kicad/pcbnew/ratsnest.cpp

930 lines
31 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2007-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file ratsnest.cpp
* @brief Ratsnets functions.
*/
#include <fctsys.h>
#include <gr_basic.h>
#include <common.h>
#include <class_drawpanel.h>
#include <colors_selection.h>
#include <wxBasePcbFrame.h>
#include <macros.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <pcbnew.h>
#include <minimun_spanning_tree.h>
/**
* @brief class MIN_SPAN_TREE_PADS (derived from MIN_SPAN_TREE) specializes
* the base class to calculate a minimum spanning tree from a list of pads,
* and to add this tree as ratsnest to the main ratsnest list.
*/
class MIN_SPAN_TREE_PADS: public MIN_SPAN_TREE
{
friend class MIN_SPAN_TREE;
public:
std::vector <D_PAD*>* m_PadsList; // list of pads:
/* these pads are the parents of nodes of the tree.
* Each node position is the corresponding pad position.
* This pad list is used to evaluate the weight of an edge in tree.
* -> edge = link between 2 nodes = links between 2 pads.
* -> weight of a link = rectilinear distance between the 2 pads
*/
public:
MIN_SPAN_TREE_PADS(): MIN_SPAN_TREE()
{
m_PadsList = NULL;
}
void MSP_Init( std::vector <D_PAD*>* aPadsList )
{
m_PadsList = aPadsList;
MIN_SPAN_TREE::MSP_Init( (int) m_PadsList->size() );
}
/**
* Function AddTreeToRatsnest
* Adds the current minimum spanning tree as ratsnest items
* to the main ratsnest list
* @param aRatsnestList = a ratsnest list to add to
*/
void AddTreeToRatsnest( std::vector<RATSNEST_ITEM>* aRatsnestList );
/**
* Function GetWeight
* calculates the weight between 2 items
* NOTE: The weight between a node and itself should be 0
* @param aItem1 = first item
* @param aItem2 = other item
* @return the weight between items ( the rectilinear distance )
*/
int GetWeight( int aItem1, int aItem2 ) override;
};
void MIN_SPAN_TREE_PADS::AddTreeToRatsnest( std::vector<RATSNEST_ITEM>* aRatsnestList )
{
std::vector<D_PAD*>& padsBuffer = *m_PadsList;
if( padsBuffer.empty() )
return;
int netcode = padsBuffer[0]->GetNetCode();
// Note: to get edges in minimum spanning tree,
// the index value 0 is not used: it is just
// the entry point of the minimum spanning tree.
// The first edge (i.e. rastnest) starts at index 1
for( int ii = 1; ii < m_Size; ii++ )
{
// Create the new ratsnest
RATSNEST_ITEM net;
net.SetNet( netcode );
net.m_Status = CH_ACTIF | CH_VISIBLE;
net.m_Length = GetDist(ii);
net.m_PadStart = padsBuffer[ii];
net.m_PadEnd = padsBuffer[ GetWhoTo(ii) ];
aRatsnestList->push_back( net );
}
}
/* Function GetWeight
* calculates the weight between 2 items
* Here it calculate the rectilinear distance between 2 pads (2 items)
* NOTE: The weight between a node and itself should be <=0
* aItem1 and aItem2 are the 2 items
* return the rectilinear distance
*/
int MIN_SPAN_TREE_PADS::GetWeight( int aItem1, int aItem2 )
{
// NOTE: The distance (weight) between a node and itself should be 0
// so we add 1 to other distances to be sure we never have 0
// in cases other than a node and itself
D_PAD* pad1 = (*m_PadsList)[aItem1];
D_PAD* pad2 = (*m_PadsList)[aItem2];
if( pad1 == pad2 )
return 0;
int weight = abs( pad2->GetPosition().x - pad1->GetPosition().x ) +
abs( pad2->GetPosition().y - pad1->GetPosition().y );
return weight + 1;
}
/* Note about the ratsnest computation:
* Building the general ratsnest:
* For each net, the ratsnest is the set of lines connecting pads,
* using the shorter distance
* Therefore this problem is well known in graph therory, and sloved
* using the "minimum spanning tree".
* We use here an algorithm to build the minimum spanning tree known as Prim's algorithm
*/
/**
* Function Compile_Ratsnest
* Create the entire board ratsnest.
* Must be called after a board change (changes for
* pads, footprints or a read netlist ).
