803 lines
25 KiB
C++
803 lines
25 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2004-2016 Jean-Pierre Charras, jean-pierre.charras@gpisa-lab.inpg.fr
|
|
* Copyright (C) 2011-2017 Wayne Stambaugh <stambaughw@verizon.net>
|
|
* Copyright (C) 1992-2017 KiCad Developers, see change_log.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
/**
|
|
* @file clean.cpp
|
|
* @brief functions to clean tracks: remove null length and redundant segments
|
|
*/
|
|
|
|
|
|
#include <fctsys.h>
|
|
#include <class_drawpanel.h>
|
|
#include <wxPcbStruct.h>
|
|
#include <pcbnew.h>
|
|
#include <class_board.h>
|
|
#include <class_track.h>
|
|
#include <connect.h>
|
|
#include <dialog_cleaning_options.h>
|
|
#include <board_commit.h>
|
|
|
|
#include <tuple>
|
|
|
|
// Helper class used to clean tracks and vias
|
|
class TRACKS_CLEANER: CONNECTIONS
|
|
{
|
|
public:
|
|
TRACKS_CLEANER( BOARD* aPcb, BOARD_COMMIT& aCommit );
|
|
|
|
/**
|
|
* The track cleanup function.
|
|
*
|
|
* @param aRemoveMisConnected = true to remove segments connecting 2 different nets
|
|
* @param aCleanVias = true to remove superimposed vias
|
|
* @param aMergeSegments = true to merge collinear segmenst and remove 0 len segm
|
|
* @param aDeleteUnconnected = true to remove dangling tracks (short circuits)
|
|
* @return true if some item was modified
|
|
*/
|
|
bool CleanupBoard( bool aCleanVias, bool aRemoveMisConnected,
|
|
bool aMergeSegments, bool aDeleteUnconnected );
|
|
|
|
private:
|
|
/* finds and remove all track segments which are connected to more than one net.
|
|
* (short circuits)
|
|
*/
|
|
bool removeBadTrackSegments();
|
|
|
|
/**
|
|
* Removes redundant vias like vias at same location
|
|
* or on pad through
|
|
*/
|
|
bool clean_vias();
|
|
|
|
/**
|
|
* Removes all the following THT vias on the same position of the
|
|
* specified one
|
|
*/
|
|
bool remove_duplicates_of_via( const VIA* aVia );
|
|
|
|
/**
|
|
* Removes all the following duplicates tracks of the specified one
|
|
*/
|
|
bool remove_duplicates_of_track( const TRACK* aTrack );
|
|
|
|
/**
|
|
* Removes dangling tracks
|
|
*/
|
|
bool deleteDanglingTracks();
|
|
|
|
/// Delete null length track segments
|
|
bool delete_null_segments();
|
|
|
|
/// Try to merge the segment to a following collinear one
|
|
bool merge_collinear_of_track( TRACK* aSegment );
|
|
|
|
/**
|
|
* Merge collinear segments and remove duplicated and null len segments
|
|
*/
|
|
bool clean_segments();
|
|
|
|
/**
|
|
* helper function
|
|
* Rebuild list of tracks, and connected tracks
|
|
* this info must be rebuilt when tracks are erased
|
|
*/
|
|
void buildTrackConnectionInfo();
|
|
|
|
/**
|
|
* helper function
|
|
* merge aTrackRef and aCandidate, when possible,
|
|
* i.e. when they are colinear, same width, and obviously same layer
|
|
*/
|
|
TRACK* mergeCollinearSegmentIfPossible( TRACK* aTrackRef,
|
|
TRACK* aCandidate, ENDPOINT_T aEndType );
|
|
|
|
const ZONE_CONTAINER* zoneForTrackEndpoint( const TRACK* aTrack,
|
|
ENDPOINT_T aEndPoint );
|
|
|
|
bool testTrackEndpointDangling( TRACK* aTrack, ENDPOINT_T aEndPoint );
|
|
|
|
BOARD* m_brd;
|
|
BOARD_COMMIT& m_commit;
|
|
};
|
|
|
|
|
|
/* Install the cleanup dialog frame to know what should be cleaned
|
|
*/
|
|
void PCB_EDIT_FRAME::Clean_Pcb()
|
|
{
|
|
DIALOG_CLEANING_OPTIONS dlg( this );
|
|
|
|
if( dlg.ShowModal() != wxID_OK )
|
|
return;
|
|
|
|
// Old model has to be refreshed, GAL normally does not keep updating it
|
|
Compile_Ratsnest( NULL, false );
|
|
|
|
wxBusyCursor( dummy );
|
|
BOARD_COMMIT commit( this );
|
|
TRACKS_CLEANER cleaner( GetBoard(), commit );
|
|
|
|
bool modified = cleaner.CleanupBoard( dlg.m_deleteShortCircuits, dlg.m_cleanVias,
|
|
dlg.m_mergeSegments, dlg.m_deleteUnconnectedSegm );
|
|
|
|
if( modified )
|
|
{
|
|
// Clear undo and redo lists to avoid inconsistencies between lists
|
|
SetCurItem( NULL );
|
|
commit.Push( _( "Board cleanup" ) );
|
|
Compile_Ratsnest( NULL, true );
|
|
}
|
|
|
|
m_canvas->Refresh( true );
|
|
}
|
|
|
|
|
|
/* Main cleaning function.
