kicad/eeschema/sim/sim_model.cpp

1530 lines
58 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2022 Mikolaj Wielgus
* Copyright (C) 2022 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* https://www.gnu.org/licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <sim/sim_model.h>
#include <sim/sim_model_behavioral.h>
#include <sim/sim_model_ideal.h>
#include <sim/sim_model_mutual_inductor.h>
#include <sim/sim_model_ngspice.h>
#include <sim/sim_model_source.h>
#include <sim/sim_model_spice.h>
#include <sim/sim_model_subckt.h>
#include <sim/sim_model_switch.h>
#include <sim/sim_model_tline.h>
#include <sim/sim_model_xspice.h>
#include <sim/spice_grammar.h>
#include <locale_io.h>
#include <lib_symbol.h>
#include <confirm.h>
#include <pegtl.hpp>
#include <pegtl/contrib/parse_tree.hpp>
#include <iterator>
using DEVICE_TYPE = SIM_MODEL::DEVICE_TYPE_;
using TYPE = SIM_MODEL::TYPE;
namespace SIM_MODEL_PARSER
{
using namespace SIM_MODEL_GRAMMAR;
template <typename Rule> struct fieldParamValuePairsSelector : std::false_type {};
template <> struct fieldParamValuePairsSelector<param> : std::true_type {};
template <> struct fieldParamValuePairsSelector<quotedStringContent> : std::true_type {};
template <> struct fieldParamValuePairsSelector<unquotedString> : std::true_type {};
template <typename Rule> struct fieldFloatValueSelector : std::false_type {};
template <> struct fieldFloatValueSelector<number<SIM_VALUE::TYPE_FLOAT, NOTATION::SI>>
: std::true_type {};
template <typename Rule> struct pinSequenceSelector : std::false_type {};
template <> struct pinSequenceSelector<pinNumber> : std::true_type {};
}
namespace SIM_MODEL_SPICE_PARSER
{
using namespace SPICE_GRAMMAR;
template <typename Rule> struct spiceUnitSelector : std::false_type {};
template <> struct spiceUnitSelector<dotModel> : std::true_type {};
template <> struct spiceUnitSelector<modelName> : std::true_type {};
template <> struct spiceUnitSelector<dotModelType> : std::true_type {};
template <> struct spiceUnitSelector<param> : std::true_type {};
template <> struct spiceUnitSelector<paramValue> : std::true_type {};
template <> struct spiceUnitSelector<dotSubckt> : std::true_type {};
}
SIM_MODEL::DEVICE_INFO SIM_MODEL::DeviceTypeInfo( DEVICE_TYPE_ aDeviceType )
{
switch( aDeviceType )
{
case DEVICE_TYPE_::NONE: return { "", "" };
case DEVICE_TYPE_::R: return { "R", "Resistor" };
case DEVICE_TYPE_::C: return { "C", "Capacitor" };
case DEVICE_TYPE_::L: return { "L", "Inductor" };
case DEVICE_TYPE_::TLINE: return { "TLINE", "Transmission Line" };
case DEVICE_TYPE_::SW: return { "SW", "Switch" };
case DEVICE_TYPE_::D: return { "D", "Diode" };
case DEVICE_TYPE_::NPN: return { "NPN", "NPN BJT" };
case DEVICE_TYPE_::PNP: return { "PNP", "PNP BJT" };
case DEVICE_TYPE_::NJFET: return { "NJFET", "N-channel JFET" };
case DEVICE_TYPE_::PJFET: return { "PJFET", "P-channel JFET" };
case DEVICE_TYPE_::NMOS: return { "NMOS", "N-channel MOSFET" };
case DEVICE_TYPE_::PMOS: return { "PMOS", "P-channel MOSFET" };
case DEVICE_TYPE_::NMES: return { "NMES", "N-channel MESFET" };
case DEVICE_TYPE_::PMES: return { "PMES", "P-channel MESFET" };
case DEVICE_TYPE_::V: return { "V", "Voltage Source" };
case DEVICE_TYPE_::I: return { "I", "Current Source" };
case DEVICE_TYPE_::SUBCKT: return { "SUBCKT", "Subcircuit" };
case DEVICE_TYPE_::XSPICE: return { "XSPICE", "XSPICE Code Model" };
case DEVICE_TYPE_::SPICE: return { "SPICE", "Raw Spice Element" };
case DEVICE_TYPE_::_ENUM_END: break;
}
wxFAIL;
return {};
}
SIM_MODEL::INFO SIM_MODEL::TypeInfo( TYPE aType )
{
switch( aType )
{
case TYPE::NONE: return { DEVICE_TYPE_::NONE, "", "" };
case TYPE::R: return { DEVICE_TYPE_::R, "", "Ideal" };
case TYPE::R_BEHAVIORAL: return { DEVICE_TYPE_::R, "=", "Behavioral" };
case TYPE::C: return { DEVICE_TYPE_::C, "", "Ideal" };
case TYPE::C_BEHAVIORAL: return { DEVICE_TYPE_::C, "=", "Behavioral" };
case TYPE::L: return { DEVICE_TYPE_::L, "", "Ideal" };
case TYPE::L_MUTUAL: return { DEVICE_TYPE_::L, "MUTUAL", "Mutual" };
case TYPE::L_BEHAVIORAL: return { DEVICE_TYPE_::L, "=", "Behavioral" };
case TYPE::TLINE_Z0: return { DEVICE_TYPE_::TLINE, "Z0", "Characteristic impedance" };
case TYPE::TLINE_RLGC: return { DEVICE_TYPE_::TLINE, "RLGC", "RLGC" };
case TYPE::SW_V: return { DEVICE_TYPE_::SW, "V", "Voltage-controlled" };
case TYPE::SW_I: return { DEVICE_TYPE_::SW, "I", "Current-controlled" };
case TYPE::D: return { DEVICE_TYPE_::D, "", "" };
case TYPE::NPN_GUMMELPOON: return { DEVICE_TYPE_::NPN, "GUMMELPOON", "Gummel-Poon" };
case TYPE::PNP_GUMMELPOON: return { DEVICE_TYPE_::PNP, "GUMMELPOON", "Gummel-Poon" };
case TYPE::NPN_VBIC: return { DEVICE_TYPE_::NPN, "VBIC", "VBIC" };
case TYPE::PNP_VBIC: return { DEVICE_TYPE_::PNP, "VBIC", "VBIC" };
//case TYPE::BJT_MEXTRAM: return {};
case TYPE::NPN_HICUM2: return { DEVICE_TYPE_::NPN, "HICUML2", "HICUM level 2" };
case TYPE::PNP_HICUM2: return { DEVICE_TYPE_::PNP, "HICUML2", "HICUM level 2" };
//case TYPE::BJT_HICUM_L0: return {};
case TYPE::NJFET_SHICHMANHODGES: return { DEVICE_TYPE_::NJFET, "SHICHMANHODGES", "Shichman-Hodges" };
case TYPE::PJFET_SHICHMANHODGES: return { DEVICE_TYPE_::PJFET, "SHICHMANHODGES", "Shichman-Hodges" };
case TYPE::NJFET_PARKERSKELLERN: return { DEVICE_TYPE_::NJFET, "PARKERSKELLERN", "Parker-Skellern" };
