kicad/pcbnew/drc.h

548 lines
22 KiB
C++

/**
* @file drc_stuff.h
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2007-2016 Dick Hollenbeck, dick@softplc.com
* Copyright (C) 2017-2018 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef DRC_H
#define DRC_H
#include <vector>
#include <memory>
#define OK_DRC 0
#define BAD_DRC 1
// DRC error codes could be defined by an enum.
// however a #define is used because error code value is displayed in DRC messages,
// and using #define that shows each numerical value helps for debug.
/// DRC error codes:
#define DRCE_ 1 // not used yet
#define DRCE_UNCONNECTED_ITEMS 2 ///< items are unconnected
#define DRCE_TRACK_NEAR_THROUGH_HOLE 3 ///< thru hole is too close to track
#define DRCE_TRACK_NEAR_PAD 4 ///< pad too close to track
#define DRCE_TRACK_NEAR_VIA 5 ///< track too close to via
#define DRCE_VIA_NEAR_VIA 6 ///< via too close to via
#define DRCE_VIA_NEAR_TRACK 7 ///< via too close to track
#define DRCE_TRACK_ENDS1 8 ///< 2 parallel track segments too close: fine start point test
#define DRCE_TRACK_ENDS2 9 ///< 2 parallel track segments too close: fine start point test
#define DRCE_TRACK_ENDS3 10 ///< 2 parallel track segments too close: fine end point test
#define DRCE_TRACK_ENDS4 11 ///< 2 parallel track segments too close: fine end point test
#define DRCE_TRACK_SEGMENTS_TOO_CLOSE 12 ///< 2 parallel track segments too close: segm ends between segref ends
#define DRCE_TRACKS_CROSSING 13 ///< tracks are crossing
#define DRCE_ENDS_PROBLEM1 14 ///< track ends are too close
#define DRCE_ENDS_PROBLEM2 15 ///< track ends are too close
#define DRCE_ENDS_PROBLEM3 16 ///< track ends are too close
#define DRCE_ENDS_PROBLEM4 17 ///< track ends are too close
#define DRCE_ENDS_PROBLEM5 18 ///< track ends are too close
#define DRCE_PAD_NEAR_PAD1 19 ///< pad too close to pad
#define DRCE_VIA_HOLE_BIGGER 20 ///< via's hole is bigger than its diameter
#define DRCE_MICRO_VIA_INCORRECT_LAYER_PAIR 21 ///< micro via's layer pair incorrect (layers must be adjacent)
#define COPPERAREA_INSIDE_COPPERAREA 22 ///< copper area outlines intersect
#define COPPERAREA_CLOSE_TO_COPPERAREA 23 ///< copper area outlines are too close
#define DRCE_SUSPICIOUS_NET_FOR_ZONE_OUTLINE 24 ///< copper area has a net but no pads in nets, which is suspicious
#define DRCE_HOLE_NEAR_PAD 25 ///< hole too close to pad
#define DRCE_HOLE_NEAR_TRACK 26 ///< hole too close to track
#define DRCE_TOO_SMALL_TRACK_WIDTH 27 ///< Too small track width
#define DRCE_TOO_SMALL_VIA 28 ///< Too small via size
#define DRCE_TOO_SMALL_MICROVIA 29 ///< Too small micro via size
#define DRCE_TOO_SMALL_VIA_DRILL 30 ///< Too small via drill
#define DRCE_TOO_SMALL_MICROVIA_DRILL 31 ///< Too small micro via drill
#define DRCE_NETCLASS_TRACKWIDTH 32 ///< netclass has TrackWidth < board.m_designSettings->m_TrackMinWidth
#define DRCE_NETCLASS_CLEARANCE 33 ///< netclass has Clearance < board.m_designSettings->m_TrackClearance
#define DRCE_NETCLASS_VIASIZE 34 ///< netclass has ViaSize < board.m_designSettings->m_ViasMinSize
#define DRCE_NETCLASS_VIADRILLSIZE 35 ///< netclass has ViaDrillSize < board.m_designSettings->m_ViasMinDrill
#define DRCE_NETCLASS_uVIASIZE 36 ///< netclass has ViaSize < board.m_designSettings->m_MicroViasMinSize