|
|
* Delete
|
|
* - Redundant points on tracks (merge aligned segments)
|
|
* - vias on pad
|
|
* - null length segments
|
|
*/
|
|
bool TRACKS_CLEANER::CleanupBoard( bool aRemoveMisConnected,
|
|
bool aCleanVias,
|
|
bool aMergeSegments,
|
|
bool aDeleteUnconnected )
|
|
{
|
|
buildTrackConnectionInfo();
|
|
|
|
bool modified = false;
|
|
|
|
// delete redundant vias
|
|
if( aCleanVias )
|
|
modified |= clean_vias();
|
|
|
|
// Remove null segments and intermediate points on aligned segments
|
|
// If not asked, remove null segments only if remove misconnected is asked
|
|
if( aMergeSegments )
|
|
modified |= clean_segments();
|
|
else if( aRemoveMisConnected )
|
|
modified |= delete_null_segments();
|
|
|
|
if( aRemoveMisConnected )
|
|
{
|
|
if( removeBadTrackSegments() )
|
|
{
|
|
modified = true;
|
|
|
|
// Refresh track connection info
|
|
buildTrackConnectionInfo();
|
|
}
|
|
}
|
|
|
|
// Delete dangling tracks
|
|
if( aDeleteUnconnected )
|
|
{
|
|
if( modified ) // Refresh track connection info
|
|
buildTrackConnectionInfo();
|
|
|
|
if( deleteDanglingTracks() )
|
|
{
|
|
modified = true;
|
|
|
|
// Removed tracks can leave aligned segments
|
|
// (when a T was formed by tracks and the "vertical" segment
|
|
// is removed)
|
|
if( aMergeSegments )
|
|
clean_segments();
|
|
}
|
|
}
|
|
|
|
return modified;
|
|
}
|
|
|
|
|
|
TRACKS_CLEANER::TRACKS_CLEANER( BOARD* aPcb, BOARD_COMMIT& aCommit )
|
|
: CONNECTIONS( aPcb ), m_brd( aPcb ), m_commit( aCommit )
|
|
{
|
|
// Be sure pad list is up to date
|
|
BuildPadsList();
|
|
}
|
|
|
|
|
|
void TRACKS_CLEANER::buildTrackConnectionInfo()
|
|
{
|
|
BuildTracksCandidatesList( m_brd->m_Track, NULL );
|
|
|
|
// clear flags and variables used in cleanup
|
|
for( TRACK* track = m_brd->m_Track; track != NULL; track = track->Next() )
|
|
{
|
|
track->start = NULL;
|
|
track->end = NULL;
|
|
track->m_PadsConnected.clear();
|
|
track->SetState( START_ON_PAD | END_ON_PAD | BUSY, false );
|
|
}
|
|
|
|
// Build connections info tracks to pads
|
|
SearchTracksConnectedToPads();
|
|
|
|
for( TRACK* track = m_brd->m_Track; track != NULL; track = track->Next() )
|
|
{
|
|
// Mark track if connected to pads
|
|
for( unsigned jj = 0; jj < track->m_PadsConnected.size(); jj++ )
|
|
{
|
|
D_PAD * pad = track->m_PadsConnected[jj];
|
|
|
|
if( pad->HitTest( track->GetStart() ) )
|
|
{
|
|
track->start = pad;
|
|
track->SetState( START_ON_PAD, true );
|
|
}
|
|
|
|
if( pad->HitTest( track->GetEnd() ) )
|
|
{
|
|
track->end = pad;
|
|
track->SetState( END_ON_PAD, true );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool TRACKS_CLEANER::removeBadTrackSegments()
|
|
{
|
|
// The rastsnet is expected to be up to date (Compile_Ratsnest was called)
|
|
|
|
// Rebuild physical connections.
