kicad/include/length.h

429 lines
10 KiB
C++

/**
* @file length.h
* @brief The physical length library. Made for nanometer scale.
*/
/* sorry if it is not styled correctly, i'll work on it further */
#ifndef LENGTH_H_INCLUDED
#define LENGTH_H_INCLUDED 1
#include <math.h>
template < typename T = double, int P = 1 > class LENGTH;
template <typename T> class LENGTH_UNITS;
/*!
* The template that "inflate" LENGTH< T, 0 > class to T. Used with (*) and (/).
*/
template < typename T, int P > struct LENGTH_TRAITS
{
typedef LENGTH<T, P> flat;
};
template < typename T > struct LENGTH_TRAITS< T, 0 >
{
/* length dimension to power 0 is just a number, so LENGTH<T, 0> should be automatically converted to T */
typedef T flat;
};
/*!
* The template for value type conversions
*/
template < typename T > struct LENGTH_CASTS
{
/*! This function to convert length value to given type T. */
template< typename X > static T nearest( const X x )
{
return T( x );
}
};
template <> struct LENGTH_CASTS < int >
{
static int nearest( const double x )
{
return floor( x + 0.5 );
}
};
template <> struct LENGTH_CASTS < long >
{
static long nearest( const double x )
{
return floor( x + 0.5 );
}
};
/** Forward declaration for LIMITED_INT to use with casts. */
template < typename T > class LIMITED_INT;
template < typename T > struct LENGTH_CASTS < LIMITED_INT< T > >
{
static LIMITED_INT< T > nearest( const double x )
{
return LIMITED_INT< T > ( floor( x + 0.5 ) );
}
};
/**
* Length template class.
* @param T actual type holding a value (be aware of precision and range!)
* @param P power of length unit: 1 - length, 2 - area, 3 - volume, -1 - lin. density etc...
* This class check length dimension in compile time. In runtime it behaves
* exactly like contained type t (which should be numeric type, like int or double)
* This class can be replaced with its contained type or simple stub.
* Check rules:
* - comparisons (< = etc.), addition, subtraction require values of same dimension
* e. g. length with length, area with area etc.
* - multiplication and division result have appropriate dimension (powers
* added and subtracted respectively)
* - sqrt and cbrt have appropriate dimensions (P/2 and P/3).
* Limitations:
* - functions which should not be applied to dimensioned values are not implemeted:
* they include algebraic (exp, log...), trigo (sin, cos...), hyperbolic (sinh, cosh..)
* - pow function is not implemented as it is require dimension check in runtime
* you should use multiplication, division, sqrt and cbrt functions instead.
* - sqrt and cbrt result type should be instantiated before they used
* Be aware when using them in complex formulae, e. g.
* LENGTH< double, 1 > len = cbrt(vol) - is ok, but
* LENGTH< double, 3 > vol = sqrt(area*area*area*area)/length - will fail
* if LENGTH<..., 4> is not instantiated
* - non-integer power values do not supported
* they should be implemented carefully using natural fractions, not floats, to be exact
* but they are very rare so you should not worry about.
* e. g. linear electric noise density should be in mV/sqrt(m)
* - automatic numeric type casts are not performed. You even have to manually
* cast LENGTH< short > to LENGTH< int > or LENGTH< float >
* to LENGTH< double >. Anyway it is not such trouble as progremmer should be
* very careful when mixing numeric types and avoid automatic casts.
*
*/
template< typename T, int P > class LENGTH
{
friend class LENGTH_UNITS< T >;
friend class LENGTH_TRAITS< T, P >;
template < typename Y, int R > friend class LENGTH;
protected:
T u;
/**
* The 'direct' constructor which should not be accessed from outside
*/
LENGTH( T units ) : u( units )
{
}
public:
typedef T value_type;
enum
{
dimension = P
};
template< typename U > LENGTH( const LENGTH< U, P > &orig )
: u( LENGTH_CASTS < T >::nearest( orig.u ) )
{
}
LENGTH( void ) : u()
{
}
/**
* Zero length of given type
* @return A zero
*/
static LENGTH<T, P> zero ( void )
{
return T(0);
}
/**
* Internal unit. Service function. Do not use this, please!