#define DRCE_NETCLASS_uVIADRILLSIZE 37 ///< netclass has ViaSize < board.m_designSettings->m_MicroViasMinDrill
#define DRCE_VIA_INSIDE_KEEPOUT 38 ///< Via in inside a keepout area
#define DRCE_TRACK_INSIDE_KEEPOUT 39 ///< Track in inside a keepout area
#define DRCE_PAD_INSIDE_KEEPOUT 40 ///< Pad in inside a keepout area
#define DRCE_VIA_INSIDE_TEXT 41 ///< Via in inside a text area
#define DRCE_TRACK_INSIDE_TEXT 42 ///< Track in inside a text area
#define DRCE_PAD_INSIDE_TEXT 43 ///< Pad in inside a text area
#define DRCE_OVERLAPPING_FOOTPRINTS 44 ///< footprint courtyards overlap
#define DRCE_MISSING_COURTYARD_IN_FOOTPRINT 45 ///< footprint has no courtyard defined
#define DRCE_MALFORMED_COURTYARD_IN_FOOTPRINT 46 ///< footprint has a courtyard but malformed
///< (not convertible to a closed polygon with holes)
#define DRCE_MICRO_VIA_NOT_ALLOWED 47 ///< micro vias are not allowed
#define DRCE_BURIED_VIA_NOT_ALLOWED 48 ///< buried vias are not allowed
class EDA_DRAW_PANEL;
class PCB_EDIT_FRAME;
class DIALOG_DRC_CONTROL;
class BOARD_ITEM;
class BOARD;
class D_PAD;
class ZONE_CONTAINER;
class TRACK;
class MARKER_PCB;
class DRC_ITEM;
class NETCLASS;
/**
* Provide an abstract interface of a DRC_ITEM* list manager. The details
* of the actual list architecture are hidden from the caller. Any class
* that implements this interface can then be used by a DRCLISTBOX class without
* it knowing the actual architecture of the list.
*/
class DRC_ITEM_LIST
{
public:
/**
* Function DeleteAllItems
* removes and deletes all the items in the list.
*/
virtual void DeleteAllItems() = 0;
/**
* Function GetItem
* retrieves a DRC_ITEM by pointer. The actual item remains owned by the
* list container.
* @param aIndex The 0 based index into the list of the desired item.
* @return const DRC_ITEM* - the desired item or NULL if aIndex is out of range.
*/
virtual const DRC_ITEM* GetItem( int aIndex ) = 0;
/**
* Function DeleteAllItems
* removes and deletes desired item from the list.
* @param aIndex The 0 based index into the list of the desired item which
* is to be deleted.
*/
virtual void DeleteItem( int aIndex ) = 0;
/**
* Function GetCount
* returns the number of items in the list.
*/
virtual int GetCount() = 0;
virtual ~DRC_ITEM_LIST() { }
};
typedef std::vector<DRC_ITEM*> DRC_LIST;
/**
* Design Rule Checker object that performs all the DRC tests. The output of
* the checking goes to the BOARD file in the form of two MARKER lists. Those
* two lists are displayable in the drc dialog box. And they can optionally
* be sent to a text file on disk.
* This class is given access to the windows and the BOARD
* that it needs via its constructor or public access functions.
*/
class DRC
{
friend class DIALOG_DRC_CONTROL;
private:
// protected or private functions() are lowercase first character.
bool m_doPad2PadTest;
bool m_doUnconnectedTest;
bool m_doZonesTest;
bool m_doKeepoutTest;
bool m_doCreateRptFile;
bool m_doFootprintOverlapping;
bool m_doNoCourtyardDefined;
bool m_refillZones;
bool m_reportAllTrackErrors;
wxString m_rptFilename;
MARKER_PCB* m_currentMarker;
bool m_abortDRC;
bool m_drcInProgress;
/**
* in legacy canvas, when creating a track, the drc test must only display the
* error message, and do not create a DRC marker.
