kicad/pcbnew/router/pns_line.cpp

1153 lines
28 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2017 CERN
* Copyright (C) 2016-2020 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <core/optional.h>
#include <math/box2.h>
#include <math/vector2d.h>
#include "pns_line.h"
#include "pns_node.h"
#include "pns_via.h"
#include "pns_utils.h"
#include <geometry/shape_rect.h>
namespace PNS {
LINE::LINE( const LINE& aOther )
: LINK_HOLDER( aOther ),
m_line( aOther.m_line ),
m_width( aOther.m_width ),
m_snapThreshhold( aOther.m_snapThreshhold )
{
m_net = aOther.m_net;
m_movable = aOther.m_movable;
m_layers = aOther.m_layers;
m_via = aOther.m_via;
m_hasVia = aOther.m_hasVia;
m_marker = aOther.m_marker;
m_rank = aOther.m_rank;
m_blockingObstacle = aOther.m_blockingObstacle;
copyLinks( &aOther );
}
LINE::~LINE()
{
}
LINE& LINE::operator=( const LINE& aOther )
{
m_line = aOther.m_line;
m_width = aOther.m_width;
m_net = aOther.m_net;
m_movable = aOther.m_movable;
m_layers = aOther.m_layers;
m_via = aOther.m_via;
m_hasVia = aOther.m_hasVia;
m_marker = aOther.m_marker;
m_rank = aOther.m_rank;
m_owner = aOther.m_owner;
m_snapThreshhold = aOther.m_snapThreshhold;
m_blockingObstacle = aOther.m_blockingObstacle;
copyLinks( &aOther );
return *this;
}
LINE* LINE::Clone() const
{
LINE* l = new LINE( *this );
return l;
}
void LINE::Mark( int aMarker ) const
{
m_marker = aMarker;
for( const LINKED_ITEM* s : m_links )
s->Mark( aMarker );
}
void LINE::Unmark( int aMarker ) const
{
for( const LINKED_ITEM* s : m_links )
s->Unmark( aMarker );
m_marker = 0;
}
int LINE::Marker() const
{
int marker = m_marker;
for( auto s : m_links )
{
marker |= s->Marker();
}
return marker;
}
SEGMENT* SEGMENT::Clone() const
{
SEGMENT* s = new SEGMENT;
s->m_seg = m_seg;
s->m_net = m_net;
s->m_layers = m_layers;
s->m_marker = m_marker;
s->m_rank = m_rank;
return s;
}
int LINE::CountCorners( int aAngles ) const
{
int count = 0;
for( int i = 0; i < m_line.SegmentCount() - 1; i++ )
{
const SEG seg1 = m_line.CSegment( i );
const SEG seg2 = m_line.CSegment( i + 1 );
const DIRECTION_45 dir1( seg1 );
const DIRECTION_45 dir2( seg2 );
DIRECTION_45::AngleType a = dir1.Angle( dir2 );
if( a & aAngles )
count++;
}
return count;
}
bool LINE::Walkaround( const SHAPE_LINE_CHAIN& aObstacle, SHAPE_LINE_CHAIN& aPath, bool aCw ) const
{
const SHAPE_LINE_CHAIN& line( CLine() );
if( line.SegmentCount() < 1 )
{
return false;
}
const auto pFirst = line.CPoint(0);
const auto pLast = line.CPoint(-1);
bool inFirst = aObstacle.PointInside( pFirst ) && !aObstacle.PointOnEdge( pFirst );
bool inLast = aObstacle.PointInside( pLast ) && !aObstacle.PointOnEdge( pLast );
// We can't really walk around if the beginning or the end of the path lies inside the obstacle hull.
