413 lines
11 KiB
C++
413 lines
11 KiB
C++
/*
|
|
* This program source code file is part of KICAD, a free EDA CAD application.
|
|
*
|
|
* Copyright 2012 Torsten Hueter, torstenhtr <at> gmx.de
|
|
* Copyright 2017 Kicad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <map>
|
|
|
|
#include <gal/color4d.h>
|
|
|
|
using namespace KIGFX;
|
|
|
|
COLOR4D::COLOR4D( EDA_COLOR_T aColor )
|
|
{
|
|
if( aColor <= UNSPECIFIED_COLOR || aColor >= NBCOLORS )
|
|
{
|
|
*this = COLOR4D::UNSPECIFIED;
|
|
return;
|
|
}
|
|
|
|
r = g_ColorRefs[aColor].m_Red / 255.0;
|
|
g = g_ColorRefs[aColor].m_Green / 255.0;
|
|
b = g_ColorRefs[aColor].m_Blue / 255.0;
|
|
a = 1.0;
|
|
}
|
|
|
|
|
|
#ifdef WX_COMPATIBILITY
|
|
COLOR4D::COLOR4D( const wxColour& aColor )
|
|
{
|
|
r = aColor.Red() / 255.0;
|
|
g = aColor.Green() / 255.0;
|
|
b = aColor.Blue() / 255.0;
|
|
a = aColor.Alpha() / 255.0;
|
|
}
|
|
|
|
|
|
bool COLOR4D::SetFromWxString( const wxString& aColorString )
|
|
{
|
|
wxColour c;
|
|
|
|
if( c.Set( aColorString ) )
|
|
{
|
|
r = c.Red() / 255.0;
|
|
g = c.Green() / 255.0;
|
|
b = c.Blue() / 255.0;
|
|
a = c.Alpha() / 255.0;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
wxString COLOR4D::ToWxString( long flags ) const
|
|
{
|
|
wxColour c = ToColour();
|
|
return c.GetAsString( flags );
|
|
}
|
|
|
|
|
|
COLOR4D COLOR4D::LegacyMix( COLOR4D aColor ) const
|
|
{
|
|
COLOR4D candidate;
|
|
|
|
// Blend the two colors (i.e. OR the RGB values)
|
|
candidate.r = ( (unsigned)( 255.0 * r ) | (unsigned)( 255.0 * aColor.r ) ) / 255.0,
|
|
candidate.g = ( (unsigned)( 255.0 * g ) | (unsigned)( 255.0 * aColor.g ) ) / 255.0,
|
|
candidate.b = ( (unsigned)( 255.0 * b ) | (unsigned)( 255.0 * aColor.b ) ) / 255.0,
|
|
|
|
// the alpha channel can be reinitialized
|
|
// but what is the best value?
|
|
candidate.a = ( aColor.a + a ) / 2;
|
|
|
|
return candidate;
|
|
}
|
|
|
|
|
|
COLOR4D& COLOR4D::SetToLegacyHighlightColor()
|
|
{
|
|
EDA_COLOR_T legacyColor = GetNearestLegacyColor( *this );
|
|
EDA_COLOR_T highlightColor = g_ColorRefs[legacyColor].m_LightColor;
|
|
|
|
// The alpha channel is not modified. Only R, G, B values are set,
|
|
// because legacy color does not know the alpha chanel.
|
|
|
|
r = g_ColorRefs[highlightColor].m_Red / 255.0;
|
|
g = g_ColorRefs[highlightColor].m_Green / 255.0;
|
|
b = g_ColorRefs[highlightColor].m_Blue / 255.0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
COLOR4D& COLOR4D::SetToNearestLegacyColor()
|
|
{
|
|
EDA_COLOR_T legacyColor = GetNearestLegacyColor( *this );
|
|
|
|
// The alpha channel is not modified. Only R, G, B values are set,
|
|
// because legacy color does not know the alpha chanel.
