_ERROR );
}
else
{
aReporter.Report( _( "No simulation model definition found." ),
RPT_SEVERITY_ERROR );
}
return TYPE::NONE;
}
template <>
void SIM_MODEL::ReadDataFields( const std::vector<SCH_FIELD>* aFields,
const std::vector<LIB_PIN*>& aPins )
{
doReadDataFields( aFields, aPins );
}
template <>
void SIM_MODEL::ReadDataFields( const std::vector<LIB_FIELD>* aFields,
const std::vector<LIB_PIN*>& aPins )
{
doReadDataFields( aFields, aPins );
}
template <>
void SIM_MODEL::WriteFields( std::vector<SCH_FIELD>& aFields ) const
{
doWriteFields( aFields );
}
template <>
void SIM_MODEL::WriteFields( std::vector<LIB_FIELD>& aFields ) const
{
doWriteFields( aFields );
}
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( TYPE aType, const std::vector<LIB_PIN*>& aPins,
REPORTER& aReporter )
{
std::unique_ptr<SIM_MODEL> model = Create( aType );
try
{
// Passing nullptr to ReadDataFields will make it act as if all fields were empty.
model->ReadDataFields( static_cast<const std::vector<SCH_FIELD>*>( nullptr ), aPins );
}
catch( IO_ERROR& )
{
wxFAIL_MSG( "Shouldn't throw reading empty fields!" );
}
return model;
}
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const SIM_MODEL* aBaseModel,
const std::vector<LIB_PIN*>& aPins,
REPORTER& aReporter )
{
std::unique_ptr<SIM_MODEL> model;
if( aBaseModel )
{
TYPE type = aBaseModel->GetType();
if( dynamic_cast<const SIM_MODEL_SPICE_FALLBACK*>( aBaseModel ) )
model = std::make_unique<SIM_MODEL_SPICE_FALLBACK>( type );
else if( dynamic_cast< const SIM_MODEL_RAW_SPICE*>( aBaseModel ) )
model = std::make_unique<SIM_MODEL_RAW_SPICE>();
else
model = Create( type );
model->SetBaseModel( *aBaseModel );
}
else // No base model means the model wasn't found in the library, so create a fallback
{
model = std::make_unique<SIM_MODEL_SPICE_FALLBACK>( TYPE::NONE );
}
try
{
model->ReadDataFields( static_cast<const std::vector<SCH_FIELD>*>( nullptr ), aPins );
}
catch( IO_ERROR& )
{
wxFAIL_MSG( "Shouldn't throw reading empty fields!" );
}
return model;
}
template <typename T>
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const SIM_MODEL* aBaseModel,
const std::vector<LIB_PIN*>& aPins,
const std::vector<T>& aFields,
REPORTER& aReporter )
{
std::unique_ptr<SIM_MODEL> model;
if( aBaseModel )
{
NULL_REPORTER devnull;
TYPE type = aBaseModel->GetType();
// No REPORTER here; we're just checking to see if we have an override
if( ReadTypeFromFields( aFields, devnull ) != TYPE::NONE )
type = ReadTypeFromFields( aFields, devnull );
if( dynamic_cast<const SIM_MODEL_SPICE_FALLBACK*>( aBaseModel ) )
model = std::make_unique<SIM_MODEL_SPICE_FALLBACK>( type );
else if( dynamic_cast< const SIM_MODEL_RAW_SPICE*>( aBaseModel ) )
model = std::make_unique<SIM_MODEL_RAW_SPICE>();
else
model = Create( type );
model->SetBaseModel( *aBaseModel );
}
else // No base model means the model wasn't found in the library, so create a fallback
{
TYPE type = ReadTypeFromFields( aFields, aReporter );
model = std::make_unique<SIM_MODEL_SPICE_FALLBACK>( type );
}
try
{
model->ReadDataFields( &aFields, aPins );
}
catch( IO_ERROR& err )
{
aReporter.Report( wxString::Format( _( "Error reading simulation model from "
"symbol '%s':\n%s" ),
aFields[REFERENCE_FIELD].GetText(),
err.Problem() ),
RPT_SEVERITY_ERROR );
}
return model;
}
template std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const SIM_MODEL* aBaseModel,
const std::vector<LIB_PIN*>& aPins,
const std::vector<SCH_FIELD>& aFields,
REPORTER& aReporter );
template std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const SIM_MODEL* aBaseModel,
const std::vector<LIB_PIN*>& aPins,
const std::vector<LIB_FIELD>& aFields,
REPORTER& aReporter );
template <typename T>
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const std::vector<T>& aFields,
const std::vector<LIB_PIN*>& aPins,
bool aResolved, REPORTER& aReporter )
{
TYPE type = ReadTypeFromFields( aFields, aReporter );
std::unique_ptr<SIM_MODEL> model = SIM_MODEL::Create( type );
try
{
model->ReadDataFields( &aFields, aPins );
}
catch( const IO_ERROR& parse_err )
{
if( !aResolved )
{
aReporter.Report( parse_err.What(), RPT_SEVERITY_ERROR );
return model;
}
// Just because we can't parse it doesn't mean that a SPICE interpreter can't. Fall
// back to a raw spice code model.
std::string modelData = GetFieldValue( &aFields, SIM_PARAMS_FIELD );
if( modelData.empty() )
modelData = GetFieldValue( &aFields, SIM_VALUE_FIELD );
model = std::make_unique<SIM_MODEL_RAW_SPICE>( modelData );
try
{
model->createPins( aPins );
model->m_serializer->ParsePins( GetFieldValue( &aFields, SIM_PINS_FIELD ) );
}
catch( const IO_ERROR& err )
{
// We own the pin syntax, so if we can't parse it then there's an error.
aReporter.Report( wxString::Format( _( "Error reading simulation model from "
"symbol '%s':\n%s" ),
aFields[REFERENCE_FIELD].GetText(),
err.Problem() ),
RPT_SEVERITY_ERROR );
}
}
return model;
}
template std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const std::vector<SCH_FIELD>& aFields,
const std::vector<LIB_PIN*>& aPins,
bool aResolved, REPORTER& aReporter );
template std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const std::vector<LIB_FIELD>& aFields,
const std::vector<LIB_PIN*>& aPins,
bool aResolved, REPORTER& aReporter );
template <typename T>
std::string SIM_MODEL::GetFieldValue( const std::vector<T>* aFields, const wxString& aFieldName,
bool aResolve )
{
static_assert( std::is_same<T, SCH_FIELD>::value || std::is_same<T, LIB_FIELD>::value );
if( !aFields )
return ""; // Should not happen, T=void specialization will be called instead.