* @param aDC = the current device context (can be NULL)
* @param aDisplayStatus : if true, display the computation results
*/
void PCB_BASE_FRAME::Compile_Ratsnest( wxDC* aDC, bool aDisplayStatus )
{
wxString msg;
GetBoard()->m_Status_Pcb = 0; // we want a full ratsnest computation, from the scratch
ClearMsgPanel();
// Rebuild the full pads and net info list
RecalculateAllTracksNetcode();
if( aDisplayStatus )
{
msg.Printf( wxT( " %d" ), m_Pcb->GetPadCount() );
AppendMsgPanel( wxT( "Pads" ), msg, RED );
msg.Printf( wxT( " %d" ), m_Pcb->GetNetCount() );
AppendMsgPanel( wxT( "Nets" ), msg, CYAN );
}
/* Compute the full ratsnest
* which can be see like all the possible links or logical connections.
* some of them are active (no track connected) and others are inactive
* (when tracks connect pads)
* This full ratsnest is not modified by track editing.
* It changes only when a netlist is read, or footprints are modified
*/
Build_Board_Ratsnest();
// Compute the pad connections due to the existing tracks (physical connections)
TestConnections();
/* Compute the active ratsnest, i.e. the unconnected links
*/
TestForActiveLinksInRatsnest( 0 );
// Redraw the active ratsnest ( if enabled )
if( GetBoard()->IsElementVisible(RATSNEST_VISIBLE) && aDC )
DrawGeneralRatsnest( aDC, 0 );
if( aDisplayStatus )
SetMsgPanel( m_Pcb );
}
/* Sort function used by QSORT
* Sort pads by net code
*/
static bool sortByNetcode( const D_PAD* const & ref, const D_PAD* const & item )
{
return ref->GetNetCode() < item->GetNetCode();
}
/**
* Function to compute the full ratsnest
* This is the "basic" ratsnest depending only on pads.
*
* Create the sorted pad list (if necessary)
* The active pads (i.e included in a net ) are called nodes
* This pad list is sorted by net codes
* A ratsnest can be seen as a logical connection.
*
* Update :
* nb_nodes = Active pads count for the board
* nb_links = link count for the board (logical connection count)
* (there are n-1 links in a net which counting n active pads) .
*/
void PCB_BASE_FRAME::Build_Board_Ratsnest()
{
D_PAD* pad;
int noconn;
m_Pcb->SetUnconnectedNetCount( 0 );
m_Pcb->m_FullRatsnest.clear();
if( m_Pcb->GetPadCount() == 0 )
return;
// Created pad list and the net_codes if needed
if( (m_Pcb->m_Status_Pcb & NET_CODES_OK) == 0 )
m_Pcb->BuildListOfNets();
for( unsigned ii = 0; ii<m_Pcb->GetPadCount(); ++ii )
{
pad = m_Pcb->GetPad( ii );
pad->SetSubRatsnest( 0 );
}
if( m_Pcb->GetNodesCount() == 0 )
return; // No useful connections.
// Ratsnest computation
unsigned current_net_code = 1; // First net code is analyzed.
// (net_code = 0 -> no connect)
noconn = 0;
MIN_SPAN_TREE_PADS min_spanning_tree;
for( ; current_net_code < m_Pcb->GetNetCount(); current_net_code++ )
{
NETINFO_ITEM* net = m_Pcb->FindNet( current_net_code );
if( !net ) // Should not occur
{
UTF8 msg = StrPrintf( "%s: error, net %d not found", __func__, current_net_code );
wxMessageBox( msg ); // BTW, it does happen.