// Double check if it's not on the hull itself as this triggers many unroutable corner cases.
if( inFirst || inLast )
{
return false;
}
enum VERTEX_TYPE { INSIDE = 0, OUTSIDE, ON_EDGE };
// Represents an entry in directed graph of hull/path vertices. Scanning this graph
// starting from the path's first point results (if possible) with a correct walkaround path
struct VERTEX
{
// vertex classification (inside/outside/exactly on the hull)
VERTEX_TYPE type;
// true = vertex coming from the hull primitive
bool isHull;
// position
VECTOR2I pos;
// list of neighboring vertices
std::vector<VERTEX*> neighbours;
// index of this vertex in path (pnew)
int indexp = -1;
// index of this vertex in the hull (hnew)
int indexh = -1;
// visited indicator (for BFS search)
bool visited = false;
};
SHAPE_LINE_CHAIN::INTERSECTIONS ips;
line.Intersect( aObstacle, ips );
SHAPE_LINE_CHAIN pnew( CLine() ), hnew( aObstacle );
std::vector<VERTEX> vts;
auto findVertex = [&]( VECTOR2I pos) -> VERTEX*
{
for( VERTEX& v : vts )
{
if(v.pos == pos )
return &v;
}
return nullptr;
};
// make sure all points that lie on the edge of the hull also exist as vertices in the path
for( int i = 0; i < pnew.PointCount(); i++ )
{
const VECTOR2I &p = pnew.CPoint(i);
if( hnew.PointOnEdge( p ) )
{
SHAPE_LINE_CHAIN::INTERSECTION ip;
ip.p = p;
ips.push_back( ip );
}
}
// insert all intersections found into the new hull/path SLCs
for( auto& ip : ips )
{
if( pnew.Find( ip.p ) < 0 )
{
pnew.Split(ip.p);
}
if( hnew.Find( ip.p ) < 0 )
{
hnew.Split(ip.p);
}
}
// we assume the default orientation of the hulls is clockwise, so just reverse the vertex
// order if the caller wants a counter-clockwise walkaround
if ( !aCw )
hnew = hnew.Reverse();
vts.reserve( 2 * ( hnew.PointCount() + pnew.PointCount() ) );
// create a graph of hull/path vertices and classify them (inside/on edge/outside the hull)
for( int i = 0; i < pnew.PointCount(); i++ )
{
auto p = pnew.CPoint(i);
bool onEdge = hnew.PointOnEdge( p );
bool inside = hnew.PointInside( p );
VERTEX v;
v.indexp = i;
v.isHull = false;
v.pos = p;
v.type = inside && !onEdge ? INSIDE : onEdge ? ON_EDGE : OUTSIDE;
vts.push_back( v );
}
// each path vertex neighbour list points for sure to the next vertex in the path
for( int i = 0; i < pnew.PointCount() - 1; i++ )
{
vts[i].neighbours.push_back( &vts[ i+1 ] );
}
// insert hull vertices into the graph
for( int i = 0; i < hnew.PointCount(); i++ )
{
auto hp = hnew.CPoint( i );
auto vn = findVertex( hp );
// if vertex already present (it's very likely that in recursive shoving hull and path vertices will overlap)
// just mark it as a path vertex that also belongs to the hull
if( vn )
{
vn->isHull = true;
vn->indexh = i;
}
else // new hull vertex
{
VERTEX v;
v.pos = hp;
v.type = ON_EDGE;
v.indexh = i;
v.isHull = true;
vts.push_back( v );
}
}
// go around the hull and fix up the neighbour link lists
for( int i = 0; i < hnew.PointCount(); i++ )
{
auto vc = findVertex( hnew.CPoint(i ) );
auto vnext = findVertex( hnew.CPoint( i+1 ) );
if(vc && vnext)
vc->neighbours.push_back(vnext);
}
// vts[0] = start point
VERTEX* v = &vts[0];
SHAPE_LINE_CHAIN out;
int iterLimit = 1000;
// keep scanning the graph until we reach the end point of the path
while ( v->indexp != (pnew.PointCount() - 1) )
{
iterLimit--;
// I'm not 100% sure this algorithm doesn't have bugs that may cause it to freeze,
// so here's a temporary iteration limit
if( iterLimit == 0 )
{
return false;
}
if(v->visited)
{
// loop found? clip to beginning of the loop
out = out.Slice(0, out.Find( v->pos ) );
break;
}
out.Append( v->pos );
VERTEX* v_next = nullptr;
if (v->type == OUTSIDE)
{
// current vertex is outside? first look for any vertex further down the path
// that is not inside the hull
out.Append(v->pos);
for( auto vn : v->neighbours )
{
if( (vn->indexp > v->indexp) && vn->type != INSIDE )
{
v_next = vn;
break;
}
}
// such a vertex must always be present, if not, bummer.