|
|
|
|
r = g_ColorRefs[legacyColor].m_Red / 255.0;
|
|
g = g_ColorRefs[legacyColor].m_Green / 255.0;
|
|
b = g_ColorRefs[legacyColor].m_Blue / 255.0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
unsigned int COLOR4D::ToU32() const
|
|
{
|
|
return ToColour().GetRGB();
|
|
}
|
|
|
|
|
|
void COLOR4D::FromU32( unsigned int aPackedColor )
|
|
{
|
|
wxColour c;
|
|
c.SetRGB( aPackedColor );
|
|
r = c.Red() / 255.0;
|
|
g = c.Green() / 255.0;
|
|
b = c.Blue() / 255.0;
|
|
a = c.Alpha() / 255.0;
|
|
}
|
|
|
|
|
|
EDA_COLOR_T COLOR4D::GetNearestLegacyColor( const COLOR4D &aColor )
|
|
{
|
|
// Cache layer implemented here, because all callers are using wxColour
|
|
static std::map< unsigned int, unsigned int > nearestCache;
|
|
static double hues[NBCOLORS];
|
|
static double values[NBCOLORS];
|
|
|
|
unsigned int colorInt = aColor.ToU32();
|
|
|
|
auto search = nearestCache.find( colorInt );
|
|
|
|
if( search != nearestCache.end() )
|
|
return static_cast<EDA_COLOR_T>( search->second );
|
|
|
|
// First use ColorFindNearest to check for exact matches
|
|
EDA_COLOR_T nearest = ColorFindNearest( aColor.r * 255.0, aColor.g * 255.0, aColor.b * 255.0 );
|
|
|
|
if( COLOR4D( nearest ) == aColor )
|
|
{
|
|
nearestCache.insert( std::pair< unsigned int, unsigned int >(
|
|
colorInt, static_cast<unsigned int>( nearest ) ) );
|
|
return nearest;
|
|
}
|
|
|
|
// If not, use hue and value to match.
|
|
// Hue will be NAN for grayscale colors.
|
|
// The legacy color palette is a grid across hue and value.
|
|
// We can exploit that to find a good match -- hue is most apparent to the user.
|
|
// So, first we determine the closest hue match, and then the closest value from that
|
|
// "grid row" in the legacy palette.
|
|
|
|
double h, s, v;
|
|
aColor.ToHSV( h, s, v );
|
|
|
|
double minDist = 360.0;
|
|
double legacyHue = 0.0;
|
|
|
|
if( std::isnan( h ) )
|
|
{
|
|
legacyHue = NAN;
|
|
}
|
|
else
|
|
{
|
|
for( EDA_COLOR_T candidate = ::BLACK;
|
|
candidate < NBCOLORS; candidate = NextColor( candidate ) )
|
|
{
|
|
double ch, cs, cv;
|
|
|
|
if( hues[candidate] == 0.0 && values[candidate] == 0.0 )
|
|
{
|
|
COLOR4D candidate4d( candidate );
|
|
|
|
candidate4d.ToHSV( ch, cs, cv );
|
|
|
|
values[candidate] = cv;
|
|
// Set the hue to non-zero for black so that we won't do this more than once
|
|
hues[candidate] = ( cv == 0.0 ) ? 1.0 : ch;
|
|
}
|
|
else
|
|
{
|
|
ch = hues[candidate];
|
|
cv = values[candidate];
|
|
cv = 0.0;
|
|
}
|
|
|
|
if( fabs( ch - h ) < minDist )
|
|
{
|
|
minDist = fabs( ch - h );
|
|
legacyHue = ch;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we have the desired hue; let's find the nearest value
|
|
minDist = 1.0;
|
|
for( EDA_COLOR_T candidate = ::BLACK;
|
|
candidate < NBCOLORS; candidate = NextColor( candidate ) )
|
|
{
|
|
// If the target hue is NAN, we didn't extract the value for any colors above
|
|
if( std::isnan( legacyHue ) )
|
|
{
|
|
double ch, cs, cv;
|
|
COLOR4D candidate4d( candidate );
|
|
candidate4d.ToHSV( ch, cs, cv );
|
|
values[candidate] = cv;
|
|
hues[candidate] = ( cv == 0.0 ) ? 1.0 : ch;
|
|
}
|
|
|
|
if( ( std::isnan( legacyHue ) != std::isnan( hues[candidate] ) ) || hues[candidate] != legacyHue )
|
|
continue;
|
|
|
|
if( fabs( values[candidate] - v ) < minDist )
|
|
{
|
|
minDist = fabs( values[candidate] - v );
|
|
nearest = candidate;
|
|
}
|
|
}
|
|
|
|
nearestCache.insert( std::pair< unsigned int, unsigned int >(
|
|
colorInt, static_cast<unsigned int>( nearest ) ) );
|
|
|
|
return nearest;
|
|
}
|
|
#endif
|
|
|
|
namespace KIGFX {
|
|
|
|
const bool operator==( const COLOR4D& lhs, const COLOR4D& rhs )
|
|
{
|
|
return lhs.a == rhs.a && lhs.r == rhs.r && lhs.g == rhs.g && lhs.b == rhs.b;
|
|
}
|
|
|
|
|
|
const bool operator!=( const COLOR4D& lhs, const COLOR4D& rhs )
|
|
{
|
|
return !( lhs == rhs );
|
|
}
|
|
|
|
std::ostream &operator<<( std::ostream &aStream, COLOR4D const &aColor )
|
|
{
|
|
return aStream << aColor.ToWxString( wxC2S_CSS_SYNTAX );
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void COLOR4D::ToHSV( double& aOutHue, double& aOutSaturation, double& aOutValue, bool aAlwaysDefineHue ) const
|
|
{
|
|
double min, max, delta;
|
|
|
|
min = r < g ? r : g;
|
|
min = min < b ? min : b;
|
|
|
|
max = r > g ? r : g;
|
|
max = max > b ? max : b;
|
|
|
|
aOutValue = max; // value
|
|
delta = max - min;
|
|
|
|
if( max > 0.0 )
|
|
{
|
|
aOutSaturation = ( delta / max );
|
|
}
|
|
else // for black color (r = g = b = 0 ) saturation is set to 0.