for( const T& field : *aFields )
{
if( field.GetName() == aFieldName )
{
return aResolve ? field.GetShownText( false ).ToStdString()
: field.GetText().ToStdString();
}
}
return "";
}
// This specialization is used when no fields are passed.
template <>
std::string SIM_MODEL::GetFieldValue( const std::vector<void>* aFields, const wxString& aFieldName,
bool aResolve )
{
return "";
}
template <typename T>
void SIM_MODEL::SetFieldValue( std::vector<T>& aFields, const wxString& aFieldName,
const std::string& aValue )
{
static_assert( std::is_same<T, SCH_FIELD>::value || std::is_same<T, LIB_FIELD>::value );
auto fieldIt = std::find_if( aFields.begin(), aFields.end(),
[&]( const T& f )
{
return f.GetName() == aFieldName;
} );
if( fieldIt != aFields.end() )
{
if( aValue == "" )
aFields.erase( fieldIt );
else
fieldIt->SetText( aValue );
return;
}
if( aValue == "" )
return;
if constexpr( std::is_same<T, SCH_FIELD>::value )
{
wxASSERT( aFields.size() >= 1 );
SCH_ITEM* parent = static_cast<SCH_ITEM*>( aFields.at( 0 ).GetParent() );
aFields.emplace_back( VECTOR2I(), aFields.size(), parent, aFieldName );
}
else if constexpr( std::is_same<T, LIB_FIELD>::value )
{
aFields.emplace_back( aFields.size(), aFieldName );
}
aFields.back().SetText( aValue );
}
template void SIM_MODEL::SetFieldValue<SCH_FIELD>( std::vector<SCH_FIELD>& aFields,
const wxString& aFieldName,
const std::string& aValue );
template void SIM_MODEL::SetFieldValue<LIB_FIELD>( std::vector<LIB_FIELD>& aFields,
const wxString& aFieldName,
const std::string& aValue );
SIM_MODEL::~SIM_MODEL() = default;
void SIM_MODEL::AddPin( const PIN& aPin )
{
m_pins.push_back( aPin );
}
void SIM_MODEL::ClearPins()
{
m_pins.clear();
}
int SIM_MODEL::FindModelPinIndex( const std::string& aSymbolPinNumber )
{
for( int modelPinIndex = 0; modelPinIndex < GetPinCount(); ++modelPinIndex )
{
if( GetPin( modelPinIndex ).symbolPinNumber == aSymbolPinNumber )
return modelPinIndex;
}
return PIN::NOT_CONNECTED;
}
void SIM_MODEL::AddParam( const PARAM::INFO& aInfo )
{
m_params.emplace_back( aInfo );
// Enums are initialized with their default values.
if( aInfo.enumValues.size() >= 1 )
m_params.back().value = aInfo.defaultValue;
}
void SIM_MODEL::SetBaseModel( const SIM_MODEL& aBaseModel )
{
wxASSERT_MSG( GetType() == aBaseModel.GetType(),
wxS( "Simulation model type must be the same as its base class!" ) );
m_baseModel = &aBaseModel;
}
std::vector<std::reference_wrapper<const SIM_MODEL::PIN>> SIM_MODEL::GetPins() const
{
std::vector<std::reference_wrapper<const PIN>> pins;
for( int modelPinIndex = 0; modelPinIndex < GetPinCount(); ++modelPinIndex )
pins.emplace_back( GetPin( modelPinIndex ) );
return pins;
}
void SIM_MODEL::SetPinSymbolPinNumber( int aPinIndex, const std::string& aSymbolPinNumber )
{
if( aPinIndex >= 0 && aPinIndex < (int) m_pins.size() )
m_pins.at( aPinIndex ).symbolPinNumber = aSymbolPinNumber;
}
void SIM_MODEL::SetPinSymbolPinNumber( const std::string& aPinName,
const std::string& aSymbolPinNumber )
{
for( PIN& pin : m_pins )
{
if( pin.name == aPinName )
{
pin.symbolPinNumber = aSymbolPinNumber;
return;
}
}
// If aPinName wasn't in fact a name, see if it's a raw (1-based) index. This is required
// for legacy files which didn't use pin names.
int aPinIndex = (int) strtol( aPinName.c_str(), nullptr, 10 );
if( aPinIndex < 1 || aPinIndex > (int) m_pins.size() )
THROW_IO_ERROR( wxString::Format( _( "Unknown simulation model pin '%s'" ), aPinName ) );
m_pins[ --aPinIndex /* convert to 0-based */ ].symbolPinNumber = aSymbolPinNumber;
}
const SIM_MODEL::PARAM& SIM_MODEL::GetParam( unsigned aParamIndex ) const
{
if( m_baseModel && m_params.at( aParamIndex ).value == "" )
return m_baseModel->GetParam( aParamIndex );
else
return m_params.at( aParamIndex );
}
bool SIM_MODEL::PARAM::INFO::Matches( const std::string& aParamName ) const
{
return boost::iequals( name, aParamName );
}
int SIM_MODEL::doFindParam( const std::string& aParamName ) const
{
std::vector<std::reference_wrapper<const PARAM>> params = GetParams();
for( int ii = 0; ii < (int) params.size(); ++ii )
{
if( params[ii].get().Matches( aParamName ) )
return ii;
}
return -1;
}
const SIM_MODEL::PARAM* SIM_MODEL::FindParam( const std::string& aParamName ) const
{
int idx = doFindParam( aParamName );