if (!v_next)
return false;
}
else if (v->type == ON_EDGE)
{
// current vertex lies on the hull? first look for the hull/path vertex with the index (N+1)
for( VERTEX* vn: v->neighbours)
{
if( vn->type == ON_EDGE &&
( vn->indexp == ( v->indexp + 1 ) ) &&
( vn->indexh == ( ( v->indexh + 1 ) % hnew.PointCount() ) ) )
{
v_next = vn;
break;
}
}
// nothing found? look for the first vertex outside the hull then
if( !v_next )
{
for( VERTEX* vn: v->neighbours)
{
if( vn->type == OUTSIDE )
{
v_next = vn;
break;
}
}
}
// still nothing found? try to find the next (index-wise) point on the hull. I guess
// we should never reach this part of the code, but who really knows?
if( !v_next )
{
for( VERTEX* vn: v->neighbours)
{
if ( vn->type == ON_EDGE )
{
if( vn->indexh == ( (v->indexh + 1) % hnew.PointCount() ) )
{
v_next = vn;
break;
}
}
}
}
}
v->visited = true;
v = v_next;
if( !v )
return false;
}
out.Append( v->pos );
out.Simplify();
aPath = out;
return true;
}
const SHAPE_LINE_CHAIN SEGMENT::Hull( int aClearance, int aWalkaroundThickness, int aLayer ) const
{
return SegmentHull( m_seg, aClearance, aWalkaroundThickness );
}
bool LINE::Is45Degree() const
{
for( int i = 0; i < m_line.SegmentCount(); i++ )
{
const SEG& s = m_line.CSegment( i );
if( m_line.isArc( i ) )
continue;
if( s.Length() < 10 )
continue;
double angle = 180.0 / M_PI *
atan2( (double) s.B.y - (double) s.A.y,
(double) s.B.x - (double) s.A.x );
if( angle < 0 )
angle += 360.0;
double angle_a = fabs( fmod( angle, 45.0 ) );
if( angle_a > 1.0 && angle_a < 44.0 )
return false;
}
return true;
}
const LINE LINE::ClipToNearestObstacle( NODE* aNode ) const
{
const int IterationLimit = 5;
int i;
LINE l( *this );
for( i = 0; i < IterationLimit; i++ )
{
NODE::OPT_OBSTACLE obs = aNode->NearestObstacle( &l );
if( obs )
{
l.RemoveVia();
int p = l.Line().Split( obs->m_ipFirst );
l.Line().Remove( p + 1, -1 );
} else
break;
}
if( i == IterationLimit )
l.Line().Clear();
return l;
}
SHAPE_LINE_CHAIN dragCornerInternal( const SHAPE_LINE_CHAIN& aOrigin, const VECTOR2I& aP )
{
OPT<SHAPE_LINE_CHAIN> picked;
int i;
int d = 2;
wxASSERT( aOrigin.PointCount() > 0 );
if( aOrigin.PointCount() == 1 )
{
return DIRECTION_45().BuildInitialTrace( aOrigin.CPoint( 0 ), aP );
}
else if( aOrigin.SegmentCount() == 1 )
{
DIRECTION_45 dir( aOrigin.CPoint( 0 ) - aOrigin.CPoint( 1 ) );
return DIRECTION_45().BuildInitialTrace( aOrigin.CPoint( 0 ), aP, dir.IsDiagonal() );
}
if( aOrigin.CSegment( -1 ).Length() > 100000 * 30 ) // fixme: constant/parameter?