case TYPE::PJFET_PARKERSKELLERN: return { DEVICE_TYPE_::PJFET, "PARKERSKELLERN", "Parker-Skellern" };
case TYPE::NMES_STATZ: return { DEVICE_TYPE_::NMES, "STATZ", "Statz" };
case TYPE::PMES_STATZ: return { DEVICE_TYPE_::PMES, "STATZ", "Statz" };
case TYPE::NMES_YTTERDAL: return { DEVICE_TYPE_::NMES, "YTTERDAL", "Ytterdal" };
case TYPE::PMES_YTTERDAL: return { DEVICE_TYPE_::PMES, "YTTERDAL", "Ytterdal" };
case TYPE::NMES_HFET1: return { DEVICE_TYPE_::NMES, "HFET1", "HFET1" };
case TYPE::PMES_HFET1: return { DEVICE_TYPE_::PMES, "HFET1", "HFET1" };
case TYPE::NMES_HFET2: return { DEVICE_TYPE_::NMES, "HFET2", "HFET2" };
case TYPE::PMES_HFET2: return { DEVICE_TYPE_::PMES, "HFET2", "HFET2" };
case TYPE::NMOS_MOS1: return { DEVICE_TYPE_::NMOS, "MOS1", "Classical quadratic (MOS1)" };
case TYPE::PMOS_MOS1: return { DEVICE_TYPE_::PMOS, "MOS1", "Classical quadratic (MOS1)" };
case TYPE::NMOS_MOS2: return { DEVICE_TYPE_::NMOS, "MOS2", "Grove-Frohman (MOS2)" };
case TYPE::PMOS_MOS2: return { DEVICE_TYPE_::PMOS, "MOS2", "Grove-Frohman (MOS2)" };
case TYPE::NMOS_MOS3: return { DEVICE_TYPE_::NMOS, "MOS3", "MOS3" };
case TYPE::PMOS_MOS3: return { DEVICE_TYPE_::PMOS, "MOS3", "MOS3" };
case TYPE::NMOS_BSIM1: return { DEVICE_TYPE_::NMOS, "BSIM1", "BSIM1" };
case TYPE::PMOS_BSIM1: return { DEVICE_TYPE_::PMOS, "BSIM1", "BSIM1" };
case TYPE::NMOS_BSIM2: return { DEVICE_TYPE_::NMOS, "BSIM2", "BSIM2" };
case TYPE::PMOS_BSIM2: return { DEVICE_TYPE_::PMOS, "BSIM2", "BSIM2" };
case TYPE::NMOS_MOS6: return { DEVICE_TYPE_::NMOS, "MOS6", "MOS6" };
case TYPE::PMOS_MOS6: return { DEVICE_TYPE_::PMOS, "MOS6", "MOS6" };
case TYPE::NMOS_BSIM3: return { DEVICE_TYPE_::NMOS, "BSIM3", "BSIM3" };
case TYPE::PMOS_BSIM3: return { DEVICE_TYPE_::PMOS, "BSIM3", "BSIM3" };
case TYPE::NMOS_MOS9: return { DEVICE_TYPE_::NMOS, "MOS9", "MOS9" };
case TYPE::PMOS_MOS9: return { DEVICE_TYPE_::PMOS, "MOS9", "MOS9" };
case TYPE::NMOS_B4SOI: return { DEVICE_TYPE_::NMOS, "B4SOI", "BSIM4 SOI (B4SOI)" };
case TYPE::PMOS_B4SOI: return { DEVICE_TYPE_::PMOS, "B4SOI", "BSIM4 SOI (B4SOI)" };
case TYPE::NMOS_BSIM4: return { DEVICE_TYPE_::NMOS, "BSIM4", "BSIM4" };
case TYPE::PMOS_BSIM4: return { DEVICE_TYPE_::PMOS, "BSIM4", "BSIM4" };
//case TYPE::NMOS_EKV2_6: return {};
//case TYPE::PMOS_EKV2_6: return {};
//case TYPE::NMOS_PSP: return {};
//case TYPE::PMOS_PSP: return {};
case TYPE::NMOS_B3SOIFD: return { DEVICE_TYPE_::NMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" };
case TYPE::PMOS_B3SOIFD: return { DEVICE_TYPE_::PMOS, "B3SOIFD", "B3SOIFD (BSIM3 FD-SOI)" };
case TYPE::NMOS_B3SOIDD: return { DEVICE_TYPE_::NMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" };
case TYPE::PMOS_B3SOIDD: return { DEVICE_TYPE_::PMOS, "B3SOIDD", "B3SOIDD (BSIM3 SOI)" };
case TYPE::NMOS_B3SOIPD: return { DEVICE_TYPE_::NMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" };
case TYPE::PMOS_B3SOIPD: return { DEVICE_TYPE_::PMOS, "B3SOIPD", "B3SOIPD (BSIM3 PD-SOI)" };
//case TYPE::NMOS_STAG: return {};
//case TYPE::PMOS_STAG: return {};
case TYPE::NMOS_HISIM2: return { DEVICE_TYPE_::NMOS, "HISIM2", "HiSIM2" };
case TYPE::PMOS_HISIM2: return { DEVICE_TYPE_::PMOS, "HISIM2", "HiSIM2" };
case TYPE::NMOS_HISIMHV1: return { DEVICE_TYPE_::NMOS, "HISIMHV1", "HiSIM_HV1" };
case TYPE::PMOS_HISIMHV1: return { DEVICE_TYPE_::PMOS, "HISIMHV1", "HiSIM_HV1" };
case TYPE::NMOS_HISIMHV2: return { DEVICE_TYPE_::NMOS, "HISIMHV2", "HiSIM_HV2" };
case TYPE::PMOS_HISIMHV2: return { DEVICE_TYPE_::PMOS, "HISIMHV2", "HiSIM_HV2" };
case TYPE::V: return { DEVICE_TYPE_::V, "DC", "DC", };
case TYPE::V_SIN: return { DEVICE_TYPE_::V, "SIN", "Sine" };
case TYPE::V_PULSE: return { DEVICE_TYPE_::V, "PULSE", "Pulse" };
case TYPE::V_EXP: return { DEVICE_TYPE_::V, "EXP", "Exponential" };
/*case TYPE::V_SFAM: return { DEVICE_TYPE::V, "SFAM", "Single-frequency AM" };
case TYPE::V_SFFM: return { DEVICE_TYPE::V, "SFFM", "Single-frequency FM" };*/
case TYPE::V_PWL: return { DEVICE_TYPE_::V, "PWL", "Piecewise linear" };
case TYPE::V_WHITENOISE: return { DEVICE_TYPE_::V, "WHITENOISE", "White noise" };
case TYPE::V_PINKNOISE: return { DEVICE_TYPE_::V, "PINKNOISE", "Pink noise (1/f)" };
case TYPE::V_BURSTNOISE: return { DEVICE_TYPE_::V, "BURSTNOISE", "Burst noise" };
case TYPE::V_RANDUNIFORM: return { DEVICE_TYPE_::V, "RANDUNIFORM", "Random uniform" };
case TYPE::V_RANDNORMAL: return { DEVICE_TYPE_::V, "RANDNORMAL", "Random normal" };
case TYPE::V_RANDEXP: return { DEVICE_TYPE_::V, "RANDEXP", "Random exponential" };
//case TYPE::V_RANDPOISSON: return { DEVICE_TYPE::V, "RANDPOISSON", "Random Poisson" };
case TYPE::V_BEHAVIORAL: return { DEVICE_TYPE_::V, "=", "Behavioral" };
case TYPE::I: return { DEVICE_TYPE_::I, "DC", "DC", };
case TYPE::I_SIN: return { DEVICE_TYPE_::I, "SIN", "Sine" };
case TYPE::I_PULSE: return { DEVICE_TYPE_::I, "PULSE", "Pulse" };
case TYPE::I_EXP: return { DEVICE_TYPE_::I, "EXP", "Exponential" };
/*case TYPE::I_SFAM: return { DEVICE_TYPE::I, "SFAM", "Single-frequency AM" };
case TYPE::I_SFFM: return { DEVICE_TYPE::I, "SFFM", "Single-frequency FM" };*/
case TYPE::I_PWL: return { DEVICE_TYPE_::I, "PWL", "Piecewise linear" };
case TYPE::I_WHITENOISE: return { DEVICE_TYPE_::I, "WHITENOISE", "White noise" };
case TYPE::I_PINKNOISE: return { DEVICE_TYPE_::I, "PINKNOISE", "Pink noise (1/f)" };