return idx >= 0 ? &GetParam( idx ) : nullptr;
}
std::vector<std::reference_wrapper<const SIM_MODEL::PARAM>> SIM_MODEL::GetParams() const
{
std::vector<std::reference_wrapper<const PARAM>> params;
for( int i = 0; i < GetParamCount(); ++i )
params.emplace_back( GetParam( i ) );
return params;
}
const SIM_MODEL::PARAM& SIM_MODEL::GetParamOverride( unsigned aParamIndex ) const
{
return m_params.at( aParamIndex );
}
const SIM_MODEL::PARAM& SIM_MODEL::GetBaseParam( unsigned aParamIndex ) const
{
if( m_baseModel )
return m_baseModel->GetParam( aParamIndex );
else
return m_params.at( aParamIndex );
}
void SIM_MODEL::doSetParamValue( int aParamIndex, const std::string& aValue )
{
m_params.at( aParamIndex ).value = aValue;
}
void SIM_MODEL::SetParamValue( int aParamIndex, const std::string& aValue,
SIM_VALUE::NOTATION aNotation )
{
std::string value = aValue;
if( aNotation != SIM_VALUE::NOTATION::SI || aValue.find( ',' ) != std::string::npos )
value = SIM_VALUE::ConvertNotation( value, aNotation, SIM_VALUE::NOTATION::SI );
doSetParamValue( aParamIndex, value );
}
void SIM_MODEL::SetParamValue( const std::string& aParamName, const std::string& aValue,
SIM_VALUE::NOTATION aNotation )
{
int idx = doFindParam( aParamName );
if( idx < 0 )
THROW_IO_ERROR( wxString::Format( "Unknown simulation model parameter '%s'", aParamName ) );
SetParamValue( idx, aValue, aNotation );
}
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( TYPE aType )
{
switch( aType )
{
case TYPE::R:
case TYPE::C:
case TYPE::L:
return std::make_unique<SIM_MODEL_IDEAL>( aType );
case TYPE::R_POT:
return std::make_unique<SIM_MODEL_R_POT>();
case TYPE::K:
return std::make_unique<SIM_MODEL_L_MUTUAL>();
case TYPE::R_BEHAVIORAL:
case TYPE::C_BEHAVIORAL:
case TYPE::L_BEHAVIORAL:
case TYPE::V_BEHAVIORAL:
case TYPE::I_BEHAVIORAL:
return std::make_unique<SIM_MODEL_BEHAVIORAL>( aType );
case TYPE::TLINE_Z0:
case TYPE::TLINE_RLGC:
return std::make_unique<SIM_MODEL_TLINE>( aType );
case TYPE::SW_V:
case TYPE::SW_I:
return std::make_unique<SIM_MODEL_SWITCH>( aType );
case TYPE::V:
case TYPE::I:
case TYPE::V_SIN:
case TYPE::I_SIN:
case TYPE::V_PULSE:
case TYPE::I_PULSE:
case TYPE::V_EXP:
case TYPE::I_EXP:
case TYPE::V_AM:
case TYPE::I_AM:
case TYPE::V_SFFM:
case TYPE::I_SFFM:
case TYPE::V_VCL:
case TYPE::V_CCL:
case TYPE::V_PWL:
case TYPE::I_VCL:
case TYPE::I_CCL:
case TYPE::I_PWL:
case TYPE::V_WHITENOISE:
case TYPE::I_WHITENOISE:
case TYPE::V_PINKNOISE:
case TYPE::I_PINKNOISE:
case TYPE::V_BURSTNOISE:
case TYPE::I_BURSTNOISE:
case TYPE::V_RANDUNIFORM:
case TYPE::I_RANDUNIFORM:
case TYPE::V_RANDGAUSSIAN:
case TYPE::I_RANDGAUSSIAN:
case TYPE::V_RANDEXP:
case TYPE::I_RANDEXP:
case TYPE::V_RANDPOISSON:
case TYPE::I_RANDPOISSON:
return std::make_unique<SIM_MODEL_SOURCE>( aType );
case TYPE::SUBCKT:
return std::make_unique<SIM_MODEL_SUBCKT>();
case TYPE::XSPICE:
return std::make_unique<SIM_MODEL_XSPICE>( aType );
case TYPE::KIBIS_DEVICE:
case TYPE::KIBIS_DRIVER_DC:
case TYPE::KIBIS_DRIVER_RECT:
case TYPE::KIBIS_DRIVER_PRBS:
return std::make_unique<SIM_MODEL_KIBIS>( aType );
case TYPE::RAWSPICE:
return std::make_unique<SIM_MODEL_RAW_SPICE>();
default:
return std::make_unique<SIM_MODEL_NGSPICE>( aType );
}
}
SIM_MODEL::SIM_MODEL( TYPE aType ) :
SIM_MODEL( aType, std::make_unique<SPICE_GENERATOR>( *this ),
std::make_unique<SIM_MODEL_SERIALIZER>( *this ) )
{
}
SIM_MODEL::SIM_MODEL( TYPE aType, std::unique_ptr<SPICE_GENERATOR> aSpiceGenerator ) :
SIM_MODEL( aType, std::move( aSpiceGenerator ),
std::make_unique<SIM_MODEL_SERIALIZER>( *this ) )
{
}
SIM_MODEL::SIM_MODEL( TYPE aType, std::unique_ptr<SPICE_GENERATOR> aSpiceGenerator,
std::unique_ptr<SIM_MODEL_SERIALIZER> aSerializer ) :
m_baseModel( nullptr ),
m_serializer( std::move( aSerializer ) ),
m_spiceGenerator( std::move( aSpiceGenerator ) ),
m_type( aType ),
m_isEnabled( true ),
m_isStoredInValue( false )
{
}
void SIM_MODEL::createPins( const std::vector<LIB_PIN*>& aSymbolPins )
{
// Default pin sequence: model pins are the same as symbol pins.
// Excess model pins are set as Not Connected.
// Note that intentionally nothing is added if `GetPinNames()` returns an empty vector.
// SIM_MODEL pins must be ordered by symbol pin numbers -- this is assumed by the code that
// accesses them.