d = 1;
for( i = aOrigin.SegmentCount() - d; i >= 0; i-- )
{
DIRECTION_45 d_start( aOrigin.CSegment( i ) );
VECTOR2I p_start = aOrigin.CPoint( i );
SHAPE_LINE_CHAIN paths[2];
DIRECTION_45 dirs[2];
DIRECTION_45 d_prev = ( i > 0 ? DIRECTION_45( aOrigin.CSegment( i-1 ) ) : DIRECTION_45() );
int dirCount = 0;
for( int j = 0; j < 2; j++ )
{
paths[j] = d_start.BuildInitialTrace( p_start, aP, j );
if( paths[j].SegmentCount() < 1 )
continue;
assert( dirCount < int( sizeof( dirs ) / sizeof( dirs[0] ) ) );
dirs[dirCount] = DIRECTION_45( paths[j].CSegment( 0 ) );
++dirCount;
}
for( int j = 0; j < dirCount; j++ )
{
if( dirs[j] == d_start )
{
picked = paths[j];
break;
}
}
if( picked )
break;
for( int j = 0; j < dirCount; j++ )
{
if( dirs[j].IsObtuse( d_prev ) )
{
picked = paths[j];
break;
}
}
if( picked )
break;
}
if( picked )
{
SHAPE_LINE_CHAIN path = aOrigin.Slice( 0, i );
path.Append( *picked );
return path;
}
DIRECTION_45 dir( aOrigin.CPoint( -1 ) - aOrigin.CPoint( -2 ) );
return DIRECTION_45().BuildInitialTrace( aOrigin.CPoint( 0 ), aP, dir.IsDiagonal() );
}
void LINE::dragCorner45( const VECTOR2I& aP, int aIndex )
{
SHAPE_LINE_CHAIN path;
int width = m_line.Width();
VECTOR2I snapped = snapDraggedCorner( m_line, aP, aIndex );
if( aIndex == 0 )
path = dragCornerInternal( m_line.Reverse(), snapped ).Reverse();
else if( aIndex == m_line.SegmentCount() )
path = dragCornerInternal( m_line, snapped );
else
{
// Are we next to an arc? Insert a new point so we slice correctly
if( m_line.CShapes()[aIndex + 1] >= 0 )
m_line.Insert( aIndex + 1, m_line.CPoint( aIndex + 1 ) );
// fixme: awkward behaviour for "outwards" drags
path = dragCornerInternal( m_line.Slice( 0, aIndex ), snapped );
SHAPE_LINE_CHAIN path_rev =
dragCornerInternal( m_line.Slice( aIndex + 1, -1 ).Reverse(), snapped ).Reverse();
path.Append( path_rev );
}
path.Simplify();
path.SetWidth( width );
m_line = path;
}
void LINE::dragCornerFree( const VECTOR2I& aP, int aIndex )
{
const std::vector<ssize_t>& shapes = m_line.CShapes();
// If we're asked to drag the end of an arc, insert a new vertex to drag instead
if( shapes[aIndex] >= 0 )
{
if( aIndex > 0 && shapes[aIndex - 1] == -1 )
m_line.Insert( aIndex, m_line.GetPoint( aIndex ) );
else if( aIndex < shapes.size() - 1 && shapes[aIndex + 1] != shapes[aIndex] )
{
aIndex++;
m_line.Insert( aIndex, m_line.GetPoint( aIndex ) );
}
else
wxASSERT_MSG( false, "Attempt to dragCornerFree in the middle of an arc!" );
}
m_line.SetPoint( aIndex, aP );
m_line.Simplify();
}
void LINE::DragCorner( const VECTOR2I& aP, int aIndex, bool aFreeAngle )
{
wxCHECK_RET( aIndex >= 0, "Negative index passed to LINE::DragCorner" );
if( aFreeAngle )
{
dragCornerFree( aP, aIndex );
}
else
{
dragCorner45( aP, aIndex );
}
}
void LINE::DragSegment( const VECTOR2I& aP, int aIndex, bool aFreeAngle )
{
if( aFreeAngle )
{
assert( false );
}
else
{
dragSegment45( aP, aIndex );
}
}
VECTOR2I LINE::snapDraggedCorner(
const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP, int aIndex ) const
{
int s_start = std::max( aIndex - 2, 0 );
int s_end = std::min( aIndex + 2, aPath.SegmentCount() - 1 );