case TYPE::I_BURSTNOISE: return { DEVICE_TYPE_::I, "BURSTNOISE", "Burst noise" };
case TYPE::I_RANDUNIFORM: return { DEVICE_TYPE_::I, "RANDUNIFORM", "Random uniform" };
case TYPE::I_RANDNORMAL: return { DEVICE_TYPE_::I, "RANDNORMAL", "Random normal" };
case TYPE::I_RANDEXP: return { DEVICE_TYPE_::I, "RANDEXP", "Random exponential" };
//case TYPE::I_RANDPOISSON: return { DEVICE_TYPE::I, "RANDPOISSON", "Random Poisson" };
case TYPE::I_BEHAVIORAL: return { DEVICE_TYPE_::I, "=", "Behavioral" };
case TYPE::SUBCKT: return { DEVICE_TYPE_::SUBCKT, "", "" };
case TYPE::XSPICE: return { DEVICE_TYPE_::XSPICE, "", "" };
case TYPE::SPICE: return { DEVICE_TYPE_::SPICE, "", "" };
case TYPE::_ENUM_END: break;
}
wxFAIL;
return {};
}
SIM_MODEL::SPICE_INFO SIM_MODEL::SpiceInfo( TYPE aType )
{
switch( aType )
{
case TYPE::R: return { "R", "" };
case TYPE::R_BEHAVIORAL: return { "R", "", "", "0", false, true };
case TYPE::C: return { "C", "" };
case TYPE::C_BEHAVIORAL: return { "C", "", "", "0", false, true };
case TYPE::L: return { "L", "" };
case TYPE::L_MUTUAL: return { "K", "" };
case TYPE::L_BEHAVIORAL: return { "L", "", "", "0", false, true };
//case TYPE::TLINE_Z0: return { "T" };
case TYPE::TLINE_Z0: return { "O", "LTRA" };
case TYPE::TLINE_RLGC: return { "O", "LTRA" };
case TYPE::SW_V: return { "S", "SW" };
case TYPE::SW_I: return { "W", "CSW" };
case TYPE::D: return { "D", "D" };
case TYPE::NPN_GUMMELPOON: return { "Q", "NPN", "", "1", true };
case TYPE::PNP_GUMMELPOON: return { "Q", "PNP", "", "1", true };
case TYPE::NPN_VBIC: return { "Q", "NPN", "", "4" };
case TYPE::PNP_VBIC: return { "Q", "PNP", "", "4" };
case TYPE::NPN_HICUM2: return { "Q", "NPN", "", "8" };
case TYPE::PNP_HICUM2: return { "Q", "PNP", "", "8" };
case TYPE::NJFET_SHICHMANHODGES: return { "M", "NJF", "", "1" };
case TYPE::PJFET_SHICHMANHODGES: return { "M", "PJF", "", "1" };
case TYPE::NJFET_PARKERSKELLERN: return { "M", "NJF", "", "2" };
case TYPE::PJFET_PARKERSKELLERN: return { "M", "PJF", "", "2" };
case TYPE::NMES_STATZ: return { "Z", "NMF", "", "1" };
case TYPE::PMES_STATZ: return { "Z", "PMF", "", "1" };
case TYPE::NMES_YTTERDAL: return { "Z", "NMF", "", "2" };
case TYPE::PMES_YTTERDAL: return { "Z", "PMF", "", "2" };
case TYPE::NMES_HFET1: return { "Z", "NMF", "", "5" };
case TYPE::PMES_HFET1: return { "Z", "PMF", "", "5" };
case TYPE::NMES_HFET2: return { "Z", "NMF", "", "6" };
case TYPE::PMES_HFET2: return { "Z", "PMF", "", "6" };
case TYPE::NMOS_MOS1: return { "M", "NMOS", "", "1" };
case TYPE::PMOS_MOS1: return { "M", "PMOS", "", "1" };
case TYPE::NMOS_MOS2: return { "M", "NMOS", "", "2" };
case TYPE::PMOS_MOS2: return { "M", "PMOS", "", "2" };
case TYPE::NMOS_MOS3: return { "M", "NMOS", "", "3" };
case TYPE::PMOS_MOS3: return { "M", "PMOS", "", "3" };
case TYPE::NMOS_BSIM1: return { "M", "NMOS", "", "4" };
case TYPE::PMOS_BSIM1: return { "M", "PMOS", "", "4" };
case TYPE::NMOS_BSIM2: return { "M", "NMOS", "", "5" };
case TYPE::PMOS_BSIM2: return { "M", "PMOS", "", "5" };
case TYPE::NMOS_MOS6: return { "M", "NMOS", "", "6" };
case TYPE::PMOS_MOS6: return { "M", "PMOS", "", "6" };
case TYPE::NMOS_BSIM3: return { "M", "NMOS", "", "8" };
case TYPE::PMOS_BSIM3: return { "M", "PMOS", "", "8" };
case TYPE::NMOS_MOS9: return { "M", "NMOS", "", "9" };
case TYPE::PMOS_MOS9: return { "M", "PMOS", "", "9" };
case TYPE::NMOS_B4SOI: return { "M", "NMOS", "", "10" };
case TYPE::PMOS_B4SOI: return { "M", "PMOS", "", "10" };
case TYPE::NMOS_BSIM4: return { "M", "NMOS", "", "14" };
case TYPE::PMOS_BSIM4: return { "M", "PMOS", "", "14" };
//case TYPE::NMOS_EKV2_6: return {};
//case TYPE::PMOS_EKV2_6: return {};
//case TYPE::NMOS_PSP: return {};
//case TYPE::PMOS_PSP: return {};
case TYPE::NMOS_B3SOIFD: return { "M", "NMOS", "", "55" };
case TYPE::PMOS_B3SOIFD: return { "M", "PMOS", "", "55" };
case TYPE::NMOS_B3SOIDD: return { "M", "NMOS", "", "56" };
case TYPE::PMOS_B3SOIDD: return { "M", "PMOS", "", "56" };
case TYPE::NMOS_B3SOIPD: return { "M", "NMOS", "", "57" };
case TYPE::PMOS_B3SOIPD: return { "M", "PMOS", "", "57" };
//case TYPE::NMOS_STAG: return {};
//case TYPE::PMOS_STAG: return {};
case TYPE::NMOS_HISIM2: return { "M", "NMOS", "", "68" };
case TYPE::PMOS_HISIM2: return { "M", "PMOS", "", "68" };
case TYPE::NMOS_HISIMHV1: return { "M", "NMOS", "", "73", true, false, "1.2.4" };
case TYPE::PMOS_HISIMHV1: return { "M", "PMOS", "", "73", true, false, "1.2.4" };
case TYPE::NMOS_HISIMHV2: return { "M", "NMOS", "", "73", true, false, "2.2.0" };
case TYPE::PMOS_HISIMHV2: return { "M", "PMOS", "", "73", true, false, "2.2.0" };
case TYPE::V: return { "V", "" };
case TYPE::V_SIN: return { "V", "", "SIN" };
case TYPE::V_PULSE: return { "V", "", "PULSE" };
case TYPE::V_EXP: return { "V", "", "EXP" };
/*case TYPE::V_SFAM: return { "V", "", "AM" };
case TYPE::V_SFFM: return { "V", "", "SFFM" };*/
case TYPE::V_PWL: return { "V", "", "PWL" };
case TYPE::V_WHITENOISE: return { "V", "", "TRNOISE" };
case TYPE::V_PINKNOISE: return { "V", "", "TRNOISE" };
case TYPE::V_BURSTNOISE: return { "V", "", "TRNOISE" };
case TYPE::V_RANDUNIFORM: return { "V", "", "TRRANDOM" };
case TYPE::V_RANDNORMAL: return { "V", "", "TRRANDOM" };
case TYPE::V_RANDEXP: return { "V", "", "TRRANDOM" };