return;
}
net->m_RatsnestStartIdx = m_Pcb->GetRatsnestsCount();
min_spanning_tree.MSP_Init( &net->m_PadInNetList );
min_spanning_tree.BuildTree();
min_spanning_tree.AddTreeToRatsnest( &m_Pcb->m_FullRatsnest );
net->m_RatsnestEndIdx = m_Pcb->GetRatsnestsCount();
}
m_Pcb->SetUnconnectedNetCount( noconn );
m_Pcb->m_Status_Pcb |= LISTE_RATSNEST_ITEM_OK;
// Update the ratsnest display option (visible/invisible) flag
for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ )
{
if( !GetBoard()->IsElementVisible( RATSNEST_VISIBLE ) ) // Clear VISIBLE flag
m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE;
}
}
/**
* function DrawGeneralRatsnest
* Only ratsnest items with the status bit CH_VISIBLE set are displayed
* @param aDC = the current device context (can be NULL)
* @param aNetcode: if > 0, Display only the ratsnest relative to the
* corresponding net_code
*/
void PCB_BASE_FRAME::DrawGeneralRatsnest( wxDC* aDC, int aNetcode )
{
if( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 )
return;
if( ( m_Pcb->m_Status_Pcb & DO_NOT_SHOW_GENERAL_RASTNEST ) )
return;
if( aDC == NULL )
return;
const int state = CH_VISIBLE | CH_ACTIF;
for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ )
{
RATSNEST_ITEM& item = m_Pcb->m_FullRatsnest[ii];
if( ( item.m_Status & state ) != state )
continue;
if( ( aNetcode <= 0 ) || ( aNetcode == item.GetNet() ) )
{
item.Draw( m_canvas, aDC, GR_XOR, wxPoint( 0, 0 ) );
}
}
}
/**
* Function used by TestForActiveLinksInRatsnest
* Function testing the ratsnest between 2 blocks ( of the same net )
* The search is made between pads in block 1 and the others blocks
* The block n ( n > 1 ) is merged with block 1 and linked by the smallest ratsnest
* between block 1 and the block n (activate the logical connection)
* @param aRatsnestBuffer = the buffer to store NETINFO_ITEM* items
* @param aNetinfo = the current NETINFO_ITEM for the current net
* output: .state member, bit CH_ACTIF of the ratsnest item
* @return last subratsnest id in use
*/
static int tst_links_between_blocks( NETINFO_ITEM* aNetinfo,
std::vector<RATSNEST_ITEM>& aRatsnestBuffer )
{
int subratsnest_id, min_id;
RATSNEST_ITEM* link, * best_link;
// Search a link from a block to an other block
best_link = NULL;
for( unsigned ii = aNetinfo->m_RatsnestStartIdx; ii < aNetinfo->m_RatsnestEndIdx; ii++ )
{
link = &aRatsnestBuffer[ii];
// If this link joints 2 pads inside the same block, do nothing
// (these pads are already connected)
if( link->m_PadStart->GetSubRatsnest() == link->m_PadEnd->GetSubRatsnest() )
continue;
// This link joints 2 pads of different blocks: this is a candidate,
// but we want to select the shorter link, so use it only if it is shorter
// than the previous candidate:
if( best_link == NULL ) // no candidate
best_link = link;
else if( best_link->m_Length > link->m_Length ) // It is a better candidate.
best_link = link;
}
if( best_link == NULL )
return 1;
/* At this point we have found a link between 2 different blocks (subratsnest)
* we must set its status to ACTIVE and merge the 2 blocks
*/
best_link->m_Status |= CH_ACTIF;
subratsnest_id = best_link->m_PadStart->GetSubRatsnest();
min_id = best_link->m_PadEnd->GetSubRatsnest();
if( min_id > subratsnest_id )
std::swap( min_id, subratsnest_id );
// Merge the 2 blocks in one sub ratsnest:
for( unsigned ii = 0; ii < aNetinfo->m_PadInNetList.size(); ii++ )
{
if( aNetinfo->m_PadInNetList[ii]->GetSubRatsnest() == subratsnest_id )
{
aNetinfo->m_PadInNetList[ii]->SetSubRatsnest( min_id );
}
}
return subratsnest_id;
}
/**
* Function used by TestForActiveLinksInRatsnest_general
* The general ratsnest list must exists because this function explores this ratsnest
* Activates (i.e. set the CH_ACTIF flag) the ratsnest links between 2 pads when
* at least one pad not already connected (SubRatsnest = 0)
* and actives the corresponding link
*
* @param aFirstItem = starting address for the ratsnest list
* @param aLastItem = ending address for the ratsnest list
* @param aCurrSubRatsnestId = last sub ratsnest id in use (computed from the track
* analysis)
*
* output:
* ratsnest list (status member bit CH_ACTIF set)
* and pads linked (m_SubRatsnest value set)
*
* @return new block number
*/
static void tst_links_between_pads( int & aCurrSubRatsnestId,
RATSNEST_ITEM* aFirstItem,
RATSNEST_ITEM* aLastItem )
{
for( RATSNEST_ITEM* item = aFirstItem; item < aLastItem; item++ )
{
D_PAD* pad_start = item->m_PadStart;
D_PAD* pad_end = item->m_PadEnd;
/* Update the current SubRatsnest if the 2 pads are not connected :
* a new cluster is created and the link activated
*/
if( (pad_start->GetSubRatsnest() == 0) && (pad_end->GetSubRatsnest() == 0) )
{
aCurrSubRatsnestId++;
pad_start->SetSubRatsnest( aCurrSubRatsnestId );
pad_end->SetSubRatsnest( aCurrSubRatsnestId );
item->m_Status |= CH_ACTIF;
}
/* If a pad is already connected to a subratsnest: activate the link
* the pad other is merged in the existing subratsnest
*/
else if( pad_start->GetSubRatsnest() == 0 )
{
pad_start->SetSubRatsnest( pad_end->GetSubRatsnest() );
item->m_Status |= CH_ACTIF;
}
else if( pad_end->GetSubRatsnest() == 0 )
{
pad_end->SetSubRatsnest( pad_start->GetSubRatsnest() );
item->m_Status |= CH_ACTIF;
}
}
}
/* function TestForActiveLinksInRatsnest
* determine the active links inside the full ratsnest
*
* I used an algorithm inspired by the "Lee algorithm".