* if m_drcInLegacyRoutingMode it true only the message will be displayed
* m_drcInLegacyRoutingMode = false is the normal Drc mode
*/
bool m_drcInLegacyRoutingMode;
/* In DRC functions, many calculations are using coordinates relative
* to the position of the segment under test (segm to segm DRC, segm to pad DRC
* Next variables store coordinates relative to the start point of this segment
*/
wxPoint m_padToTestPos; // Position of the pad to compare in drc test segm to pad or pad to pad
wxPoint m_segmEnd; // End point of the reference segment (start point = (0,0) )
/* Some functions are comparing the ref segm to pads or others segments using
* coordinates relative to the ref segment considered as the X axis
* so we store the ref segment length (the end point relative to these axis)
* and the segment orientation (used to rotate other coordinates)
*/
double m_segmAngle; // Ref segm orientation in 0,1 degre
int m_segmLength; // length of the reference segment
/* variables used in checkLine to test DRC segm to segm:
* define the area relative to the ref segment that does not contains any other segment
*/
int m_xcliplo;
int m_ycliplo;
int m_xcliphi;
int m_ycliphi;
PCB_EDIT_FRAME* m_pcbEditorFrame; ///< The pcb frame editor which owns the board
BOARD* m_pcb;
DIALOG_DRC_CONTROL* m_drcDialog;
DRC_LIST m_unconnected; ///< list of unconnected pads, as DRC_ITEMs
/**
* Update needed pointers from the one pointer which is known not to change.
*/
void updatePointers();
/**
* Creates a marker and fills it in with information but does not add it to the BOARD.
*
* Use this to report any kind of DRC problem or unconnected pad problem.
*
* @param aTrack The reference track.
* @param aItem Another item on the BOARD, such as a VIA, SEGZONE,
* or TRACK.
* @param aErrorCode A categorizing identifier for the particular type
* of error that is being reported.
* @param fillMe A MARKER_PCB* which is to be filled in, or NULL if one is to
* first be allocated, then filled.
*/
MARKER_PCB* fillMarker( const TRACK* aTrack, BOARD_ITEM* aItem, int aErrorCode,
MARKER_PCB* fillMe );
MARKER_PCB* fillMarker( D_PAD* aPad, BOARD_ITEM* aItem, int aErrorCode, MARKER_PCB* fillMe );
MARKER_PCB* fillMarker( ZONE_CONTAINER* aArea, int aErrorCode, MARKER_PCB* fillMe );
MARKER_PCB* fillMarker( const wxPoint& aPos, int aErrorCode,
const wxString& aMessage, MARKER_PCB* fillMe );
/**
* Create a marker and fills it in with information but do not add it to the BOARD.
*
* Use this to report any kind of DRC problem, or unconnected pad problem.
*
* @param aArea The zone to test
* @param aPos position of error
* @param aErrorCode Type of error
* @param fillMe A MARKER_PCB* which is to be filled in, or NULL if one is to
* first be allocated, then filled.
*/
MARKER_PCB* fillMarker( const ZONE_CONTAINER* aArea,
const wxPoint& aPos,
int aErrorCode,
MARKER_PCB* fillMe );
/**
* Fill a MARKER which will report on a generic problem with the board which is
* not geographically locatable.
*/
MARKER_PCB* fillMarker( int aErrorCode, const wxString& aMessage, MARKER_PCB* fillMe );
/**
* Adds a DRC marker to the PCB through the COMMIT mechanism.
*/
void addMarkerToPcb( MARKER_PCB* aMarker );
//-----<categorical group tests>-----------------------------------------
/**
* Go through each NETCLASS and verifies that its clearance, via size, track width, and
* track clearance are larger than those in board.m_designSettings.
* This is necessary because the actual DRC checks are run against the NETCLASS
* limits, so in order enforce global limits, we first check the NETCLASSes against
* the global limits.
* @return bool - true if succes, else false but only after
* reporting _all_ NETCLASS violations.
*/
bool testNetClasses();
/**
* Perform the DRC on all tracks.
*
* This test can take a while, a progress bar can be displayed
* @param aActiveWindow = the active window ued as parent for the progress bar
* @param aShowProgressBar = true to show a progress bar
* (Note: it is shown only if there are many tracks)
*/
void testTracks( wxWindow * aActiveWindow, bool aShowProgressBar );
void testPad2Pad();
void testUnconnected();
void testZones();
void testKeepoutAreas();
void testTexts();
//-----<single "item" tests>-----------------------------------------
bool doNetClass( const std::shared_ptr<NETCLASS>& aNetClass, wxString& msg );
/**
* Test the clearance between aRefPad and other pads.