int i, j;
int best_dist = INT_MAX;
VECTOR2I best_snap = aP;
if( m_snapThreshhold <= 0 )
return aP;
for( i = s_start; i <= s_end; i++ )
{
const SEG& a = aPath.CSegment( i );
for( j = s_start; j < i; j++ )
{
const SEG& b = aPath.CSegment( j );
if( !( DIRECTION_45( a ).IsObtuse( DIRECTION_45( b ) ) ) )
continue;
OPT_VECTOR2I ip = a.IntersectLines( b );
if( ip )
{
int dist = ( *ip - aP ).EuclideanNorm();
if( dist < m_snapThreshhold && dist < best_dist )
{
best_dist = dist;
best_snap = *ip;
}
}
}
}
return best_snap;
}
VECTOR2I LINE::snapToNeighbourSegments(
const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP, int aIndex ) const
{
VECTOR2I snap_p[2];
DIRECTION_45 dragDir( aPath.CSegment( aIndex ) );
int snap_d[2] = { -1, -1 };
if( m_snapThreshhold == 0 )
return aP;
if( aIndex >= 2 )
{
SEG s = aPath.CSegment( aIndex - 2 );
if( DIRECTION_45( s ) == dragDir )
snap_d[0] = s.LineDistance( aP );
snap_p[0] = s.A;
}
if( aIndex < aPath.SegmentCount() - 2 )
{
SEG s = aPath.CSegment( aIndex + 2 );
if( DIRECTION_45( s ) == dragDir )
snap_d[1] = s.LineDistance( aP );
snap_p[1] = s.A;
}
VECTOR2I best = aP;
int minDist = INT_MAX;
for( int i = 0; i < 2; i++ )
{
if( snap_d[i] >= 0 && snap_d[i] < minDist && snap_d[i] <= m_snapThreshhold )
{
minDist = snap_d[i];
best = snap_p[i];
}
}
return best;
}
void LINE::dragSegment45( const VECTOR2I& aP, int aIndex )
{
SHAPE_LINE_CHAIN path( m_line );
VECTOR2I target( aP );
wxASSERT( aIndex < m_line.PointCount() );
SEG guideA[2], guideB[2];
int index = aIndex;
target = snapToNeighbourSegments( path, aP, aIndex );
const std::vector<ssize_t>& shapes = path.CShapes();
// We require a valid s_prev and s_next. If we are at the start or end of the line, we insert
// a new point at the start or end so there is a zero-length segment for prev or next (we will
// resize it as part of the drag operation). If we are next to an arc, we do this also, as we
// cannot drag away one of the arc's points.
if( index == 0 || shapes[index] >= 0 )
{
path.Insert( index > 0 ? index + 1 : 0, path.CPoint( index ) );
index++;
}
if( index == path.SegmentCount() - 1 )
{
path.Insert( path.PointCount() - 1, path.CPoint( -1 ) );
}
else if( shapes[index + 1] >= 0 )
{
path.Insert( index + 1, path.CPoint( index + 1 ) );
}
SEG dragged = path.CSegment( index );
DIRECTION_45 drag_dir( dragged );
SEG s_prev = path.CSegment( index - 1 );
SEG s_next = path.CSegment( index + 1 );
DIRECTION_45 dir_prev( s_prev );
DIRECTION_45 dir_next( s_next );
if( dir_prev == drag_dir )
{
dir_prev = dir_prev.Left();
path.Insert( index, path.CPoint( index ) );
index++;
}
else if( dir_prev == DIRECTION_45::UNDEFINED )
{
dir_prev = drag_dir.Left();
}
if( dir_next == drag_dir )
{
dir_next = dir_next.Right();
path.Insert( index + 1, path.CPoint( index + 1 ) );
}
else if( dir_next == DIRECTION_45::UNDEFINED )
{
dir_next = drag_dir.Right();
}
s_prev = path.CSegment( index - 1 );
s_next = path.CSegment( index + 1 );
dragged = path.CSegment( index );
if( aIndex == 0 )
{
guideA[0] = SEG( dragged.A, dragged.A + drag_dir.Right().ToVector() );