|
|
// the list of physical connected items to a given item is in
|
|
// m_PadsConnected and m_TracksConnected members of each item
|
|
BuildTracksCandidatesList( m_brd->m_Track );
|
|
|
|
// build connections between track segments and pads.
|
|
SearchTracksConnectedToPads();
|
|
|
|
TRACK* segment;
|
|
|
|
// build connections between track ends
|
|
for( segment = m_brd->m_Track; segment; segment = segment->Next() )
|
|
{
|
|
SearchConnectedTracks( segment );
|
|
GetConnectedTracks( segment );
|
|
}
|
|
|
|
bool isModified = false;
|
|
|
|
for( segment = m_brd->m_Track; segment; segment = segment->Next() )
|
|
{
|
|
segment->SetState( FLAG0, false );
|
|
|
|
for( unsigned ii = 0; ii < segment->m_PadsConnected.size(); ++ii )
|
|
{
|
|
if( segment->GetNetCode() != segment->m_PadsConnected[ii]->GetNetCode() )
|
|
segment->SetState( FLAG0, true );
|
|
}
|
|
|
|
for( unsigned ii = 0; ii < segment->m_TracksConnected.size(); ++ii )
|
|
{
|
|
TRACK* tested = segment->m_TracksConnected[ii];
|
|
|
|
if( segment->GetNetCode() != tested->GetNetCode() && !tested->GetState( FLAG0 ) )
|
|
segment->SetState( FLAG0, true );
|
|
}
|
|
}
|
|
|
|
// Remove tracks having a flagged segment
|
|
TRACK* next;
|
|
|
|
for( segment = m_brd->m_Track; segment; segment = next )
|
|
{
|
|
next = segment->Next();
|
|
|
|
if( segment->GetState( FLAG0 ) ) // Segment is flagged to be removed
|
|
{
|
|
isModified = true;
|
|
m_brd->Remove( segment );
|
|
m_commit.Removed( segment );
|
|
}
|
|
}
|
|
|
|
if( isModified )
|
|
{ // some pointers are invalid. Clear the m_TracksConnected list,
|
|
// to avoid any issue
|
|
for( segment = m_brd->m_Track; segment; segment = segment->Next() )
|
|
segment->m_TracksConnected.clear();
|
|
|
|
m_brd->m_Status_Pcb = 0;
|
|
}
|
|
|
|
return isModified;
|
|
}
|
|
|
|
|
|
bool TRACKS_CLEANER::remove_duplicates_of_via( const VIA *aVia )
|
|
{
|
|
bool modified = false;
|
|
|
|
// Search and delete others vias at same location
|
|
VIA* next_via;
|
|
|
|
for( VIA* alt_via = GetFirstVia( aVia->Next() ); alt_via != NULL; alt_via = next_via )
|
|
{
|
|
next_via = GetFirstVia( alt_via->Next() );
|
|
|
|
if( ( alt_via->GetViaType() == VIA_THROUGH ) &&
|
|
( alt_via->GetStart() == aVia->GetStart() ) )
|
|
{
|
|
m_brd->Remove( alt_via );
|
|
m_commit.Removed( alt_via );
|
|
modified = true;
|
|
}
|
|
}
|
|
return modified;
|
|
}
|
|
|
|
|
|
bool TRACKS_CLEANER::clean_vias()
|
|
{
|
|
bool modified = false;
|
|
|
|
for( VIA* via = GetFirstVia( m_brd->m_Track ); via != NULL;
|
|
via = GetFirstVia( via->Next() ) )
|
|
{
|
|
// Correct via m_End defects (if any), should never happen
|
|
if( via->GetStart() != via->GetEnd() )
|
|
{
|
|
wxFAIL_MSG( "Malformed via with mismatching ends" );
|
|
via->SetEnd( via->GetStart() );
|
|
}
|
|
|
|
/* Important: these cleanups only do thru hole vias, they don't
|
|
* (yet) handle high density interconnects */
|
|
if( via->GetViaType() == VIA_THROUGH )
|
|
{
|
|
modified |= remove_duplicates_of_via( via );
|
|
|
|
/* To delete through Via on THT pads at same location
|
|
* Examine the list of connected pads:
|
|
* if one through pad is found, the via can be removed */
|
|