std::vector<std::string> pinNames = GetPinNames();
for( unsigned modelPinIndex = 0; modelPinIndex < pinNames.size(); ++modelPinIndex )
{
wxString pinName = pinNames[ modelPinIndex ];
bool optional = false;
if( pinName.StartsWith( '<' ) && pinName.EndsWith( '>' ) )
{
pinName = pinName.Mid( 1, pinName.Length() - 2 );
optional = true;
}
if( modelPinIndex < aSymbolPins.size() )
{
AddPin( { pinNames.at( modelPinIndex ),
aSymbolPins[ modelPinIndex ]->GetNumber().ToStdString() } );
}
else if( !optional )
{
AddPin( { pinNames.at( modelPinIndex ), "" } );
}
}
}
template <typename T>
void SIM_MODEL::doReadDataFields( const std::vector<T>* aFields,
const std::vector<LIB_PIN*>& aPins )
{
bool diffMode = GetFieldValue( aFields, SIM_LIBRARY_KIBIS::DIFF_FIELD ) == "1";
SwitchSingleEndedDiff( diffMode );
m_serializer->ParseEnable( GetFieldValue( aFields, SIM_LEGACY_ENABLE_FIELD_V7 ) );
createPins( aPins );
m_serializer->ParsePins( GetFieldValue( aFields, SIM_PINS_FIELD ) );
std::string paramsField = GetFieldValue( aFields, SIM_PARAMS_FIELD );
if( !m_serializer->ParseParams( paramsField ) )
m_serializer->ParseValue( GetFieldValue( aFields, SIM_VALUE_FIELD ) );
}
template <typename T>
void SIM_MODEL::doWriteFields( std::vector<T>& aFields ) const
{
// Remove duplicate fields: they are at the end of list
for( size_t ii = aFields.size() - 1; ii > 0; ii-- )
{
wxString currFieldName = aFields[ii].GetName();
auto end_candidate_list = aFields.begin() + ii - 1;
auto fieldIt = std::find_if( aFields.begin(), end_candidate_list,
[&]( const T& f )
{
return f.GetName() == currFieldName;
} );
// If duplicate field found: remove current checked item
if( fieldIt != end_candidate_list )
aFields.erase( aFields.begin() + ii );
}
SetFieldValue( aFields, SIM_DEVICE_FIELD, m_serializer->GenerateDevice() );
SetFieldValue( aFields, SIM_DEVICE_SUBTYPE_FIELD, m_serializer->GenerateDeviceSubtype() );
SetFieldValue( aFields, SIM_LEGACY_ENABLE_FIELD_V7, m_serializer->GenerateEnable() );
SetFieldValue( aFields, SIM_PINS_FIELD, m_serializer->GeneratePins() );
SetFieldValue( aFields, SIM_PARAMS_FIELD, m_serializer->GenerateParams() );
if( IsStoredInValue() )
SetFieldValue( aFields, SIM_VALUE_FIELD, m_serializer->GenerateValue() );
// New fields have a ID = -1 (undefined). so replace the undefined ID
// by a degined ID
int lastFreeId = MANDATORY_FIELDS;
// Search for the first available value:
for( auto& fld : aFields )
{
if( fld.GetId() >= lastFreeId )
lastFreeId = fld.GetId() + 1;
}
// Set undefined IDs to a better value
for( auto& fld : aFields )
{
if( fld.GetId() < 0 )
fld.SetId( lastFreeId++ );
}
}
bool SIM_MODEL::requiresSpiceModelLine( const SPICE_ITEM& aItem ) const
{
// SUBCKTs are a single level; there's never a baseModel.
if( m_type == TYPE::SUBCKT )
return false;
// Model must be written if there's no base model or the base model is an internal model
if( !m_baseModel || aItem.baseModelName == "" )
return true;
for( int ii = 0; ii < GetParamCount(); ++ii )
{
const PARAM& param = m_params[ii];
// Instance parameters are written in item lines
if( param.info.isSpiceInstanceParam )
continue;
// Empty parameters are interpreted as default-value
if ( param.value == "" )
continue;
const SIM_MODEL* baseModel = dynamic_cast<const SIM_MODEL*>( m_baseModel );
wxCHECK( baseModel, false );
std::string baseValue = baseModel->m_params[ii].value;
if( param.value == baseValue )
continue;
// One more check for equivalence, mostly for early 7.0 files which wrote all parameters
// to the Sim.Params field in normalized format
if( param.value == SIM_VALUE::Normalize( SIM_VALUE::ToDouble( baseValue ) ) )
continue;
// Overrides must be written
return true;
}
return false;
}
template <class T_symbol, class T_field>
bool SIM_MODEL::InferSimModel( T_symbol& aSymbol, std::vector<T_field>* aFields, bool aResolve,
SIM_VALUE_GRAMMAR::NOTATION aNotation, wxString* aDeviceType,
wxString* aModelType, wxString* aModelParams, wxString* aPinMap )
{
// SPICE notation is case-insensitive and locale-insensitve. This means it uses "Meg" for
// mega (as both 'M' and 'm' must mean milli), and "." (always) for a decimal separator.
//
// KiCad's GUI uses the SI-standard 'M' for mega and 'm' for milli, and a locale-dependent
// decimal separator.
//
// KiCad's Sim.* fields are in-between, using SI notation but a fixed decimal separator.
//
// So where does that leave inferred value fields? Behavioural models must be passed in
// straight, because we don't (at present) know how to parse them.
//
// However, behavioural models _look_ like SPICE code, so it's not a stretch to expect them
// to _be_ SPICE code. A passive capacitor model on the other hand, just looks like a
// capacitance. Some users might expect 3,3u to work, while others might expect 3,300uF to
// work.
//
// Checking the locale isn't reliable because it assumes the current computer's locale is
// the same as the locale the schematic was authored in -- something that isn't true, for
// instance, when sharing designs over DIYAudio.com.
//
// However, even the E192 series of preferred values uses only 3 significant digits, so a ','
// or '.' followed by 3 digits _could_ reasonably-reliably be interpreted as a thousands
// separator.
//
// Or we could just say inferred values are locale-independent, with "." used as a decimal
// separator and "," used as a thousands separator. 3,300uF works, but 3,3 does not.
auto convertNotation =
[&]( const wxString& units ) -> wxString
{
/// KiCad Spice PEGTL only handles ASCII
/// Although these two look the same, they are U+03BC and U+00B5
if( units == wxS( "µ" ) || units == wxS( "μ" ) )
return wxS( "u" );
if( aNotation == SIM_VALUE_GRAMMAR::NOTATION::SPICE )
{
if( units == wxT( "M" ) )
return wxT( "Meg" );
}
else if( aNotation == SIM_VALUE_GRAMMAR::NOTATION::SI )
{
if( units.Capitalize() == wxT( "Meg" ) )
return wxT( "M" );
}
return units;
};
auto convertSeparators =
[]( wxString* mantissa )
{
mantissa->Replace( wxS( " " ), wxEmptyString );
wxChar ambiguousSeparator = '?';
wxChar thousandsSeparator = '?';
bool thousandsSeparatorFound = false;
wxChar decimalSeparator = '?';
bool decimalSeparatorFound = false;
int digits = 0;
for( int ii = (int) mantissa->length() - 1; ii >= 0; --ii )
{
wxChar c = mantissa->GetChar( ii );
if( c >= '0' && c <= '9' )
{
digits += 1;
}
else if( c == '.' || c == ',' )
{
if( decimalSeparator != '?' || thousandsSeparator != '?' )
{
// We've previously found a non-ambiguous separator...
if( c == decimalSeparator )
{
if( thousandsSeparatorFound )
return false; // decimal before thousands
else if( decimalSeparatorFound )
return false; // more than one decimal
else
decimalSeparatorFound = true;
}
else if( c == thousandsSeparator )
{
if( digits != 3 )
return false; // thousands not followed by 3 digits
else
thousandsSeparatorFound = true;
}
}
else if( ambiguousSeparator != '?' )
{
// We've previously found a separator, but we don't know for sure
// which...
if( c == ambiguousSeparator )
{
// They both must be thousands separators
thousandsSeparator = ambiguousSeparator;
thousandsSeparatorFound = true;
decimalSeparator = c == '.' ? ',' : '.';
}
else
{
// The first must have been a decimal, and this must be a
// thousands.
decimalSeparator = ambiguousSeparator;
decimalSeparatorFound = true;
thousandsSeparator = c;
thousandsSeparatorFound = true;
}
}
else
{
// This is the first separator...