*
* The pad list must be sorted by x coordinate.
*
* @param aRefPad is the pad to test
* @param aStart is the first pad of the list to test against aRefPad
* @param aEnd is the end of the list and is not included
* @param x_limit is used to stop the test
* (i.e. when the current pad pos X in list exceeds this limit, because the list
* is sorted by X coordinate)
*/
bool doPadToPadsDrc( D_PAD* aRefPad, D_PAD** aStart, D_PAD** aEnd, int x_limit );
/**
* Test the current segment.
*
* @param aRefSeg The segment to test
* @param aStart the first item of track list to test against (usually BOARD::m_Track)
* @param doPads true if should do pads test
* @return bool - true if no problems, else false and m_currentMarker is
* filled in with the problem information.
*/
bool doTrackDrc( TRACK* aRefSeg, TRACK* aStart, bool doPads = true );
/**
* Test the current segment or via.
*
* @param aRefSeg The segment to test
* @return bool - true if no problems, else false and m_currentMarker is
* filled in with the problem information.
*/
bool doTrackKeepoutDrc( TRACK* aRefSeg );
/**
* Test a segment in ZONE_CONTAINER * aArea:
* Test Edge inside other areas
* Test Edge too close other areas
*
* @param aArea The current area.
* @param aCornerIndex The first corner of the segment to test.
* @return bool - false if DRC error or true if OK
*/
bool doEdgeZoneDrc( ZONE_CONTAINER* aArea, int aCornerIndex );
/**
* Test for footprint courtyard overlaps.
*
* @return bool - false if DRC error or true if OK
*/
bool doFootprintOverlappingDrc();
//-----<single tests>----------------------------------------------
/**
* @param aRefPad The reference pad to check
* @param aPad Another pad to check against
* @return bool - true if clearance between aRefPad and aPad is >= dist_min, else false
*/
bool checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad );
/**
* Check the distance from a pad to segment. This function uses several
* instance variable not passed in:
* m_segmLength = length of the segment being tested
* m_segmAngle = angle of the segment with the X axis;
* m_segmEnd = end coordinate of the segment
* m_padToTestPos = position of pad relative to the origin of segment
* @param aPad Is the pad involved in the check
* @param aSegmentWidth width of the segment to test
* @param aMinDist Is the minimum clearance needed
*
* @return true distance >= dist_min,
* false if distance < dist_min
*/
bool checkClearanceSegmToPad( const D_PAD* aPad, int aSegmentWidth, int aMinDist );
/**
* Check the distance from a point to a segment.
*
* The segment is expected starting at 0,0, and on the X axis
* (used to test DRC between a segment and a round pad, via or round end of a track
* @param aCentre The coordinate of the circle's center
* @param aRadius A "keep out" radius centered over the circle
* @param aLength The length of the segment (i.e. coordinate of end, because it is on
* the X axis)
* @return bool - true if distance >= radius, else
* false when distance < aRadius
*/
static bool checkMarginToCircle( wxPoint aCentre, int aRadius, int aLength );
/**
* Function checkLine
* (helper function used in drc calculations to see if one track is in contact with
* another track).
* Test if a line intersects a bounding box (a rectangle)
* The rectangle is defined by m_xcliplo, m_ycliplo and m_xcliphi, m_ycliphi
* return true if the line from aSegStart to aSegEnd is outside the bounding box
*/
bool checkLine( wxPoint aSegStart, wxPoint aSegEnd );
//-----</single tests>---------------------------------------------
public:
DRC( PCB_EDIT_FRAME* aPcbWindow );
~DRC();
/**
* tests the current segment and returns the result and displays the error
* in the status panel only if one exists.
* No marker created or added to the board. Must be used only during track
* creation in legacy canvas
* @param aRefSeg The current segment to test.