guideA[1] = SEG( dragged.A, dragged.A + drag_dir.Left().ToVector() );
}
else
{
if( dir_prev.Angle( drag_dir )
& ( DIRECTION_45::ANG_OBTUSE | DIRECTION_45::ANG_HALF_FULL ) )
{
guideA[0] = SEG( s_prev.A, s_prev.A + drag_dir.Left().ToVector() );
guideA[1] = SEG( s_prev.A, s_prev.A + drag_dir.Right().ToVector() );
}
else
guideA[0] = guideA[1] = SEG( dragged.A, dragged.A + dir_prev.ToVector() );
}
if( aIndex == m_line.SegmentCount() - 1 )
{
guideB[0] = SEG( dragged.B, dragged.B + drag_dir.Right().ToVector() );
guideB[1] = SEG( dragged.B, dragged.B + drag_dir.Left().ToVector() );
}
else
{
if( dir_next.Angle( drag_dir )
& ( DIRECTION_45::ANG_OBTUSE | DIRECTION_45::ANG_HALF_FULL ) )
{
guideB[0] = SEG( s_next.B, s_next.B + drag_dir.Left().ToVector() );
guideB[1] = SEG( s_next.B, s_next.B + drag_dir.Right().ToVector() );
}
else
guideB[0] = guideB[1] = SEG( dragged.B, dragged.B + dir_next.ToVector() );
}
SEG s_current( target, target + drag_dir.ToVector() );
int best_len = INT_MAX;
SHAPE_LINE_CHAIN best;
for( int i = 0; i < 2; i++ )
{
for( int j = 0; j < 2; j++ )
{
OPT_VECTOR2I ip1 = s_current.IntersectLines( guideA[i] );
OPT_VECTOR2I ip2 = s_current.IntersectLines( guideB[j] );
SHAPE_LINE_CHAIN np;
if( !ip1 || !ip2 )
continue;
SEG s1( s_prev.A, *ip1 );
SEG s2( *ip1, *ip2 );
SEG s3( *ip2, s_next.B );
OPT_VECTOR2I ip;
if( ( ip = s1.Intersect( s_next ) ) )
{
np.Append( s1.A );
np.Append( *ip );
np.Append( s_next.B );
}
else if( ( ip = s3.Intersect( s_prev ) ) )
{
np.Append( s_prev.A );
np.Append( *ip );
np.Append( s3.B );
}
else if( ( ip = s1.Intersect( s3 ) ) )
{
np.Append( s_prev.A );
np.Append( *ip );
np.Append( s_next.B );
}
else
{
np.Append( s_prev.A );
np.Append( *ip1 );
np.Append( *ip2 );
np.Append( s_next.B );
}
if( np.Length() < best_len )
{
best_len = np.Length();
best = np;
}
}
}
if( m_line.PointCount() == 1 )
m_line = best;
else if( aIndex == 0 )
m_line.Replace( 0, 1, best );
else if( aIndex == m_line.SegmentCount() - 1 )
m_line.Replace( -2, -1, best );
else
m_line.Replace( aIndex, aIndex + 1, best );
m_line.Simplify();
}
bool LINE::CompareGeometry( const LINE& aOther )
{
return m_line.CompareGeometry( aOther.m_line );
}
void LINE::Reverse()
{
m_line = m_line.Reverse();
std::reverse( m_links.begin(), m_links.end() );
}
void LINE::AppendVia( const VIA& aVia )
{
if( m_line.PointCount() > 1 && aVia.Pos() == m_line.CPoint( 0 ) )
{
Reverse();
}
m_hasVia = true;
m_via = aVia;
m_via.SetNet( m_net );
}
void LINE::SetRank( int aRank )
{
m_rank = aRank;
for( auto s : m_links )
s->SetRank( aRank );
}
int LINE::Rank() const
{
int min_rank = INT_MAX;
if( IsLinked() ) {
for( auto s : m_links )
{
min_rank = std::min( min_rank, s->Rank() );
}
} else {
min_rank = m_rank;
}
int rank = ( min_rank == INT_MAX ) ? -1 : min_rank;
return rank;
}
void LINE::ClipVertexRange( int aStart, int aEnd )
{
/**
* We need to figure out which joints to keep after the clip operation, because arcs will have
* multiple vertices. It is assumed that anything calling this method will have determined the
* vertex range to clip based on joints, meaning we will never clip in the middle of an arc.