// If it's preceeded by a '0' (only), or if it's followed by some
// number of digits not equal to 3, then it -must- be a decimal
// separator.
//
// In all other cases we don't really know what it is yet.
if( ( ii == 1 && mantissa->GetChar( 0 ) == '0' ) || digits != 3 )
{
decimalSeparator = c;
decimalSeparatorFound = true;
thousandsSeparator = c == '.' ? ',' : '.';
}
else
{
ambiguousSeparator = c;
}
}
digits = 0;
}
else
{
digits = 0;
}
}
// If we found nothing difinitive then we have to assume SPICE-native syntax
if( decimalSeparator == '?' && thousandsSeparator == '?' )
{
decimalSeparator = '.';
thousandsSeparator = ',';
}
mantissa->Replace( thousandsSeparator, wxEmptyString );
mantissa->Replace( decimalSeparator, '.' );
return true;
};
wxString prefix = aSymbol.GetPrefix();
wxString library = GetFieldValue( aFields, SIM_LIBRARY_FIELD, aResolve );
wxString modelName = GetFieldValue( aFields, SIM_NAME_FIELD, aResolve );
wxString value = GetFieldValue( aFields, SIM_VALUE_FIELD, aResolve );
std::vector<LIB_PIN*> pins = aSymbol.GetAllLibPins();
*aDeviceType = GetFieldValue( aFields, SIM_DEVICE_FIELD, aResolve );
*aModelType = GetFieldValue( aFields, SIM_DEVICE_SUBTYPE_FIELD, aResolve );
*aModelParams = GetFieldValue( aFields, SIM_PARAMS_FIELD, aResolve );
*aPinMap = GetFieldValue( aFields, SIM_PINS_FIELD, aResolve );
if( pins.size() != 2 )
return false;
if( ( ( *aDeviceType == "R" || *aDeviceType == "L" || *aDeviceType == "C" )
&& aModelType->IsEmpty() )
||
( library.IsEmpty() && modelName.IsEmpty()
&& aDeviceType->IsEmpty()
&& aModelType->IsEmpty()
&& !value.IsEmpty()
&& ( prefix.StartsWith( "R" ) || prefix.StartsWith( "L" ) || prefix.StartsWith( "C" ) ) ) )
{
if( aModelParams->IsEmpty() )
{
wxRegEx idealVal( wxT( "^"
"([0-9\\,\\. ]+)"
"([fFpPnNuUmMkKgGtTμµ𝛍𝜇𝝁 ]|M(e|E)(g|G))?"
"([fFhHΩΩ𝛀𝛺𝝮rR]|ohm)?"
"([-1-9 ]*)"
"([fFhHΩΩ𝛀𝛺𝝮rR]|ohm)?"
"$" ) );
if( idealVal.Matches( value ) ) // Ideal
{
wxString valueMantissa( idealVal.GetMatch( value, 1 ) );
wxString valueExponent( idealVal.GetMatch( value, 2 ) );
wxString valueFraction( idealVal.GetMatch( value, 6 ) );
if( !convertSeparators( &valueMantissa ) )
return false;
if( valueMantissa.Contains( wxT( "." ) ) || valueFraction.IsEmpty() )
{
aModelParams->Printf( wxT( "%s=\"%s%s\"" ),
prefix.Left(1).Lower(),
valueMantissa,
convertNotation( valueExponent ) );
}
else
{
aModelParams->Printf( wxT( "%s=\"%s.%s%s\"" ),
prefix.Left(1).Lower(),
valueMantissa,
valueFraction,
convertNotation( valueExponent ) );
}
}
else // Behavioral
{
*aModelType = wxT( "=" );
aModelParams->Printf( wxT( "%s=\"%s\"" ), prefix.Left(1).Lower(), value );
}
}
if( aDeviceType->IsEmpty() )
*aDeviceType = prefix.Left( 1 );
if( aPinMap->IsEmpty() )
aPinMap->Printf( wxT( "%s=+ %s=-" ), pins[0]->GetNumber(), pins[1]->GetNumber() );
return true;
}
if( ( ( *aDeviceType == wxT( "V" ) || *aDeviceType == wxT( "I" ) )
&& ( aModelType->IsEmpty() || *aModelType == wxT( "DC" ) ) )
||
( aDeviceType->IsEmpty()
&& aModelType->IsEmpty()
&& !value.IsEmpty()
&& ( prefix.StartsWith( "V" ) || prefix.StartsWith( "I" ) ) ) )
{
if( !value.IsEmpty() )
{
wxString param = "dc";
if( value.StartsWith( wxT( "DC " ) ) )
{
value = value.Right( value.Length() - 3 );
}
else if( value.StartsWith( wxT( "AC " ) ) )
{
value = value.Right( value.Length() - 3 );
param = "ac";
}
wxRegEx sourceVal( wxT( "^"
"([0-9\\,\\. ]+)"
"([fFpPnNuUmMkKgGtTμµ𝛍𝜇𝝁 ]|M(e|E)(g|G))?"
"([vVaA])?"
"([-1-9 ]*)"
"([vVaA])?"