* @param aList The track list to test (usually m_Pcb->m_Track)
* @return int - BAD_DRC (1) if DRC error or OK_DRC (0) if OK
*/
int DrcOnCreatingTrack( TRACK* aRefSeg, TRACK* aList );
/**
* tests the outline segment starting at CornerIndex and returns the result and displays
* the error in the status panel only if one exists.
* Test Edge inside other areas
* Test Edge too close other areas
* No marker created or added to the board. Must be used only during zone
* creation in legacy canvas
* @param aArea The area parent which contains the corner.
* @param aCornerIndex The starting point of the segment to test.
* @return int - BAD_DRC (1) if DRC error or OK_DRC (0) if OK
*/
int DrcOnCreatingZone( ZONE_CONTAINER* aArea, int aCornerIndex );
/**
* Tests whether distance between zones complies with the DRC rules.
*
* @param aZone: zone to compare with other zones, or if NULL then
* all zones are compared to all others.
* @param aCreateMarkers: if true create DRC markers.
* False: do not create markers. only fing drc errors
* @return Errors count
*/
int TestZoneToZoneOutline( ZONE_CONTAINER* aZone, bool aCreateMarkers );
/**
* Open a dialog and prompts the user, then if a test run button is
* clicked, runs the test(s) and creates the MARKERS. The dialog is only
* created if it is not already in existence.
*
* @param aParent is the parent window for wxWidgets. Usually the PCB editor frame
* but can be another dialog
* if aParent == NULL (default), the parent will be the PCB editor frame
* and the dialog will be not modal (just float on parent
* if aParent is specified, the dialog will be modal.
* The modal mode is mandatory if the dialog is created from another dialog, not
* from the PCB editor frame
*/
void ShowDRCDialog( wxWindow* aParent = NULL );
/**
* Deletes this ui dialog box and zeros out its pointer to remember
* the state of the dialog's existence.
*
* @param aReason Indication of which button was clicked to cause the destruction.
* if aReason == wxID_OK, design parameters values which can be entered from the dialog
* will bbe saved in design parameters list
*/
void DestroyDRCDialog( int aReason );
/**
* Save all the UI or test settings and may be called before running the tests.
*
* @param aPad2PadTest Tells whether to test pad to pad distances.
* @param aUnconnectedTest Tells whether to list unconnected pads.
* @param aZonesTest Tells whether to test zones.
* @param aRefillZones Refill zones before performing DRC.
* @param aKeepoutTest Tells whether to test keepout areas.
* @param aCourtyardTest Tells whether to test footprint courtyard overlap.
* @param aCourtyardMissingTest Tells whether to test missing courtyard definition in footprint.
* @param aReportAllTrackErrors Tells whether or not to stop checking track connections after the first error.
* @param aReportName A string telling the disk file report name entered.
* @param aSaveReport A boolean telling whether to generate disk file report.
*/
void SetSettings( bool aPad2PadTest, bool aUnconnectedTest,
bool aZonesTest, bool aKeepoutTest, bool aRefillZones,
bool aCourtyardTest, bool aCourtyardMissingTest,
bool aReportAllTrackErrors,
const wxString& aReportName, bool aSaveReport )
{
m_doPad2PadTest = aPad2PadTest;
m_doUnconnectedTest = aUnconnectedTest;
m_doZonesTest = aZonesTest;
m_doKeepoutTest = aKeepoutTest;
m_rptFilename = aReportName;
m_doCreateRptFile = aSaveReport;
m_doFootprintOverlapping = aCourtyardTest;
m_doNoCourtyardDefined = aCourtyardMissingTest;
m_refillZones = aRefillZones;
m_drcInLegacyRoutingMode = false;
m_reportAllTrackErrors = aReportAllTrackErrors;
}
/**
* Run all the tests specified with a previous call to
* SetSettings()
* @param aMessages = a wxTextControl where to display some activity messages. Can be NULL
*/
void RunTests( wxTextCtrl* aMessages = NULL );
/**
* Gather a list of all the unconnected pads and shows them in the
* dialog, and optionally prints a report of such.
*/
void ListUnconnectedPads();
/**
* @return a pointer to the current marker (last created marker
*/
MARKER_PCB* GetCurrentMarker( )
{
return m_currentMarker;
}
};
#endif // DRC_H