|
|
{
|
|
aOutSaturation = 0.0;
|
|
aOutHue = aAlwaysDefineHue ? 0.0 : NAN;
|
|
return;
|
|
}
|
|
|
|
/* Hue in degrees (0...360) is coded according to this table
|
|
* 0 or 360 : red
|
|
* 60 : yellow
|
|
* 120 : green
|
|
* 180 : cyan
|
|
* 240 : blue
|
|
* 300 : magenta
|
|
*/
|
|
if( delta != 0.0 )
|
|
{
|
|
if( r >= max )
|
|
aOutHue = ( g - b ) / delta; // between yellow & magenta
|
|
else if( g >= max )
|
|
aOutHue = 2.0 + ( b - r ) / delta; // between cyan & yellow
|
|
else
|
|
aOutHue = 4.0 + ( r - g ) / delta; // between magenta & cyan
|
|
|
|
aOutHue *= 60.0; // degrees
|
|
|
|
if( aOutHue < 0.0 )
|
|
aOutHue += 360.0;
|
|
}
|
|
else // delta = 0 means r = g = b. hue is set to 0.0
|
|
{
|
|
aOutHue = aAlwaysDefineHue ? 0.0 : NAN;
|
|
}
|
|
}
|
|
|
|
|
|
void COLOR4D::FromHSV( double aInH, double aInS, double aInV )
|
|
{
|
|
if( aInS <= 0.0 )
|
|
{
|
|
r = aInV;
|
|
g = aInV;
|
|
b = aInV;
|
|
return;
|
|
}
|
|
|
|
double hh = aInH;
|
|
|
|
while( hh >= 360.0 )
|
|
hh -= 360.0;
|
|
|
|
/* Hue in degrees (0...360) is coded according to this table
|
|
* 0 or 360 : red
|
|
* 60 : yellow
|
|
* 120 : green
|
|
* 180 : cyan
|
|
* 240 : blue
|
|
* 300 : magenta
|
|
*/
|
|
hh /= 60.0;
|
|
|
|
int i = (int) hh;
|
|
double ff = hh - i;
|
|
|
|
double p = aInV * ( 1.0 - aInS );
|
|
double q = aInV * ( 1.0 - ( aInS * ff ) );
|
|
double t = aInV * ( 1.0 - ( aInS * ( 1.0 - ff ) ) );
|
|
|
|
switch( i )
|
|
{
|
|
case 0:
|
|
r = aInV;
|
|
g = t;
|
|
b = p;
|
|
break;
|
|
|
|
case 1:
|
|
r = q;
|
|
g = aInV;
|
|
b = p;
|
|
break;
|
|
|
|
case 2:
|
|
r = p;
|
|
g = aInV;
|
|
b = t;
|
|
break;
|
|
|
|
case 3:
|
|
r = p;
|
|
g = q;
|
|
b = aInV;
|
|
break;
|
|
|
|
case 4:
|
|
r = t;
|
|
g = p;
|
|
b = aInV;
|
|
break;
|
|
|
|
case 5:
|
|
default:
|
|
r = aInV;
|
|
g = p;
|
|
b = q;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
COLOR4D& COLOR4D::Saturate( double aFactor )
|
|
{
|
|
double h, s, v;
|
|
|
|
ToHSV( h, s, v );
|
|
FromHSV( h, aFactor, 1.0 );
|
|
|
|
return *this;
|
|
}
|
|
|
|
const COLOR4D COLOR4D::UNSPECIFIED( 0, 0, 0, 0 );
|
|
const COLOR4D COLOR4D::WHITE( 1, 1, 1, 1 );
|
|
const COLOR4D COLOR4D::BLACK( 0, 0, 0, 1 );
|