"$" ) );
if( sourceVal.Matches( value ) )
{
wxString valueMantissa( sourceVal.GetMatch( value, 1 ) );
wxString valueExponent( sourceVal.GetMatch( value, 2 ) );
wxString valueFraction( sourceVal.GetMatch( value, 6 ) );
if( !convertSeparators( &valueMantissa ) )
return false;
if( valueMantissa.Contains( wxT( "." ) ) || valueFraction.IsEmpty() )
{
aModelParams->Printf( wxT( "%s=\"%s%s\" %s" ),
param,
valueMantissa,
convertNotation( valueExponent ),
*aModelParams );
}
else
{
aModelParams->Printf( wxT( "%s=\"%s.%s%s\" %s" ),
param,
valueMantissa,
valueFraction,
convertNotation( valueExponent ),
*aModelParams );
}
}
else
{
aModelParams->Printf( wxT( "%s=\"%s\" %s" ),
param,
value,
*aModelParams );
}
}
if( aDeviceType->IsEmpty() )
*aDeviceType = prefix.Left( 1 );
if( aModelType->IsEmpty() )
*aModelType = wxT( "DC" );
if( aPinMap->IsEmpty() )
aPinMap->Printf( wxT( "%s=+ %s=-" ), pins[0]->GetNumber(), pins[1]->GetNumber() );
return true;
}
return false;
}
template bool SIM_MODEL::InferSimModel<SCH_SYMBOL, SCH_FIELD>( SCH_SYMBOL& aSymbol,
std::vector<SCH_FIELD>* aFields,
bool aResolve,
SIM_VALUE_GRAMMAR::NOTATION aNotation,
wxString* aDeviceType,
wxString* aModelType,
wxString* aModelParams,
wxString* aPinMap );
template bool SIM_MODEL::InferSimModel<LIB_SYMBOL, LIB_FIELD>( LIB_SYMBOL& aSymbol,
std::vector<LIB_FIELD>* aFields,
bool aResolve,
SIM_VALUE_GRAMMAR::NOTATION aNotation,
wxString* aDeviceType,
wxString* aModelType,
wxString* aModelParams,
wxString* aPinMap );
template <typename T_symbol, typename T_field>
void SIM_MODEL::MigrateSimModel( T_symbol& aSymbol, const PROJECT* aProject )
{
class FIELD_INFO
{
public:
FIELD_INFO()
{
m_Attributes.m_Visible = false;
m_Attributes.m_Size = VECTOR2I( DEFAULT_SIZE_TEXT * schIUScale.IU_PER_MILS,
DEFAULT_SIZE_TEXT * schIUScale.IU_PER_MILS );
};
FIELD_INFO( const wxString& aText, T_field* aField ) :
m_Text( aText ),
m_Attributes( aField->GetAttributes() ),
m_Pos( aField->GetPosition() )
{}
bool IsEmpty() { return m_Text.IsEmpty(); }
T_field CreateField( T_symbol* aSymbol, const wxString& aFieldName )
{
T_field field( aSymbol, -1, aFieldName );
field.SetText( m_Text );
field.SetAttributes( m_Attributes );
field.SetPosition( m_Pos );
return field;
}
public:
wxString m_Text;
TEXT_ATTRIBUTES m_Attributes;
VECTOR2I m_Pos;
};
T_field* existing_deviceField = aSymbol.FindField( SIM_DEVICE_FIELD );
T_field* existing_deviceSubtypeField = aSymbol.FindField( SIM_DEVICE_SUBTYPE_FIELD );
T_field* existing_pinsField = aSymbol.FindField( SIM_PINS_FIELD );
T_field* existing_paramsField = aSymbol.FindField( SIM_PARAMS_FIELD );
wxString existing_deviceSubtype;
if( existing_deviceSubtypeField )
existing_deviceSubtype = existing_deviceSubtypeField->GetShownText( false ).Upper();
if( existing_deviceField
|| existing_deviceSubtypeField
|| existing_pinsField
|| existing_paramsField )
{
// Has a current (V7+) model field.
// Up until 7.0RC2 we used '+' and '-' for potentiometer pins, which doesn't match
// SPICE. Here we remap them to 'r0' and 'r1'.
if( existing_deviceSubtype == wxS( "POT" ) )
{
if( existing_pinsField )
{
wxString pinMap = existing_pinsField->GetText();
pinMap.Replace( wxS( "=+" ), wxS( "=r1" ) );
pinMap.Replace( wxS( "=-" ), wxS( "=r0" ) );
existing_pinsField->SetText( pinMap );
}
}
// Up until 8.0RC1 random voltage/current sources were a bit of a mess.
if( existing_deviceSubtype.StartsWith( wxS( "RAND" ) ) )
{
// Re-fetch value without resolving references. If it's an indirect value then we
// can't migrate it.
existing_deviceSubtype = existing_deviceSubtypeField->GetText().Upper();
if( existing_deviceSubtype.Replace( wxS( "NORMAL" ), wxS( "GAUSSIAN" ) ) )
existing_deviceSubtypeField->SetText( existing_deviceSubtype );
if( existing_paramsField )
{
wxString params = existing_paramsField->GetText().Lower();
size_t count = 0;
// We used to support 'min' and 'max' instead of 'range' and 'offset', but we
// wrote all 4 to the netlist which would cause ngspice to barf, so no one has
// working documents with min and max specified. Just delete them if they're
// uninitialized.
count += params.Replace( wxS( "min=0 " ), wxEmptyString );
count += params.Replace( wxS( "max=0 " ), wxEmptyString );
// We used to use 'dt', but the correct ngspice name is 'ts'.
count += params.Replace( wxS( "dt=" ), wxS( "ts=" ) );
if( count )
existing_paramsField->SetText( params );
}
}
// Up until 8.0.1 we treated a mutual inductance statement as a type of inductor --
// which is confusing because it doesn't represent a device at all.
if( existing_deviceSubtype == wxS( "MUTUAL" ) )
{
if( existing_deviceSubtypeField ) // Can't be null, but Coverity doesn't know that
aSymbol.RemoveField( existing_deviceSubtypeField );
if( existing_deviceField )
{
existing_deviceField->SetText( wxS( "K" ) );
}
else
{
FIELD_INFO deviceFieldInfo;
deviceFieldInfo.m_Text = wxS( "K" );
T_field deviceField = deviceFieldInfo.CreateField( &aSymbol, SIM_DEVICE_FIELD );
aSymbol.AddField( deviceField );
}
}
// Up until 8.0.3 we
return;
}
auto getSIValue =
[]( T_field* aField )
{
if( !aField ) // no, not really, but it keeps Coverity happy
return wxString( wxEmptyString );
wxRegEx regex( wxT( "([^a-z])(M)(e|E)(g|G)($|[^a-z])" ) );
wxString value = aField->GetText();
// Keep prefix, M, and suffix, but drop e|E and g|G
regex.ReplaceAll( &value, wxT( "\\1\\2\\5" ) );
return value;
};
auto generateDefaultPinMapFromSymbol =
[]( const std::vector<LIB_PIN*>& sourcePins )
{
wxString pinMap;
// If we're creating the pinMap from the symbol it means we don't know what the
// SIM_MODEL's pin names are, so just use indexes.