//case TYPE::V_RANDPOISSON: return { "V", "", "TRRANDOM" };
case TYPE::V_BEHAVIORAL: return { "B" };
case TYPE::I: return { "I", "" };
case TYPE::I_PULSE: return { "I", "", "PULSE" };
case TYPE::I_SIN: return { "I", "", "SIN" };
case TYPE::I_EXP: return { "I", "", "EXP" };
/*case TYPE::I_SFAM: return { "V", "", "AM" };
case TYPE::I_SFFM: return { "V", "", "SFFM" };*/
case TYPE::I_PWL: return { "I", "", "PWL" };
case TYPE::I_WHITENOISE: return { "I", "", "TRNOISE" };
case TYPE::I_PINKNOISE: return { "I", "", "TRNOISE" };
case TYPE::I_BURSTNOISE: return { "I", "", "TRNOISE" };
case TYPE::I_RANDUNIFORM: return { "I", "", "TRRANDOM" };
case TYPE::I_RANDNORMAL: return { "I", "", "TRRANDOM" };
case TYPE::I_RANDEXP: return { "I", "", "TRRANDOM" };
//case TYPE::I_RANDPOISSON: return { "I", "", "TRRANDOM" };
case TYPE::I_BEHAVIORAL: return { "B" };
case TYPE::SUBCKT: return { "X" };
case TYPE::XSPICE: return { "A" };
case TYPE::NONE:
case TYPE::SPICE:
return {};
case TYPE::_ENUM_END:
break;
}
wxFAIL;
return {};
}
TYPE SIM_MODEL::ReadTypeFromSpiceCode( const wxString& aSpiceCode )
{
tao::pegtl::string_input<> in( aSpiceCode.ToUTF8(), "Spice_Code" );
std::unique_ptr<tao::pegtl::parse_tree::node> root;
try
{
root = tao::pegtl::parse_tree::parse<SIM_MODEL_SPICE_PARSER::spiceUnitGrammar,
SIM_MODEL_SPICE_PARSER::spiceUnitSelector>
( in );
}
catch( const tao::pegtl::parse_error& e )
{
wxLogDebug( "%s", e.what() );
return TYPE::NONE;
}
for( const auto& node : root->children )
{
if( node->is_type<SIM_MODEL_SPICE_PARSER::dotModel>() )
{
wxString paramName;
wxString typeString;
wxString level;
wxString version;
for( const auto& subnode : node->children )
{
if( subnode->is_type<SIM_MODEL_SPICE_PARSER::modelName>() )
{
// Do nothing.
}
else if( subnode->is_type<SIM_MODEL_SPICE_PARSER::dotModelType>() )
{
typeString = subnode->string();
TYPE type = readTypeFromSpiceStrings( typeString );
if( type != TYPE::SPICE )
return type;
}
else if( subnode->is_type<SIM_MODEL_SPICE_PARSER::param>() )
{
paramName = subnode->string();
}
else if( subnode->is_type<SIM_MODEL_SPICE_PARSER::paramValue>() )
{
wxASSERT( paramName != "" );
if( paramName == "level" )
level = subnode->string();
else if( paramName == "version" )
version = subnode->string();
}
else
{
wxFAIL_MSG( "Unhandled parse tree subnode" );
return TYPE::NONE;
}
}
// Type was not determined from Spice type string alone, so now we take `level` and
// `version` variables into account too. This is suboptimal since we read the model
// twice this way, and moreover the code is now somewhat duplicated.
return readTypeFromSpiceStrings( typeString, level, version, false );
}
else if( node->is_type<SIM_MODEL_SPICE_PARSER::dotSubckt>() )
return TYPE::SUBCKT;
else
{
wxFAIL_MSG( "Unhandled parse tree node" );
return TYPE::NONE;
}
}
wxFAIL_MSG( "Could not derive type from Spice code" );
return TYPE::NONE;
}
template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector<SCH_FIELD>& aFields );
template TYPE SIM_MODEL::ReadTypeFromFields( const std::vector<LIB_FIELD>& aFields );
template <typename T>
TYPE SIM_MODEL::ReadTypeFromFields( const std::vector<T>& aFields )
{
wxString deviceTypeFieldValue = GetFieldValue( &aFields, DEVICE_TYPE_FIELD );
wxString typeFieldValue = GetFieldValue( &aFields, TYPE_FIELD );
if( deviceTypeFieldValue != "" )
{
for( TYPE type : TYPE_ITERATOR() )
{
if( typeFieldValue == TypeInfo( type ).fieldValue )
{
if( deviceTypeFieldValue == DeviceTypeInfo( TypeInfo( type ).deviceType ).fieldValue )
return type;
}
}
}
if( typeFieldValue != "" )
return TYPE::NONE;
// No type information. Look for legacy (pre-V7) fields.
TYPE typeFromLegacyFields = InferTypeFromLegacyFields( aFields );
if( typeFromLegacyFields != TYPE::NONE )
return typeFromLegacyFields;
// Still no type information.
// For passives we infer the model from the mandatory fields in this case.
return InferTypeFromRefAndValue( GetFieldValue( &aFields, REFERENCE_FIELD ),
GetFieldValue( &aFields, VALUE_FIELD ) );
}
TYPE SIM_MODEL::InferTypeFromRefAndValue( const wxString& aRef, const wxString& aValue )
{
static std::map<wxString, TYPE> refPrefixToType = {
{ "R", TYPE::R },
{ "C", TYPE::C },
{ "L", TYPE::L },
{ "TLINE", TYPE::TLINE_Z0 },
{ "VSIN", TYPE::V_SIN },
{ "VPULSE", TYPE::V_PULSE },
{ "VEXP", TYPE::V_EXP },
/*{ "VSFAM", TYPE::V_SFAM },
{ "VSFFM", TYPE::V_SFFM },*/
{ "VPWL", TYPE::V_PWL },
{ "VWHITENOISE", TYPE::V_WHITENOISE },
{ "VPINKNOISE", TYPE::V_PINKNOISE },
{ "VBURSTNOISE", TYPE::V_BURSTNOISE },
{ "VRANDUNIFORM", TYPE::V_RANDUNIFORM },
{ "VRANDNORMAL", TYPE::V_RANDNORMAL },
{ "VRANDEXP", TYPE::V_RANDEXP },
//{ "VRANDPOISSON", TYPE::V_RANDPOISSON },
{ "ISIN", TYPE::I_SIN },
{ "IPULSE", TYPE::I_PULSE },
{ "IEXP", TYPE::I_EXP },
/*{ "ISFAM", TYPE::I_SFAM },
{ "ISFFM", TYPE::I_SFFM },*/
{ "IPWL", TYPE::I_PWL },
{ "IWHITENOISE", TYPE::I_WHITENOISE },
{ "IPINKNOISE", TYPE::I_PINKNOISE },
{ "IBURSTNOISE", TYPE::I_BURSTNOISE },
{ "IRANDUNIFORM", TYPE::I_RANDUNIFORM },
{ "IRANDNORMAL", TYPE::I_RANDNORMAL },
{ "IRANDEXP", TYPE::I_RANDEXP },
//{ "IRANDPOISSON", TYPE::I_RANDPOISSON },
};
TYPE type = TYPE::NONE;
for( auto&& [curPrefix, curType] : refPrefixToType )
{
if( aRef.StartsWith( curPrefix ) )
{
type = curType;
break;
}
}
// We handle "V" and "I" later because it collides and std::map is unordered.