* The idea is all pads must be connected by a physical track or a logical track
* a physical track is the existing track on copper layers.
* a logical track is the link that must be activated (visible) if
* no track found between 2 pads.
* The algorithm explore the existing full ratnest
* This is a 2 steps algorithm (executed for each net).
* - First:
* Initialise for each pad the subratsnest id to its subnet value
* explore the full ratnest (relative to the net) and active a link each time at least one pad of
* the given link is not connected to an other pad by a track ( subratsnest = 0)
* If the 2 pads linked have both the subratsnest id = 0, a new subratsnest value is created
* - Second:
* explore the full ratnest (relative to the net) and find a link that links
* 2 pads having different subratsnest values
* Active the link and merge the 2 subratsnest value.
*
* This is usually fast because the ratsnest is not built here: it is just explored
* to see what link must be activated
*/
void PCB_BASE_FRAME::TestForActiveLinksInRatsnest( int aNetCode )
{
RATSNEST_ITEM* rats;
D_PAD* pad;
NETINFO_ITEM* net;
if( m_Pcb->GetPadCount() == 0 )
return;
if( (m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK) == 0 )
Build_Board_Ratsnest();
for( int net_code = 1; net_code < (int) m_Pcb->GetNetCount(); net_code++ )
{
net = m_Pcb->FindNet( net_code );
wxCHECK_RET( net != NULL,
wxString::Format( wxT( "Net code %d not found!" ), net_code ) );
if( aNetCode && (net_code != aNetCode) )
continue;
// Create subratsnests id from subnets created by existing tracks:
int subratsnest = 0;
for( unsigned ip = 0; ip < net->m_PadInNetList.size(); ip++ )
{
pad = net->m_PadInNetList[ip];
int subnet = pad->GetSubNet();
pad->SetSubRatsnest( subnet );
subratsnest = std::max( subratsnest, subnet );
}
for( unsigned ii = net->m_RatsnestStartIdx; ii < net->m_RatsnestEndIdx; ii++ )
{
m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_ACTIF;
}
// First pass - activate links for not connected pads
rats = &m_Pcb->m_FullRatsnest[0];
tst_links_between_pads( subratsnest,
rats + net->m_RatsnestStartIdx,
rats + net->m_RatsnestEndIdx );
// Second pass activate links between blocks (Iteration)
while( subratsnest > 1 )
{
subratsnest = tst_links_between_blocks( net, m_Pcb->m_FullRatsnest );
}
}
m_Pcb->SetUnconnectedNetCount( 0 );
unsigned cnt = 0;
for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ )
{
if( m_Pcb->m_FullRatsnest[ii].IsActive() )
cnt++;
}
m_Pcb->SetUnconnectedNetCount( cnt );
}
void PCB_BASE_FRAME::build_ratsnest_module( MODULE* aModule )
{
// for local ratsnest calculation when moving a footprint:
// list of pads to use for this local ratsnets:
// this is the list of connected pads of the current module,
// and all pads connected to these pads:
static std::vector <D_PAD*> localPadList;
static unsigned pads_module_count; // node count (node = pad with a net
// code) for the footprint being moved
static unsigned internalRatsCount; // number of internal links (links
// between pads of the module)
D_PAD* pad_ref;
D_PAD* pad_externe;
int current_net_code;
int distance;
wxPoint pad_pos; // True pad position according to the
// current footprint position
if( (GetBoard()->m_Status_Pcb & LISTE_PAD_OK) == 0 )
{
GetBoard()->m_Status_Pcb = 0;
GetBoard()->BuildListOfNets();
}