* @return An internal unit
*/
static LENGTH<T, P> quantum ( void )
{
return T(1);
}
LENGTH<T, P> & operator = ( const LENGTH<T, P> & y )
{
this->u = y.u;
return *this;
}
/** @} */
/**
* @defgroup length-comparisons Comparisons and tests
* @{
*/
bool operator ==( const LENGTH < T, P > y ) const
{
return u == y.u;
}
bool operator !=( const LENGTH < T, P > y ) const
{
return u != y.u;
}
bool operator <( const LENGTH < T, P > y ) const
{
return u < y.u;
}
bool operator >=( const LENGTH < T, P > y ) const
{
return u >= y.u;
}
bool operator >( const LENGTH < T, P > y ) const
{
return u > y.u;
}
bool operator <=( const LENGTH < T, P > y ) const
{
return u <= y.u;
}
bool operator !( void ) const
{
return !u;
}
/** @} */
/**
* @defgroup length-arithmetic Basic arithmetic
* @{
*/
LENGTH< T, P > operator - ( void ) const
{
LENGTH< T, P > z;
z.u = -u;
return z;
}
LENGTH< T, P >& operator -= ( const LENGTH< T, P > y )
{
u -= y.u;
return *this;
}
friend LENGTH< T, P > operator - ( const LENGTH< T, P > x, const LENGTH< T, P > y )
{
LENGTH< T, P > z = x;
z -= y;
return z;
}
LENGTH< T, P >& operator += ( const LENGTH< T, P > y )
{
u += y.u;
return *this;
}
friend LENGTH< T, P > operator + ( const LENGTH< T, P > x, const LENGTH< T, P > y )
{
LENGTH< T, P > z = x;
z += y;
return z;
}
LENGTH< T, P >& operator *= ( const T y )
{
u *= y;
return *this;
}
LENGTH< T, P > operator * ( const T & y) const
{
LENGTH< T, P > z = *this;
z *= y;
return z;
}
template < int R >
typename LENGTH_TRAITS< T, P + R >::flat operator * ( const LENGTH<T, R> &y ) const
{
LENGTH< T, P + R > z;
z.u = u * y.u;
return z;
}
LENGTH< T, P > friend operator * ( const T &y, const LENGTH<T, P> &x )
{
return x.u * y;
}
LENGTH< T, P >& operator /= ( const T y )
{
u /= y;
return *this;
}
LENGTH< T, P > operator / ( const T &y ) const
{
return u / y;
}
template < int R >
typename LENGTH_TRAITS< T, P - R >::flat operator / ( const LENGTH< T, R > &y ) const
{
return u / y.u;
}
LENGTH< T, -P > friend operator / ( const T &y, const LENGTH< T, P > &x )
{
return y / x.u;
}
/** @} */
/**
* @defgroup length-algebra Algebraic functions
* @{
*/
/** Absolute value. */
friend LENGTH< T, P > abs( LENGTH< T, P > y )
{
return 0 < y.u? y : -y;
}
/** Maximum of two values. */
friend LENGTH< T, P > max( LENGTH< T, P > x, LENGTH< T, P > y )
{
LENGTH< T, P > z;
z.u = max( x.u, y.u );
return z;
}
/** Minimum of two values. */
friend LENGTH< T, P > min( LENGTH< T, P > x, LENGTH< T, P > y )
{
LENGTH< T, P > z;
z.u = min( x.u, y.u );
return z;
}
/** Square root. */
friend LENGTH< T, P > sqrt( LENGTH< T, P*2 > y )
{
LENGTH< T, P > z;
z.u = sqrt( y.u );
return z;
}
/** Cubic root. */
friend LENGTH< T, P > cbrt( LENGTH< T, P*3 > y )
{
LENGTH< T, P > z;
z.u = cbrt( y.u );
return z;
}
/** Hypothenuse of a triangle given katheti. */
friend LENGTH< T, P > hypot( LENGTH< T, P > x, LENGTH< T, P > y )
{
LENGTH< T, P > z;
z.u = hypot( x.u, y.u );
return z;
}
/** Direction of vector given cartesian coords. */
friend double atan2( LENGTH< T, P > x, LENGTH< T, P > y )
{
return atan2( double ( x.u ), double( y.u ) );
}
/** @} */
};
/*!
* Units of length
*
* How to use them:
* there are several functions, named LENGTH_UNITS< T >::METRE, which return
* named unit (1 meter in example) which have type LENGTH< T, P >.
* to get specific length you should use a multiplication:
* 3*LENGTH_UNITS::metre() gives 3 metres
* 0.01*LENGTH_UNITS::metre() gives 0.01 inch
* to get numeric value of length in specific units you should use a division
* length/LENGTH_UNITS::metre() gives number of metres in length
* legnth/LENGTH_UNITS::foot() gives number of feet in length
*
* Really these units are used in NEWPCB and printing routines, as EESCHEMA
* is going to use relative units.
*/
template < typename T > class LENGTH_UNITS {
protected:
enum
{
METRE = 1000000000, /*!< The ONLY constant connecting length to the real world */
INCH = METRE / 10000 * 254
};
public:
/** One metre. */
static LENGTH< T, 1 > metre( void )
{
return T( METRE );
}
/** One decimetre, 0.1 m. */
static LENGTH< T, 1 > decimetre( void )
{
return T( METRE / 10 );
}
/** One centimetre, 0.01 m. */
static LENGTH< T, 1 > centimetre( void )
{
return T( METRE / 100 );
}
/** One millimetre, 0.001 m. */
static LENGTH< T, 1 > millimetre( void )
{
return T( METRE / 1000 );
}
/** One micrometre, 1E-6 m. */
static LENGTH< T, 1 > micrometre( void )
{
return T( METRE / 1000000 );
}
/** One foot, 304.8 mm, 12 inch. */
static LENGTH< T, 1 > foot( void )
{
return T( INCH * 12 );
}
/** One inch, 25.4 mm, 1/12 feet. */
static LENGTH< T, 1 > inch( void )
{
return T( INCH );
}
/** One mil (or thou), 0.001 inch . */
static LENGTH< T, 1 > mil( void )
{
return T( INCH / 1000 );
}
};
/**
* Shortcut to get units of given length type
*/
template < typename T, int D > class LENGTH_UNITS< LENGTH< T, D > >: public LENGTH_UNITS< T >
{
};
#endif /* def LENGTH_H_INCLUDED */