if( type == TYPE::NONE && aRef.StartsWith( "V" ) )
type = TYPE::V;
if( type == TYPE::NONE && aRef.StartsWith( "I" ) )
type = TYPE::I;
wxString value = aValue;
// Some types have to be inferred from Value field.
switch( type )
{
case TYPE::R:
if( value.Trim( false ).StartsWith( "=" ) )
type = TYPE::R_BEHAVIORAL;
break;
case TYPE::C:
if( value.Trim( false ).StartsWith( "=" ) )
type = TYPE::C_BEHAVIORAL;
break;
case TYPE::L:
if( value.Trim( false ).StartsWith( "=" ) )
type = TYPE::L_BEHAVIORAL;
break;
case TYPE::V:
if( value.Trim( false ).StartsWith( "=" ) )
type = TYPE::V_BEHAVIORAL;
break;
case TYPE::I:
if( value.Trim( false ).StartsWith( "=" ) )
type = TYPE::I_BEHAVIORAL;
break;
case TYPE::TLINE_Z0:
try
{
tao::pegtl::string_input<> in( aValue.ToUTF8(), "Value" );
auto root = tao::pegtl::parse_tree::parse<
SIM_MODEL_PARSER::fieldParamValuePairsGrammar,
SIM_MODEL_PARSER::fieldParamValuePairsSelector>
( in );
for( const auto& node : root->children )
{
if( node->is_type<SIM_MODEL_PARSER::param>()
&& (node->string() == "r" || node->string() == "R"
|| node->string() == "c" || node->string() == "C"
|| node->string() == "l" || node->string() == "L" ) )
{
type = TYPE::TLINE_RLGC;
break;
}
}
}
catch( const tao::pegtl::parse_error& e )
{
}
break;
default:
break;
}
return type;
}
template <typename T>
TYPE SIM_MODEL::InferTypeFromLegacyFields( const std::vector<T>& aFields )
{
if( GetFieldValue( &aFields, SIM_MODEL_SPICE::LEGACY_TYPE_FIELD ) != ""
|| GetFieldValue( &aFields, SIM_MODEL_SPICE::LEGACY_MODEL_FIELD ) != ""
|| GetFieldValue( &aFields, SIM_MODEL_SPICE::LEGACY_ENABLED_FIELD ) != ""
|| GetFieldValue( &aFields, SIM_MODEL_SPICE::LEGACY_LIB_FIELD ) != "" )
{
return TYPE::SPICE;
}
else
return TYPE::NONE;
}
template <typename T>
void SIM_MODEL::ReadDataFields( unsigned aSymbolPinCount, const std::vector<T>* aFields )
{
doReadDataFields( aSymbolPinCount, aFields );
}
template <>
void SIM_MODEL::ReadDataFields( unsigned aSymbolPinCount, const std::vector<SCH_FIELD>* aFields )
{
ReadDataSchFields( aSymbolPinCount, aFields );
}
template <>
void SIM_MODEL::ReadDataFields( unsigned aSymbolPinCount, const std::vector<LIB_FIELD>* aFields )
{
ReadDataLibFields( aSymbolPinCount, aFields );
}
void SIM_MODEL::ReadDataSchFields( unsigned aSymbolPinCount, const std::vector<SCH_FIELD>* aFields )
{
doReadDataFields( aSymbolPinCount, aFields );
}
void SIM_MODEL::ReadDataLibFields( unsigned aSymbolPinCount, const std::vector<LIB_FIELD>* aFields )
{
doReadDataFields( aSymbolPinCount, aFields );
}
template <>
void SIM_MODEL::WriteFields( std::vector<SCH_FIELD>& aFields ) const
{
WriteDataSchFields( aFields );
}
template <>
void SIM_MODEL::WriteFields( std::vector<LIB_FIELD>& aFields ) const
{
WriteDataLibFields( aFields );
}
void SIM_MODEL::WriteDataSchFields( std::vector<SCH_FIELD>& aFields ) const
{
doWriteFields( aFields );
}
void SIM_MODEL::WriteDataLibFields( std::vector<LIB_FIELD>& aFields ) const
{
doWriteFields( aFields );
}
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( TYPE aType, unsigned aSymbolPinCount )
{
std::unique_ptr<SIM_MODEL> model = create( aType );
// Passing nullptr to ReadDataFields will make it act as if all fields were empty.
model->ReadDataFields( aSymbolPinCount, static_cast<const std::vector<void>*>( nullptr ) );
return model;
}
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const wxString& aSpiceCode )
{
std::unique_ptr<SIM_MODEL> model = create( ReadTypeFromSpiceCode( aSpiceCode ) );
try
{
model->ReadSpiceCode( aSpiceCode );
}
catch( const IO_ERROR& e )
{
DisplayErrorMessage( nullptr, e.What() );
// Demote to raw Spice element and try again.
std::unique_ptr<SIM_MODEL> rawSpiceModel = create( TYPE::SPICE );
rawSpiceModel->ReadSpiceCode( aSpiceCode );
return rawSpiceModel;
}
return model;
}
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const SIM_MODEL& aBaseModel,
unsigned aSymbolPinCount )
{
std::unique_ptr<SIM_MODEL> model = create( aBaseModel.GetType() );
model->SetBaseModel( aBaseModel );
model->ReadDataFields( aSymbolPinCount, static_cast<const std::vector<void>*>( nullptr ) );
return model;
}
template <typename T>
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const SIM_MODEL& aBaseModel, unsigned aSymbolPinCount,
const std::vector<T>& aFields )
{
std::unique_ptr<SIM_MODEL> model = create( aBaseModel.GetType() );
model->SetBaseModel( aBaseModel );
model->ReadDataFields( aSymbolPinCount, &aFields );
return model;
}
template std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const SIM_MODEL& aBaseModel,
unsigned aSymbolPinCount,
const std::vector<SCH_FIELD>& aFields );
template std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( const SIM_MODEL& aBaseModel,
unsigned aSymbolPinCount,
const std::vector<LIB_FIELD>& aFields );
template <typename T>
std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( unsigned aSymbolPinCount,
const std::vector<T>& aFields )
{
std::unique_ptr<SIM_MODEL> model = SIM_MODEL::create( ReadTypeFromFields( aFields ) );
model->ReadDataFields( aSymbolPinCount, &aFields );
return model;
}
template std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( unsigned aSymbolPinCount,
const std::vector<SCH_FIELD>& aFields );
template std::unique_ptr<SIM_MODEL> SIM_MODEL::Create( unsigned aSymbolPinCount,
const std::vector<LIB_FIELD>& aFields );
template <typename T>
wxString SIM_MODEL::GetFieldValue( const std::vector<T>* aFields, const wxString& aFieldName )
{
static_assert( std::is_same<T, SCH_FIELD>::value || std::is_same<T, LIB_FIELD>::value );
if( !aFields )
return wxEmptyString; // Should not happen, T=void specialization will be called instead.