for( unsigned ii = 0; ii < via->m_PadsConnected.size(); ++ii )
|
|
{
|
|
const D_PAD* pad = via->m_PadsConnected[ii];
|
|
const LSET all_cu = LSET::AllCuMask();
|
|
|
|
if( ( pad->GetLayerSet() & all_cu ) == all_cu )
|
|
{
|
|
// redundant: delete the via
|
|
m_brd->Remove( via );
|
|
m_commit.Removed( via );
|
|
modified = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return modified;
|
|
}
|
|
|
|
|
|
/// Utility for checking if a track/via ends on a zone
|
|
const ZONE_CONTAINER* TRACKS_CLEANER::zoneForTrackEndpoint( const TRACK* aTrack,
|
|
ENDPOINT_T aEndPoint )
|
|
{
|
|
// Vias are special cased, since they get a layer range, not a single one
|
|
PCB_LAYER_ID top_layer, bottom_layer;
|
|
const VIA* via = dyn_cast<const VIA*>( aTrack );
|
|
|
|
if( via )
|
|
via->LayerPair( &top_layer, &bottom_layer );
|
|
else
|
|
{
|
|
top_layer = aTrack->GetLayer();
|
|
bottom_layer = top_layer;
|
|
}
|
|
|
|
return m_brd->HitTestForAnyFilledArea( aTrack->GetEndPoint( aEndPoint ),
|
|
top_layer, bottom_layer, aTrack->GetNetCode() );
|
|
}
|
|
|
|
|
|
/** Utility: does the endpoint unconnected processed for one endpoint of one track
|
|
* Returns true if the track must be deleted, false if not necessarily */
|
|
bool TRACKS_CLEANER::testTrackEndpointDangling( TRACK* aTrack, ENDPOINT_T aEndPoint )
|
|
{
|
|
bool flag_erase = false;
|
|
|
|
TRACK* other = aTrack->GetTrack( m_brd->m_Track, NULL, aEndPoint, true, false );
|
|
|
|
if( !other && !zoneForTrackEndpoint( aTrack, aEndPoint ) )
|
|
flag_erase = true; // Start endpoint is neither on pad, zone or other track
|
|
else // segment, via or zone connected to this end
|
|
{
|
|
// Fill connectivity informations
|
|
if( aEndPoint == ENDPOINT_START )
|
|
aTrack->start = other;
|
|
else
|
|
aTrack->end = other;
|
|
|
|
/* If a via is connected to this end, test if this via has a second item connected.
|
|
* If not, remove the current segment (the via would then become
|
|
* unconnected and remove on the following pass) */
|
|
VIA* via = dyn_cast<VIA*>( other );
|
|
|
|
if( via )
|
|
{
|
|
// search for another segment following the via
|
|
aTrack->SetState( BUSY, true );
|
|
|
|
other = via->GetTrack( m_brd->m_Track, NULL, aEndPoint, true, false );
|
|
|
|
// There is a via on the start but it goes nowhere
|
|
if( !other && !zoneForTrackEndpoint( via, aEndPoint ) )
|
|
flag_erase = true;
|
|
|
|
aTrack->SetState( BUSY, false );
|
|
}
|
|
}
|
|
|
|
return flag_erase;
|
|
}
|
|
|
|
|
|
/* Delete dangling tracks
|
|
* Vias:
|
|
* If a via is only connected to a dangling track, it also will be removed
|
|
*/
|
|
bool TRACKS_CLEANER::deleteDanglingTracks()
|
|
{
|
|
if( m_brd->m_Track == NULL )
|
|
return false;
|
|
|
|
bool modified = false;
|
|
bool item_erased;
|
|
|
|
do // Iterate when at least one track is deleted
|
|
{
|
|
item_erased = false;
|
|
TRACK* next_track;
|
|
|
|
for( TRACK *track = m_brd->m_Track; track != NULL; track = next_track )
|
|
{
|
|
next_track = track->Next();
|
|
|
|
bool flag_erase = false; // Start without a good reason to erase it
|
|
|
|
/* if a track endpoint is not connected to a pad, test if
|
|
* the endpoint is connected to another track or to a zone.