/* Compute the "local" ratsnest if needed (when this footprint starts move)
* and the list of external pads to consider, i.e pads in others
* footprints which are "connected" to
* a pad in the current footprint
*/
if( (m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK) == 0 )
{
// Compute the "internal" ratsnest, i.e the links between the current
// footprint pads
localPadList.clear();
m_Pcb->m_LocalRatsnest.clear();
// collect active pads of the module:
for( pad_ref = aModule->Pads(); pad_ref; pad_ref = pad_ref->Next() )
{
if( pad_ref->GetNetCode() == NETINFO_LIST::UNCONNECTED )
continue;
localPadList.push_back( pad_ref );
pad_ref->SetSubRatsnest( 0 );
pad_ref->SetSubNet( 0 );
}
pads_module_count = localPadList.size();
if( pads_module_count == 0 )
return; // no connection!
sort( localPadList.begin(), localPadList.end(), sortByNetcode );
// Build the list of pads linked to the current footprint pads
current_net_code = 0;
for( unsigned ii = 0; ii < pads_module_count; ii++ )
{
pad_ref = localPadList[ii];
if( pad_ref->GetNetCode() == current_net_code )
continue;
// A new net was found, load all pads of others modules members of this net:
NETINFO_ITEM* net = pad_ref->GetNet();
if( net == NULL ) //Should not occur
{
wxMessageBox( wxT( "build_ratsnest_module() error: net not found" ) );
return;
}
for( unsigned jj = 0; jj < net->m_PadInNetList.size(); jj++ )
{
pad_externe = net->m_PadInNetList[jj];
if( pad_externe->GetParent() == aModule )
continue;
pad_externe->SetSubRatsnest( 0 );
pad_externe->SetSubNet( 0 );
localPadList.push_back( pad_externe );
}
}
// Sort the pad list by net_code
sort( localPadList.begin() + pads_module_count, localPadList.end(),
sortByNetcode );
/* Compute the internal rats nest:
* this is the same as general ratsnest, but considers only the current
* footprint pads it is therefore not time consuming, and it is made only
* once
*/
current_net_code = localPadList[0]->GetNetCode();
MIN_SPAN_TREE_PADS min_spanning_tree;
std::vector<D_PAD*> padsBuffer; // contains pads of only one net
for( unsigned ii = 0; ii < pads_module_count; ii++ )
{
// Search the end of pad list relative to the current net
unsigned jj = ii + 1;
for( ; jj <= pads_module_count; jj++ )
{
if( jj >= pads_module_count )
break;
if( localPadList[jj]->GetNetCode() != current_net_code )
break;
}
for( unsigned kk = ii; kk < jj; kk++ )
padsBuffer.push_back( localPadList[kk] );
min_spanning_tree.MSP_Init( &padsBuffer );
min_spanning_tree.BuildTree();
min_spanning_tree.AddTreeToRatsnest( &m_Pcb->m_LocalRatsnest );
padsBuffer.clear();
ii = jj;
if( ii < localPadList.size() )
current_net_code = localPadList[ii]->GetNetCode();
}
internalRatsCount = m_Pcb->m_LocalRatsnest.size();
// set the flag LOCAL_RATSNEST_ITEM of the ratsnest status:
for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ )
m_Pcb->m_LocalRatsnest[ii].m_Status = LOCAL_RATSNEST_ITEM;
m_Pcb->m_Status_Pcb |= RATSNEST_ITEM_LOCAL_OK;
} // End of internal ratsnest build
/* This section computes the "external" ratsnest: it is done when the
* footprint position changes
*
* This section search:
* for each current module pad the nearest neighbor external pad (of
* course for the same net code).
* For each current footprint cluster of pad (pads having the same net
* code),
* we search the smaller rats nest.