auto fieldIt = std::find_if( aFields->begin(), aFields->end(),
[aFieldName]( const T& field )
{
return field.GetName() == aFieldName;
} );
if( fieldIt != aFields->end() )
return fieldIt->GetText();
return wxEmptyString;
}
// This specialization is used when no fields are passed.
template <>
wxString SIM_MODEL::GetFieldValue( const std::vector<void>* aFields, const wxString& aFieldName )
{
return wxEmptyString;
}
template <typename T>
void SIM_MODEL::SetFieldValue( std::vector<T>& aFields, const wxString& aFieldName,
const wxString& aValue )
{
static_assert( std::is_same<T, SCH_FIELD>::value || std::is_same<T, LIB_FIELD>::value );
auto fieldIt = std::find_if( aFields.begin(), aFields.end(),
[&]( const T& f )
{
return f.GetName() == aFieldName;
} );
if( fieldIt != aFields.end() )
{
if( aValue.IsEmpty() )
aFields.erase( fieldIt );
else
fieldIt->SetText( aValue );
return;
}
if( aValue.IsEmpty() )
return;
if constexpr( std::is_same<T, SCH_FIELD>::value )
{
wxASSERT( aFields.size() >= 1 );
SCH_ITEM* parent = static_cast<SCH_ITEM*>( aFields.at( 0 ).GetParent() );
aFields.emplace_back( wxPoint(), aFields.size(), parent, aFieldName );
}
else if constexpr( std::is_same<T, LIB_FIELD>::value )
aFields.emplace_back( aFields.size(), aFieldName );
aFields.back().SetText( aValue );
}
SIM_MODEL::~SIM_MODEL() = default;
void SIM_MODEL::ReadSpiceCode( const wxString& aSpiceCode )
{
// The default behavior is to treat the Spice param=value pairs as the model parameters and
// values (for many models the correspondence is not exact, so this function is overridden).
tao::pegtl::string_input<> in( aSpiceCode.ToUTF8(), "Spice_Code" );
std::unique_ptr<tao::pegtl::parse_tree::node> root;
try
{
root = tao::pegtl::parse_tree::parse<SIM_MODEL_SPICE_PARSER::spiceUnitGrammar,
SIM_MODEL_SPICE_PARSER::spiceUnitSelector>
( in );
}
catch( tao::pegtl::parse_error& e )
{
THROW_IO_ERROR( e.what() );
}
for( const auto& node : root->children )
{
if( node->is_type<SIM_MODEL_SPICE_PARSER::dotModel>() )
{
wxString paramName = "";
for( const auto& subnode : node->children )
{
if( subnode->is_type<SIM_MODEL_SPICE_PARSER::modelName>() )
{
// Do nothing.
}
else if( subnode->is_type<SIM_MODEL_SPICE_PARSER::dotModelType>() )
{
// Do nothing.
}
else if( subnode->is_type<SIM_MODEL_SPICE_PARSER::param>() )
{
paramName = subnode->string();
}
else if( subnode->is_type<SIM_MODEL_SPICE_PARSER::paramValue>() )
{
wxASSERT( !paramName.IsEmpty() );
if( !SetParamFromSpiceCode( paramName, subnode->string() ) )
{
THROW_IO_ERROR( wxString::Format(
_( "Failed to set parameter '%s' to '%s'" ),
paramName,
subnode->string() ) );
}
}
else
{
wxFAIL_MSG( "Unhandled parse tree subnode" );
}
}
}
else
{
wxFAIL_MSG( "Unhandled parse tree node" );
}
}
m_spiceCode = aSpiceCode;
}
void SIM_MODEL::AddPin( const PIN& aPin )
{
m_pins.push_back( aPin );
}
int SIM_MODEL::FindModelPinIndex( const wxString& aSymbolPinNumber )
{
for( int modelPinIndex = 0; modelPinIndex < GetPinCount(); ++modelPinIndex )
{
if( GetPin( modelPinIndex ).symbolPinNumber == aSymbolPinNumber )
return modelPinIndex;
}
return PIN::NOT_CONNECTED;
}
void SIM_MODEL::AddParam( const PARAM::INFO& aInfo, bool aIsOtherVariant )
{
m_params.emplace_back( aInfo, aIsOtherVariant );
}
std::vector<std::reference_wrapper<const SIM_MODEL::PIN>> SIM_MODEL::GetPins() const
{
std::vector<std::reference_wrapper<const PIN>> pins;
for( int modelPinIndex = 0; modelPinIndex < GetPinCount(); ++modelPinIndex )
pins.emplace_back( GetPin( modelPinIndex ) );
return pins;
}
const SIM_MODEL::PARAM& SIM_MODEL::GetParam( unsigned aParamIndex ) const
{
if( m_baseModel && m_params.at( aParamIndex ).value->ToString() == "" )
return m_baseModel->GetParam( aParamIndex );
else
return m_params.at( aParamIndex );
}
const SIM_MODEL::PARAM* SIM_MODEL::FindParam( const wxString& aParamName ) const
{
std::vector<std::reference_wrapper<const PARAM>> params = GetParams();
auto it = std::find_if( params.begin(), params.end(),
[aParamName]( const PARAM& param )
{
return param.info.name == aParamName.Lower();
} );
if( it == params.end() )
return nullptr;
return &it->get();
}
std::vector<std::reference_wrapper<const SIM_MODEL::PARAM>> SIM_MODEL::GetParams() const
{
std::vector<std::reference_wrapper<const PARAM>> params;
for( int i = 0; i < GetParamCount(); ++i )
params.emplace_back( GetParam( i ) );
return params;
}
const SIM_MODEL::PARAM& SIM_MODEL::GetUnderlyingParam( unsigned aParamIndex ) const
{
return m_params.at( aParamIndex );
}
const SIM_MODEL::PARAM& SIM_MODEL::GetBaseParam( unsigned aParamIndex ) const
{
if( m_baseModel )
return m_baseModel->GetParam( aParamIndex );
else
return m_params.at( aParamIndex );
}
bool SIM_MODEL::SetParamValue( unsigned aParamIndex, const wxString& aValue,
SIM_VALUE_GRAMMAR::NOTATION aNotation )
{
// Models sourced from a library are immutable.
if( m_spiceCode != "" )
return false;
return m_params.at( aParamIndex ).value->FromString( aValue.ToStdString(), aNotation );
}
bool SIM_MODEL::SetParamValue( const wxString& aParamName, const wxString& aValue,
SIM_VALUE_GRAMMAR::NOTATION aNotation )
{
std::vector<std::reference_wrapper<const PARAM>> params = GetParams();
auto it = std::find_if( params.begin(), params.end(),
[aParamName]( const PARAM& param )
{
return param.info.name == aParamName.Lower();
} );
if( it == params.end() )
return false;
return SetParamValue( it - params.begin(), aValue, aNotation );
}
bool SIM_MODEL::HasOverrides() const
{
for( const PARAM& param : m_params )
{
if( param.value->ToString() != "" )
return true;
}
return false;
}
bool SIM_MODEL::HasNonInstanceOverrides() const
{
for( const PARAM& param : m_params )
{
if( !param.info.isInstanceParam && param.value->ToString() != "" )
return true;
}
return false;
}
bool SIM_MODEL::HasSpiceNonInstanceOverrides() const
{
for( const PARAM& param : m_params )
{
if( !param.info.isSpiceInstanceParam && param.value->ToString() != "" )
return true;
}
return false;
}
SIM_MODEL::SIM_MODEL( TYPE aType ) :
SIM_MODEL( aType, std::make_unique<SPICE_GENERATOR>( *this ) )
{
}
SIM_MODEL::SIM_MODEL( TYPE aType, std::unique_ptr<SPICE_GENERATOR> aSpiceGenerator ) :
m_spiceGenerator( std::move( aSpiceGenerator ) ),
m_baseModel( nullptr ),
m_type( aType ),
m_isEnabled( true ),
m_isInferred( false )
{
}
void SIM_MODEL::CreatePins( unsigned aSymbolPinCount )
{
// Default pin sequence: model pins are the same as symbol pins.