* Clipping in the middle of an arc would break this and various other things...
*/
int firstLink = 0;
int lastLink = std::max( 0, static_cast<int>( m_links.size() ) - 1 );
int arcIdx = -1;
int linkIdx = 0;
auto shapes = m_line.CShapes();
int numPoints = static_cast<int>( shapes.size() );
for( int i = 0; i < m_line.PointCount(); i++ )
{
if( i <= aStart )
firstLink = linkIdx;
if( shapes[i] >= 0 )
{
// Account for "hidden segments" between two arcs
if( i > aStart && ( shapes[i - 1] >= 0 ) && ( shapes[i - 1] != shapes[i] ) )
linkIdx++;
arcIdx = shapes[i];
// Skip over the rest of the arc vertices
while( i < numPoints && shapes[i] == arcIdx )
i++;
// Back up two vertices to restart at the segment coincident with the end of the arc
i -= 2;
}
if( i >= aEnd - 1 || linkIdx >= lastLink )
{
lastLink = linkIdx;
break;
}
linkIdx++;
}
wxASSERT( lastLink >= firstLink );
m_line = m_line.Slice( aStart, aEnd );
if( IsLinked() )
{
wxASSERT( m_links.size() < INT_MAX );
wxASSERT( static_cast<int>( m_links.size() ) >= ( lastLink - firstLink ) );
// Note: The range includes aEnd, but we have n-1 segments.
std::rotate(
m_links.begin(),
m_links.begin() + firstLink,
m_links.begin() + lastLink
);
m_links.resize( lastLink - firstLink + 1 );
}
}
bool LINE::HasLoops() const
{
for( int i = 0; i < PointCount(); i++ )
{
for( int j = i + 2; j < PointCount(); j++ )
{
if( CPoint( i ) == CPoint( j ) )
return true;
}
}
return false;
}
static void extendBox( BOX2I& aBox, bool& aDefined, const VECTOR2I& aP )
{
if( aDefined )
{
aBox.Merge( aP );
}
else
{
aBox = BOX2I( aP, VECTOR2I( 0, 0 ) );
aDefined = true;
}
}
OPT_BOX2I LINE::ChangedArea( const LINE* aOther ) const
{
BOX2I area;
bool areaDefined = false;
int i_start = -1;
int i_end_self = -1, i_end_other = -1;
SHAPE_LINE_CHAIN self( m_line );
self.Simplify();
SHAPE_LINE_CHAIN other( aOther->m_line );
other.Simplify();
int np_self = self.PointCount();
int np_other = other.PointCount();
int n = std::min( np_self, np_other );
for( int i = 0; i < n; i++ )
{
const VECTOR2I p1 = self.CPoint( i );
const VECTOR2I p2 = other.CPoint( i );
if( p1 != p2 )
{
if( i != n - 1 )
{
SEG s = self.CSegment( i );
if( !s.Contains( p2 ) )
{
i_start = i;
break;
}
}
else
{
i_start = i;
break;
}
}
}
for( int i = 0; i < n; i++ )
{
const VECTOR2I p1 = self.CPoint( np_self - 1 - i );
const VECTOR2I p2 = other.CPoint( np_other - 1 - i );
if( p1 != p2 )
{
i_end_self = np_self - 1 - i;
i_end_other = np_other - 1 - i;
break;
}
}
if( i_start < 0 )
i_start = n;
if( i_end_self < 0 )
i_end_self = np_self - 1;
if( i_end_other < 0 )
i_end_other = np_other - 1;
for( int i = i_start; i <= i_end_self; i++ )
extendBox( area, areaDefined, self.CPoint( i ) );
for( int i = i_start; i <= i_end_other; i++ )
extendBox( area, areaDefined, other.CPoint( i ) );
if( areaDefined )
{
area.Inflate( std::max( Width(), aOther->Width() ) );
return area;
}
return OPT_BOX2I();
}
bool LINE::HasLockedSegments() const
{
for( const auto seg : m_links )
{
if( seg->Marker() & MK_LOCKED )
return true;
}
return false;
}
void LINE::Clear()
{
m_hasVia = false;
m_line.Clear();
}
}