|
|
* For via test, an enhancement could be to test if
|
|
* connected to 2 items on different layers. Currently
|
|
* a via must be connected to 2 items, that can be on the
|
|
* same layer */
|
|
|
|
// Check if there is nothing attached on the start
|
|
if( !( track->GetState( START_ON_PAD ) ) )
|
|
flag_erase |= testTrackEndpointDangling( track, ENDPOINT_START );
|
|
|
|
// If not sure about removal, then check if there is nothing attached on the end
|
|
if( !flag_erase && !track->GetState( END_ON_PAD ) )
|
|
flag_erase |= testTrackEndpointDangling( track, ENDPOINT_END );
|
|
|
|
if( flag_erase )
|
|
{
|
|
m_brd->Remove( track );
|
|
m_commit.Removed( track );
|
|
|
|
/* keep iterating, because a track connected to the deleted track
|
|
* now perhaps is not connected and should be deleted */
|
|
item_erased = true;
|
|
modified = true;
|
|
}
|
|
}
|
|
} while( item_erased );
|
|
|
|
return modified;
|
|
}
|
|
|
|
|
|
// Delete null length track segments
|
|
bool TRACKS_CLEANER::delete_null_segments()
|
|
{
|
|
bool modified = false;
|
|
TRACK* nextsegment;
|
|
|
|
// Delete null segments
|
|
for( TRACK* segment = m_brd->m_Track; segment; segment = nextsegment )
|
|
{
|
|
nextsegment = segment->Next();
|
|
|
|
if( segment->IsNull() ) // Length segment = 0; delete it
|
|
{
|
|
m_brd->Remove( segment );
|
|
m_commit.Removed( segment );
|
|
modified = true;
|
|
}
|
|
}
|
|
|
|
return modified;
|
|
}
|
|
|
|
|
|
bool TRACKS_CLEANER::remove_duplicates_of_track( const TRACK *aTrack )
|
|
{
|
|
bool modified = false;
|
|
TRACK* nextsegment;
|
|
|
|
for( TRACK* other = aTrack->Next(); other; other = nextsegment )
|
|
{
|
|
nextsegment = other->Next();
|
|
|
|
// New netcode, break out (can't be there any other)
|
|
if( aTrack->GetNetCode() != other->GetNetCode() )
|
|
break;
|
|
|
|
// Must be of the same type, on the same layer and the endpoints
|
|
// must be the same (maybe swapped)
|
|
if( ( aTrack->Type() == other->Type() ) &&
|
|
( aTrack->GetLayer() == other->GetLayer() ) )
|
|
{
|
|
if( ( ( aTrack->GetStart() == other->GetStart() ) &&
|
|
( aTrack->GetEnd() == other->GetEnd() ) ) ||
|
|
( ( aTrack->GetStart() == other->GetEnd() ) &&
|
|
( aTrack->GetEnd() == other->GetStart() ) ) )
|
|
{
|
|
m_brd->Remove( other );
|
|
m_commit.Removed( other );
|
|
modified = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return modified;
|
|
}
|
|
|
|
|
|
bool TRACKS_CLEANER::merge_collinear_of_track( TRACK* aSegment )
|
|
{
|
|
bool merged_this = false;
|
|
|
|
for( ENDPOINT_T endpoint = ENDPOINT_START; endpoint <= ENDPOINT_END;
|
|
endpoint = ENDPOINT_T( endpoint + 1 ) )
|
|
{
|
|
// search for a possible segment connected to the current endpoint of the current one
|
|
TRACK* other = aSegment->Next();
|
|
|
|
if( other )
|
|
{
|
|
other = aSegment->GetTrack( other, NULL, endpoint, true, false );
|
|
|
|
if( other )
|
|
{
|
|
// the two segments must have the same width and the other
|
|
// cannot be a via
|
|
if( ( aSegment->GetWidth() == other->GetWidth() ) &&
|
|
( other->Type() == PCB_TRACE_T ) )
|
|
{
|
|
// There can be only one segment connected
|
|
other->SetState( BUSY, true );
|
|
TRACK* yet_another = aSegment->GetTrack( m_brd->m_Track, NULL,
|
|
endpoint, true, false );
|
|
other->SetState( BUSY, false );
|
|
|
|
if( !yet_another )
|
|
{
|
|
// Try to merge them
|
|
TRACK* segDelete = mergeCollinearSegmentIfPossible( aSegment,
|
|
other, endpoint );
|
|
|
|
// Merge succesful, the other one has to go away
|
|
if( segDelete )
|
|
{
|
|
m_brd->Remove( segDelete );
|
|
m_commit.Removed( segDelete );
|
|
merged_this = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return merged_this;
|
|
}
|
|
|
|
|
|
// Delete null length segments, and intermediate points ..