// Excess model pins are set as Not Connected.
// Note that intentionally nothing is added if `getPinNames()` returns an empty vector.
// SIM_MODEL pins must be ordered by symbol pin numbers -- this is assumed by code that
// accesses them.
for( unsigned modelPinIndex = 0; modelPinIndex < getPinNames().size(); ++modelPinIndex )
{
if( modelPinIndex < aSymbolPinCount )
AddPin( { getPinNames().at( modelPinIndex ), wxString::FromCDouble( modelPinIndex + 1 ) } );
else
AddPin( { getPinNames().at( modelPinIndex ), "" } );
}
}
template void SIM_MODEL::WriteInferredDataFields( std::vector<SCH_FIELD>& aFields,
const wxString& aValue ) const;
template void SIM_MODEL::WriteInferredDataFields( std::vector<LIB_FIELD>& aFields,
const wxString& aValue ) const;
template <typename T>
void SIM_MODEL::WriteInferredDataFields( std::vector<T>& aFields, const wxString& aValue ) const
{
if( GetPinCount() == 2
&& GetPin( 0 ).symbolPinNumber == "1"
&& GetPin( 1 ).symbolPinNumber == "2" )
{
SetFieldValue( aFields, PINS_FIELD, "" );
}
SetFieldValue( aFields, VALUE_FIELD, aValue );
SetFieldValue( aFields, DEVICE_TYPE_FIELD, "" );
SetFieldValue( aFields, TYPE_FIELD, "" );
SetFieldValue( aFields, PARAMS_FIELD, "" );
SetFieldValue( aFields, DISABLED_FIELD, "" );
}
wxString SIM_MODEL::GenerateParamValuePair( const PARAM& aParam, bool& aIsFirst ) const
{
wxString result;
if( aIsFirst )
aIsFirst = false;
else
result << " ";
wxString name = aParam.info.name;
// Because of collisions with instance parameters, we append some model parameters with "_".
if( aParam.info.name.EndsWith( "_" ) )
name = aParam.info.name.BeforeLast( '_' );
wxString value = aParam.value->ToString();
if( value.Contains( " " ) )
value = "\"" + value + "\"";
result << aParam.info.name + "=" + value;
return result;
}
wxString SIM_MODEL::GenerateParamsField( const wxString& aPairSeparator ) const
{
wxString result;
bool isFirst = true;
for( const PARAM& param : m_params )
{
if( param.value->ToString() == "" )
continue;
result << GenerateParamValuePair( param, isFirst );
}
return result;
}
void SIM_MODEL::ParseParamsField( const wxString& aParamsField )
{
LOCALE_IO toggle;
tao::pegtl::string_input<> in( aParamsField.ToUTF8(), "Sim_Params" );
std::unique_ptr<tao::pegtl::parse_tree::node> root;
try
{
// Using parse tree instead of actions because we don't care about performance that much,
// and having a tree greatly simplifies some things.
root = tao::pegtl::parse_tree::parse<
SIM_MODEL_PARSER::fieldParamValuePairsGrammar,
SIM_MODEL_PARSER::fieldParamValuePairsSelector>
( in );
}
catch( const tao::pegtl::parse_error& e )
{
THROW_IO_ERROR( e.what() );
}
wxString paramName;
for( const auto& node : root->children )
{
if( node->is_type<SIM_MODEL_PARSER::param>() )
paramName = node->string();
// TODO: Do something with number<SIM_VALUE::TYPE_INT, ...>.
// It doesn't seem too useful?
else if( node->is_type<SIM_MODEL_PARSER::quotedStringContent>()
|| node->is_type<SIM_MODEL_PARSER::unquotedString>() )
{
wxASSERT( paramName != "" );
// TODO: Shouldn't be named "...fromSpiceCode" here...
SetParamValue( paramName, node->string(), SIM_VALUE_GRAMMAR::NOTATION::SI );
}
else if( node->is_type<SIM_MODEL_PARSER::quotedString>() )
{
wxASSERT( !paramName.IsEmpty() );
wxString str = node->string();
// Unescape quotes.
str.Replace( "\\\"", "\"" );
SetParamValue( paramName, str, SIM_VALUE_GRAMMAR::NOTATION::SI );
}
else
{
wxFAIL;
}
}
}
void SIM_MODEL::ParsePinsField( unsigned aSymbolPinCount, const wxString& aPinsField )
{
CreatePins( aSymbolPinCount );
if( aPinsField == "" )
return;
tao::pegtl::string_input<> in( aPinsField.ToUTF8(), PINS_FIELD );
std::unique_ptr<tao::pegtl::parse_tree::node> root;
try
{
root = tao::pegtl::parse_tree::parse<SIM_MODEL_PARSER::pinSequenceGrammar,
SIM_MODEL_PARSER::pinSequenceSelector>( in );
}
catch( const tao::pegtl::parse_error& e )
{
THROW_IO_ERROR( e.what() );
}
if( static_cast<int>( root->children.size() ) != GetPinCount() )
{
THROW_IO_ERROR( wxString::Format( _( "%s describes %lu pins, expected %u" ),
PINS_FIELD,
root->children.size(),
GetPinCount() ) );
}
for( int pinIndex = 0; pinIndex < static_cast<int>( root->children.size() ); ++pinIndex )
{
if( root->children.at( pinIndex )->string() == "~" )
SetPinSymbolPinNumber( pinIndex, "" );
else
SetPinSymbolPinNumber( pinIndex, root->children.at( pinIndex )->string() );
}
}
void SIM_MODEL::ParseDisabledField( const wxString& aDisabledField )
{
if( aDisabledField == "" )
return;
char c = aDisabledField.Lower()[0];
if( c == 'y' || c == 't' || c == '1' )
m_isEnabled = false;
}
bool SIM_MODEL::SetParamFromSpiceCode( const wxString& aParamName, const wxString& aParamValue,
SIM_VALUE_GRAMMAR::NOTATION aNotation )
{
return SetParamValue( aParamName, aParamValue, aNotation );
}
std::unique_ptr<SIM_MODEL> SIM_MODEL::create( TYPE aType )
{
switch( aType )
{
case TYPE::R:
case TYPE::C:
case TYPE::L:
return std::make_unique<SIM_MODEL_IDEAL>( aType );
case TYPE::L_MUTUAL:
return std::make_unique<SIM_MODEL_MUTUAL_INDUCTOR>();
case TYPE::R_BEHAVIORAL:
case TYPE::C_BEHAVIORAL:
case TYPE::L_BEHAVIORAL:
case TYPE::V_BEHAVIORAL:
case TYPE::I_BEHAVIORAL:
return std::make_unique<SIM_MODEL_BEHAVIORAL>( aType );
case TYPE::TLINE_Z0:
case TYPE::TLINE_RLGC:
return std::make_unique<SIM_MODEL_TLINE>( aType );
case TYPE::SW_V:
case TYPE::SW_I:
return std::make_unique<SIM_MODEL_SWITCH>( aType );
case TYPE::V:
case TYPE::I:
case TYPE::V_SIN:
case TYPE::I_SIN:
case TYPE::V_PULSE:
case TYPE::I_PULSE:
case TYPE::V_EXP:
case TYPE::I_EXP:
/*case TYPE::V_SFAM:
case TYPE::I_SFAM:
case TYPE::V_SFFM:
case TYPE::I_SFFM:*/
case TYPE::V_PWL:
case TYPE::I_PWL:
case TYPE::V_WHITENOISE:
case TYPE::I_WHITENOISE:
case TYPE::V_PINKNOISE:
case TYPE::I_PINKNOISE:
case TYPE::V_BURSTNOISE:
case TYPE::I_BURSTNOISE:
case TYPE::V_RANDUNIFORM:
case TYPE::I_RANDUNIFORM:
case TYPE::V_RANDNORMAL:
case TYPE::I_RANDNORMAL:
case TYPE::V_RANDEXP:
case TYPE::I_RANDEXP:
//case TYPE::V_RANDPOISSON:
//case TYPE::I_RANDPOISSON:
return std::make_unique<SIM_MODEL_SOURCE>( aType );
case TYPE::SUBCKT:
return std::make_unique<SIM_MODEL_SUBCKT>( aType );
case TYPE::XSPICE:
return std::make_unique<SIM_MODEL_XSPICE>( aType );
case TYPE::SPICE:
return std::make_unique<SIM_MODEL_SPICE>( aType );
default:
return std::make_unique<SIM_MODEL_NGSPICE>( aType );
}
}
TYPE SIM_MODEL::readTypeFromSpiceStrings( const wxString& aTypeString,
const wxString& aLevel,
const wxString& aVersion,
bool aSkipDefaultLevel )
{
std::unique_ptr<SIM_VALUE> readLevel = SIM_VALUE::Create( SIM_VALUE::TYPE_INT,
aLevel.ToStdString() );
for( TYPE type : TYPE_ITERATOR() )
{
wxString typePrefix = SpiceInfo( type ).modelType;
wxString level = SpiceInfo( type ).level;
wxString version = SpiceInfo( type ).version;
bool isDefaultLevel = SpiceInfo( type ).isDefaultLevel;
if( typePrefix == "" )
continue;
// Check if `aTypeString` starts with `typePrefix`.
if( aTypeString.Upper().StartsWith( typePrefix )
&& ( level == readLevel->ToString()
|| ( !aSkipDefaultLevel && isDefaultLevel && aLevel == "" ) )
&& version == aVersion )
{
return type;
}
}
// If the type string is not recognized, demote to a raw Spice element. This way the user won't
// have an error if there is a type KiCad does not recognize.
return TYPE::SPICE;
}
template <typename T>
void SIM_MODEL::doReadDataFields( unsigned aSymbolPinCount, const std::vector<T>* aFields )
{
ParseDisabledField( GetFieldValue( aFields, DISABLED_FIELD ) );
if( GetFieldValue( aFields, PARAMS_FIELD ) != "" )
{
ParsePinsField( aSymbolPinCount, GetFieldValue( aFields, PINS_FIELD ) );
ParseParamsField( GetFieldValue( aFields, PARAMS_FIELD ) );
}
else
InferredReadDataFields( aSymbolPinCount, aFields, true );
}
template <typename T>
void SIM_MODEL::InferredReadDataFields( unsigned aSymbolPinCount, const std::vector<T>* aFields,
bool aAllowOnlyFirstValue,
bool aAllowParamValuePairs )
{
ParsePinsField( aSymbolPinCount, GetFieldValue( aFields, PINS_FIELD ) );
if( InferTypeFromRefAndValue( GetFieldValue( aFields, REFERENCE_FIELD ),
GetFieldValue( aFields, VALUE_FIELD ) ) != GetType() )
{
// Not an inferred model. Nothing to do here.
return;
}
wxString valueField = GetFieldValue( aFields, VALUE_FIELD );
if( aAllowParamValuePairs ) // The usual param-value pairs have precedence.
{
try
{
ParseParamsField( GetFieldValue( aFields, VALUE_FIELD ) );
}
catch( const IO_ERROR& e )
{
if( GetParamCount() >= 1 )
{
if( aAllowOnlyFirstValue )
SetParamValue( 0, parseFieldFloatValue( valueField ) );
else
throw e;
}
}
}
else if( GetParamCount() >= 1 && aAllowOnlyFirstValue )
{
// This is reached only when model allows only the first value.
SetParamValue( 0, parseFieldFloatValue( valueField ) );
}
m_isInferred = true;
}
template void SIM_MODEL::InferredReadDataFields( unsigned aSymbolPinCount,
const std::vector<SCH_FIELD>* aFields,
bool aAllowOnlyFirstValue,
bool aAllowParamValuePairs );
template void SIM_MODEL::InferredReadDataFields( unsigned aSymbolPinCount,
const std::vector<LIB_FIELD>* aFields,
bool aAllowOnlyFirstValue,
bool aAllowParamValuePairs );
template <typename T>
void SIM_MODEL::doWriteFields( std::vector<T>& aFields ) const
{
SetFieldValue( aFields, DEVICE_TYPE_FIELD, generateDeviceTypeField() );
SetFieldValue( aFields, TYPE_FIELD, generateTypeField() );
SetFieldValue( aFields, PINS_FIELD, generatePinsField() );
SetFieldValue( aFields, PARAMS_FIELD, GenerateParamsField( " " ) );
SetFieldValue( aFields, DISABLED_FIELD, generateDisabledField() );
}
wxString SIM_MODEL::generateDeviceTypeField() const
{
return DeviceTypeInfo( TypeInfo( m_type ).deviceType ).fieldValue;
}
wxString SIM_MODEL::generateTypeField() const
{
return TypeInfo( m_type ).fieldValue;
}
wxString SIM_MODEL::generatePinsField() const
{
wxString result = "";
bool isFirst = true;
for( const PIN& pin : GetPins() )
{
if( isFirst )
isFirst = false;
else
result << " ";
if( pin.symbolPinNumber == "" )
result << "~";
else
result << pin.symbolPinNumber; // Note that it's numbered from 1.
}
return result;
}
wxString SIM_MODEL::generateDisabledField() const
{
return m_isEnabled ? "" : "1";
}
wxString SIM_MODEL::parseFieldFloatValue( wxString aFieldFloatValue )
{
try
{
tao::pegtl::string_input<> in( aFieldFloatValue.ToUTF8(), "Value" );
auto root = tao::pegtl::parse_tree::parse<
SIM_MODEL_PARSER::fieldFloatValueGrammar,
SIM_MODEL_PARSER::fieldFloatValueSelector>
( in );
return root->children[0]->string();
}
catch( const tao::pegtl::parse_error& )
{
THROW_IO_ERROR( wxString::Format( _( "Failed to infer model from Value '%s'" ),
aFieldFloatValue ) );
}
}
bool SIM_MODEL::requiresSpiceModelLine() const
{
for( const PARAM& param : GetParams() )
{
if( !param.info.isSpiceInstanceParam )
return true;
}
return false;
}