for( unsigned ii = 0; ii < sourcePins.size(); ++ii )
{
if( ii > 0 )
pinMap.Append( wxS( " " ) );
pinMap.Append( wxString::Format( wxT( "%s=%u" ),
sourcePins[ii]->GetNumber(),
ii + 1 ) );
}
return pinMap;
};
wxString prefix = aSymbol.GetPrefix();
T_field* valueField = aSymbol.FindField( wxT( "Value" ) );
std::vector<LIB_PIN*> sourcePins = aSymbol.GetAllLibPins();
bool sourcePinsSorted = false;
auto lazySortSourcePins = [&sourcePins, &sourcePinsSorted]()
{
if( !sourcePinsSorted )
{
std::sort( sourcePins.begin(), sourcePins.end(),
[]( const LIB_PIN* lhs, const LIB_PIN* rhs )
{
return StrNumCmp( lhs->GetNumber(), rhs->GetNumber(), true ) < 0;
} );
}
sourcePinsSorted = true;
};
FIELD_INFO deviceInfo;
FIELD_INFO modelInfo;
FIELD_INFO deviceSubtypeInfo;
FIELD_INFO libInfo;
FIELD_INFO spiceParamsInfo;
FIELD_INFO pinMapInfo;
bool modelFromValueField = false;
if( aSymbol.FindField( SIM_LEGACY_PRIMITIVE_FIELD )
|| aSymbol.FindField( SIM_LEGACY_PINS_FIELD )
|| aSymbol.FindField( SIM_LEGACY_MODEL_FIELD )
|| aSymbol.FindField( SIM_LEGACY_ENABLE_FIELD )
|| aSymbol.FindField( SIM_LEGACY_LIBRARY_FIELD ) )
{
if( T_field* primitiveField = aSymbol.FindField( SIM_LEGACY_PRIMITIVE_FIELD ) )
{
deviceInfo = FIELD_INFO( primitiveField->GetText(), primitiveField );
aSymbol.RemoveField( primitiveField );
}
if( T_field* nodeSequenceField = aSymbol.FindField( SIM_LEGACY_PINS_FIELD ) )
{
const wxString delimiters( "{:,; }" );
const wxString& nodeSequence = nodeSequenceField->GetText();
wxString pinMap;
if( nodeSequence != "" )
{
wxStringTokenizer tkz( nodeSequence, delimiters );
for( long modelPinNumber = 1; tkz.HasMoreTokens(); ++modelPinNumber )
{
long symbolPinNumber = 1;
tkz.GetNextToken().ToLong( &symbolPinNumber );
if( modelPinNumber != 1 )
pinMap.Append( " " );
pinMap.Append( wxString::Format( "%ld=%ld", symbolPinNumber, modelPinNumber ) );
}
}
pinMapInfo = FIELD_INFO( pinMap, nodeSequenceField );
aSymbol.RemoveField( nodeSequenceField );
}
if( T_field* modelField = aSymbol.FindField( SIM_LEGACY_MODEL_FIELD ) )
{
modelInfo = FIELD_INFO( getSIValue( modelField ), modelField );
aSymbol.RemoveField( modelField );
}
else if( valueField )
{
modelInfo = FIELD_INFO( getSIValue( valueField ), valueField );
modelFromValueField = true;
}
if( T_field* libFileField = aSymbol.FindField( SIM_LEGACY_LIBRARY_FIELD ) )
{
libInfo = FIELD_INFO( libFileField->GetText(), libFileField );
aSymbol.RemoveField( libFileField );
}
}
else
{
// Auto convert some legacy fields used in the middle of 7.0 development...
if( T_field* legacyType = aSymbol.FindField( wxT( "Sim_Type" ) ) )
{
legacyType->SetName( SIM_DEVICE_SUBTYPE_FIELD );
}
if( T_field* legacyDevice = aSymbol.FindField( wxT( "Sim_Device" ) ) )
{
legacyDevice->SetName( SIM_DEVICE_FIELD );
}
if( T_field* legacyPins = aSymbol.FindField( wxT( "Sim_Pins" ) ) )
{
bool isPassive = prefix.StartsWith( wxT( "R" ) )
|| prefix.StartsWith( wxT( "L" ) )
|| prefix.StartsWith( wxT( "C" ) );
// Migrate pins from array of indexes to name-value-pairs
wxString pinMap;
wxArrayString pinIndexes;
wxStringSplit( legacyPins->GetText(), pinIndexes, ' ' );
lazySortSourcePins();
if( isPassive && pinIndexes.size() == 2 && sourcePins.size() == 2 )
{
if( pinIndexes[0] == wxT( "2" ) )
{
pinMap.Printf( wxT( "%s=- %s=+" ),
sourcePins[0]->GetNumber(),
sourcePins[1]->GetNumber() );
}
else
{
pinMap.Printf( wxT( "%s=+ %s=-" ),
sourcePins[0]->GetNumber(),
sourcePins[1]->GetNumber() );
}
}
else
{
for( unsigned ii = 0; ii < pinIndexes.size() && ii < sourcePins.size(); ++ii )
{
if( ii > 0 )
pinMap.Append( wxS( " " ) );
pinMap.Append( wxString::Format( wxT( "%s=%s" ),
sourcePins[ii]->GetNumber(),
pinIndexes[ ii ] ) );
}
}
legacyPins->SetName( SIM_PINS_FIELD );
legacyPins->SetText( pinMap );
}
if( T_field* legacyParams = aSymbol.FindField( wxT( "Sim_Params" ) ) )
{
legacyParams->SetName( SIM_PARAMS_FIELD );
}
return;
}
wxString device = deviceInfo.m_Text.Trim( true ).Trim( false );
wxString lib = libInfo.m_Text.Trim( true ).Trim( false );
wxString model = modelInfo.m_Text.Trim( true ).Trim( false );
wxString modelLineParams;
bool libraryModel = false;
bool inferredModel = false;
bool internalModel = false;
if( !lib.IsEmpty() )
{
wxString msg;
WX_STRING_REPORTER reporter( &msg );
SIM_LIB_MGR libMgr( aProject );
std::vector<T_field> emptyFields;
// Pull out any following parameters from model name
model = model.BeforeFirst( ' ', &modelLineParams );
modelInfo.m_Text = model;
lazySortSourcePins();
SIM_LIBRARY::MODEL simModel = libMgr.CreateModel( lib, model.ToStdString(),
emptyFields, sourcePins, reporter );
if( reporter.HasMessage() )
libraryModel = false; // Fall back to raw spice model
else
libraryModel = true;
if( pinMapInfo.IsEmpty() )
{
// Try to generate a default pin map from the SIM_MODEL's pins; if that fails,
// generate one from the symbol's pins
pinMapInfo.m_Text = wxString( simModel.model.Serializer().GeneratePins() );
if( pinMapInfo.IsEmpty() )
pinMapInfo.m_Text = generateDefaultPinMapFromSymbol( sourcePins );
}
}
else if( ( device == wxS( "R" )
|| device == wxS( "L" )
|| device == wxS( "C" )
|| device == wxS( "V" )
|| device == wxS( "I" ) )
&& prefix.StartsWith( device )
&& modelFromValueField )
{
inferredModel = true;
}
else if( device == wxS( "V" ) || device == wxS( "I" ) )
{
// See if we have a SPICE time-dependent function such as "sin(0 1 60)" or "sin 0 1 60"
// that can be handled by a built-in SIM_MODEL_SOURCE.