|
|
bool TRACKS_CLEANER::clean_segments()
|
|
{
|
|
bool modified = false;
|
|
|
|
// Easy things first
|
|
modified |= delete_null_segments();
|
|
|
|
// Delete redundant segments, i.e. segments having the same end points and layers
|
|
// (can happens when blocks are copied on themselve)
|
|
for( TRACK* segment = m_brd->m_Track; segment; segment = segment->Next() )
|
|
modified |= remove_duplicates_of_track( segment );
|
|
|
|
// merge collinear segments:
|
|
TRACK* nextsegment;
|
|
|
|
for( TRACK* segment = m_brd->m_Track; segment; segment = nextsegment )
|
|
{
|
|
nextsegment = segment->Next();
|
|
|
|
if( segment->Type() == PCB_TRACE_T )
|
|
{
|
|
bool merged_this = merge_collinear_of_track( segment );
|
|
|
|
if( merged_this ) // The current segment was modified, retry to merge it again
|
|
{
|
|
nextsegment = segment->Next();
|
|
modified = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return modified;
|
|
}
|
|
|
|
|
|
/* Utility: check for parallelism between two segments */
|
|
static bool parallelism_test( int dx1, int dy1, int dx2, int dy2 )
|
|
{
|
|
/* The following condition list is ugly and repetitive, but I have
|
|
* not a better way to express clearly the trivial cases. Hope the
|
|
* compiler optimize it better than always doing the product
|
|
* below... */
|
|
|
|
// test for vertical alignment (easy to handle)
|
|
if( dx1 == 0 )
|
|
return dx2 == 0;
|
|
|
|
if( dx2 == 0 )
|
|
return dx1 == 0;
|
|
|
|
// test for horizontal alignment (easy to handle)
|
|
if( dy1 == 0 )
|
|
return dy2 == 0;
|
|
|
|
if( dy2 == 0 )
|
|
return dy1 == 0;
|
|
|
|
/* test for alignment in other cases: Do the usual cross product test
|
|
* (the same as testing the slope, but without a division) */
|
|
return ((double)dy1 * dx2 == (double)dx1 * dy2);
|
|
}
|
|
|
|
|
|
/** Function used by clean_segments.
|
|
* Test if aTrackRef and aCandidate (which must have a common end) are collinear.
|
|
* and see if the common point is not on a pad (i.e. if this common point can be removed).
|
|
* the ending point of aTrackRef is the start point (aEndType == START)
|
|
* or the end point (aEndType != START)
|
|
* flags START_ON_PAD and END_ON_PAD must be set before calling this function
|
|
* if the common point can be deleted, this function
|
|
* change the common point coordinate of the aTrackRef segm
|
|
* (and therefore connect the 2 other ending points)
|
|
* and return aCandidate (which can be deleted).