wxStringTokenizer tokenizer( model, wxT( "() " ), wxTOKEN_STRTOK );
if( tokenizer.HasMoreTokens() )
{
deviceSubtypeInfo.m_Text = tokenizer.GetNextToken();
deviceSubtypeInfo.m_Text.MakeUpper();
for( SIM_MODEL::TYPE type : SIM_MODEL::TYPE_ITERATOR() )
{
if( device == SIM_MODEL::SpiceInfo( type ).itemType
&& deviceSubtypeInfo.m_Text == SIM_MODEL::SpiceInfo( type ).functionName )
{
try
{
std::unique_ptr<SIM_MODEL> simModel = SIM_MODEL::Create( type );
if( deviceSubtypeInfo.m_Text == wxT( "DC" ) && tokenizer.CountTokens() == 1 )
{
wxCHECK( valueField, /* void */ );
valueField->SetText( tokenizer.GetNextToken() );
modelFromValueField = false;
}
else
{
for( int ii = 0; tokenizer.HasMoreTokens(); ++ii )
{
simModel->SetParamValue( ii, tokenizer.GetNextToken().ToStdString(),
SIM_VALUE_GRAMMAR::NOTATION::SPICE );
}
deviceSubtypeInfo.m_Text = SIM_MODEL::TypeInfo( type ).fieldValue;
spiceParamsInfo = modelInfo;
spiceParamsInfo.m_Text = wxString( simModel->Serializer().GenerateParams() );
}
internalModel = true;
if( pinMapInfo.IsEmpty() )
{
lazySortSourcePins();
// Generate a default pin map from the SIM_MODEL's pins
simModel->createPins( sourcePins );
pinMapInfo.m_Text = wxString( simModel->Serializer().GeneratePins() );
}
}
catch( ... )
{
// Fall back to raw spice model
}
break;
}
}
}
}
if( libraryModel )
{
T_field libField = libInfo.CreateField( &aSymbol, SIM_LIBRARY_FIELD );
aSymbol.AddField( libField );
T_field nameField = modelInfo.CreateField( &aSymbol, SIM_NAME_FIELD );
aSymbol.AddField( nameField );
if( !modelLineParams.IsEmpty() )
{
spiceParamsInfo = modelInfo;
spiceParamsInfo.m_Pos.x += nameField.GetBoundingBox().GetWidth();
spiceParamsInfo.m_Text = modelLineParams;
BOX2I nameBBox = nameField.GetBoundingBox();
int nameWidth = nameBBox.GetWidth();
// Add space between model name and additional parameters
nameWidth += KiROUND( nameBBox.GetHeight() * 1.25 );
if( nameField.GetHorizJustify() == GR_TEXT_H_ALIGN_RIGHT )
spiceParamsInfo.m_Pos.x -= nameWidth;
else
spiceParamsInfo.m_Pos.x += nameWidth;
T_field paramsField = spiceParamsInfo.CreateField( &aSymbol, SIM_PARAMS_FIELD );
aSymbol.AddField( paramsField );
}
if( modelFromValueField )
valueField->SetText( wxT( "${SIM.NAME}" ) );
}
else if( inferredModel )
{
// DeviceType is left in the reference designator and Model is left in the value field,
// so there's nothing to do here....
}
else if( internalModel )
{
T_field deviceField = deviceInfo.CreateField( &aSymbol, SIM_DEVICE_FIELD );
aSymbol.AddField( deviceField );
if( !deviceSubtypeInfo.m_Text.IsEmpty() )
{
T_field subtypeField = deviceSubtypeInfo.CreateField( &aSymbol, SIM_DEVICE_SUBTYPE_FIELD );
aSymbol.AddField( subtypeField );
}
if( !spiceParamsInfo.IsEmpty() )
{
T_field paramsField = spiceParamsInfo.CreateField( &aSymbol, SIM_PARAMS_FIELD );
aSymbol.AddField( paramsField );
}
if( modelFromValueField )
valueField->SetText( wxT( "${SIM.PARAMS}" ) );
}
else // Insert a raw spice model as a substitute.
{
if( device.IsEmpty() && lib.IsEmpty() )
{
spiceParamsInfo = modelInfo;
}
else
{
spiceParamsInfo.m_Text.Printf( wxT( "type=\"%s\" model=\"%s\" lib=\"%s\"" ), device,
model, lib );
}
deviceInfo.m_Text = SIM_MODEL::DeviceInfo( SIM_MODEL::DEVICE_T::SPICE ).fieldValue;
T_field deviceField = deviceInfo.CreateField( &aSymbol, SIM_DEVICE_FIELD );
aSymbol.AddField( deviceField );
T_field paramsField = spiceParamsInfo.CreateField( &aSymbol, SIM_PARAMS_FIELD );
aSymbol.AddField( paramsField );
if( modelFromValueField )
{
// Get the current Value field, after previous changes.
valueField = aSymbol.FindField( wxT( "Value" ) );
if( valueField )
valueField->SetText( wxT( "${SIM.PARAMS}" ) );
}
// We know nothing about the SPICE model here, so we've got no choice but to generate
// the default pin map from the symbol's pins.
if( pinMapInfo.IsEmpty() )
{
lazySortSourcePins();
pinMapInfo.m_Text = generateDefaultPinMapFromSymbol( sourcePins );
}
}
if( !pinMapInfo.IsEmpty() )
{
T_field pinsField = pinMapInfo.CreateField( &aSymbol, SIM_PINS_FIELD );
aSymbol.AddField( pinsField );
}
}
template void SIM_MODEL::MigrateSimModel<SCH_SYMBOL, SCH_FIELD>( SCH_SYMBOL& aSymbol,
const PROJECT* aProject );
template void SIM_MODEL::MigrateSimModel<LIB_SYMBOL, LIB_FIELD>( LIB_SYMBOL& aSymbol,
const PROJECT* aProject );