|
|
* else return NULL
|
|
*/
|
|
TRACK* TRACKS_CLEANER::mergeCollinearSegmentIfPossible( TRACK* aTrackRef, TRACK* aCandidate,
|
|
ENDPOINT_T aEndType )
|
|
{
|
|
// First of all, they must be of the same width and must be both actual tracks
|
|
if( ( aTrackRef->GetWidth() != aCandidate->GetWidth() ) ||
|
|
( aTrackRef->Type() != PCB_TRACE_T ) ||
|
|
( aCandidate->Type() != PCB_TRACE_T ) )
|
|
return NULL;
|
|
|
|
// Trivial case: exactly the same track
|
|
if( ( aTrackRef->GetStart() == aCandidate->GetStart() ) &&
|
|
( aTrackRef->GetEnd() == aCandidate->GetEnd() ) )
|
|
return aCandidate;
|
|
|
|
if( ( aTrackRef->GetStart() == aCandidate->GetEnd() ) &&
|
|
( aTrackRef->GetEnd() == aCandidate->GetStart() ) )
|
|
return aCandidate;
|
|
|
|
// Weed out non-parallel tracks
|
|
if ( !parallelism_test( aTrackRef->GetEnd().x - aTrackRef->GetStart().x,
|
|
aTrackRef->GetEnd().y - aTrackRef->GetStart().y,
|
|
aCandidate->GetEnd().x - aCandidate->GetStart().x,
|
|
aCandidate->GetEnd().y - aCandidate->GetStart().y ) )
|
|
return NULL;
|
|
|
|
/* Here we have 2 aligned segments:
|
|
* We must change the pt_ref common point only if not on a pad
|
|
* (this function) is called when there is only 2 connected segments,
|
|
* and if this point is not on a pad, it can be removed and the 2 segments will be merged
|
|
*/
|
|
if( aEndType == ENDPOINT_START )
|
|
{
|
|
// We do not have a pad, which is a always terminal point for a track
|
|
if( aTrackRef->GetState( START_ON_PAD ) )
|
|
return NULL;
|
|
|
|
/* change the common point coordinate of pt_segm to use the other point
|
|
* of pt_segm (pt_segm will be removed later) */
|
|
if( aTrackRef->GetStart() == aCandidate->GetStart() )
|
|
{
|
|
aTrackRef->SetStart( aCandidate->GetEnd() );
|
|
aTrackRef->start = aCandidate->end;
|
|
aTrackRef->SetState( START_ON_PAD, aCandidate->GetState( END_ON_PAD ) );
|
|
return aCandidate;
|
|
}
|
|
else
|
|
{
|
|
aTrackRef->SetStart( aCandidate->GetStart() );
|
|
aTrackRef->start = aCandidate->start;
|
|
aTrackRef->SetState( START_ON_PAD, aCandidate->GetState( START_ON_PAD ) );
|
|
return aCandidate;
|
|
}
|
|
}
|
|
else // aEndType == END
|
|
{
|
|
// We do not have a pad, which is a always terminal point for a track
|
|
if( aTrackRef->GetState( END_ON_PAD ) )
|
|
return NULL;
|
|
|
|
/* change the common point coordinate of pt_segm to use the other point
|
|
* of pt_segm (pt_segm will be removed later) */
|
|
if( aTrackRef->GetEnd() == aCandidate->GetStart() )
|
|
{
|
|
aTrackRef->SetEnd( aCandidate->GetEnd() );
|
|
aTrackRef->end = aCandidate->end;
|
|
aTrackRef->SetState( END_ON_PAD, aCandidate->GetState( END_ON_PAD ) );
|
|
return aCandidate;
|
|
}
|
|
else
|
|
{
|
|
aTrackRef->SetEnd( aCandidate->GetStart() );
|
|
aTrackRef->end = aCandidate->start;
|
|
aTrackRef->SetState( END_ON_PAD, aCandidate->GetState( START_ON_PAD ) );
|
|
return aCandidate;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
bool PCB_EDIT_FRAME::RemoveMisConnectedTracks()
|
|
{
|
|
// Old model has to be refreshed, GAL normally does not keep updating it
|
|
Compile_Ratsnest( NULL, false );
|
|
BOARD_COMMIT commit( this );
|
|
|
|
TRACKS_CLEANER cleaner( GetBoard(), commit );
|
|
bool isModified = cleaner.CleanupBoard( true, false, false, false );
|
|
|
|
if( isModified )
|
|
{
|
|
// Clear undo and redo lists to avoid inconsistencies between lists
|
|
SetCurItem( NULL );
|
|
commit.Push( _( "Board cleanup" ) );
|
|
Compile_Ratsnest( NULL, true );
|
|
}
|
|
|
|
m_canvas->Refresh( true );
|
|
|
|
return isModified;
|
|
}
|