* so, for each net, only one rats nest item is created
*/
RATSNEST_ITEM local_rats;
local_rats.m_Length = INT_MAX;
local_rats.m_Status = 0;
bool addRats = false;
// Erase external ratsnest items:
if( internalRatsCount < m_Pcb->m_LocalRatsnest.size() )
m_Pcb->m_LocalRatsnest.erase( m_Pcb->m_LocalRatsnest.begin() + internalRatsCount,
m_Pcb->m_LocalRatsnest.end() );
current_net_code = localPadList[0]->GetNetCode();
for( unsigned ii = 0; ii < pads_module_count; ii++ )
{
pad_ref = localPadList[ii];
if( pad_ref->GetNetCode() != current_net_code )
{
// if needed, creates a new ratsnest for the old net
if( addRats )
{
m_Pcb->m_LocalRatsnest.push_back( local_rats );
}
addRats = false;
current_net_code = pad_ref->GetNetCode();
local_rats.m_Length = INT_MAX;
}
pad_pos = pad_ref->GetPosition() - g_Offset_Module;
// Search the nearest external pad of this current pad
for( unsigned jj = pads_module_count; jj < localPadList.size(); jj++ )
{
pad_externe = localPadList[jj];
// we search pads having the same net code
if( pad_externe->GetNetCode() < pad_ref->GetNetCode() )
continue;
if( pad_externe->GetNetCode() > pad_ref->GetNetCode() ) // pads are sorted by net code
break;
distance = abs( pad_externe->GetPosition().x - pad_pos.x ) +
abs( pad_externe->GetPosition().y - pad_pos.y );
if( distance < local_rats.m_Length )
{
local_rats.m_PadStart = pad_ref;
local_rats.m_PadEnd = pad_externe;
local_rats.SetNet( pad_ref->GetNetCode() );
local_rats.m_Length = distance;
local_rats.m_Status = 0;
addRats = true;
}
}
}
if( addRats ) // Ensure the last created rats nest item is stored in buffer
m_Pcb->m_LocalRatsnest.push_back( local_rats );
}
void PCB_BASE_FRAME::TraceModuleRatsNest( wxDC* DC )
{
if( DC == NULL )
return;
if( ( m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK ) == 0 )
return;
EDA_COLOR_T tmpcolor = g_ColorsSettings.GetItemColor(RATSNEST_VISIBLE);
for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ )
{
RATSNEST_ITEM* rats = &m_Pcb->m_LocalRatsnest[ii];
if( rats->m_Status & LOCAL_RATSNEST_ITEM )
{
g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, YELLOW);
rats->Draw( m_canvas, DC, GR_XOR, g_Offset_Module );
}
else
{
g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, tmpcolor);
wxPoint tmp = rats->m_PadStart->GetPosition();
rats->m_PadStart->SetPosition( tmp - g_Offset_Module );
rats->Draw( m_canvas, DC, GR_XOR, wxPoint( 0, 0 ) );
rats->m_PadStart->SetPosition( tmp );
}
}
g_ColorsSettings.SetItemColor( RATSNEST_VISIBLE, tmpcolor );
}
/*
* PCB_BASE_FRAME::BuildAirWiresTargetsList and
* PCB_BASE_FRAME::TraceAirWiresToTargets
* are 2 function to show the near connecting points when
* a new track is created, by displaying g_MaxLinksShowed airwires
* between the on grid mouse cursor and these connecting points
* during the creation of a track
*/
/* Buffer to store pads coordinates when creating a track.
* these pads are members of the net
* and when the mouse is moved, the g_MaxLinksShowed links to neighbors are
* drawn
*/
static std::vector <wxPoint> s_TargetsLocations;
static wxPoint s_CursorPos; // Coordinate of the moving point (mouse cursor and
// end of current track segment)
/* Used by BuildAirWiresTargetsList(): sort function by link length
* (rectilinear distance between s_CursorPos and item pos)
*/
static bool sort_by_distance( const wxPoint& ref, const wxPoint& compare )
{
wxPoint deltaref = ref - s_CursorPos; // relative coordinate of ref
wxPoint deltacmp = compare - s_CursorPos; // relative coordinate of compare
// rectilinear distance between ref and s_CursorPos:
int lengthref = abs( deltaref.x ) + abs( deltaref.y );
// rectilinear distance between compare and s_CursorPos:
int lengthcmp = abs( deltacmp.x ) + abs( deltacmp.y );
return lengthref < lengthcmp;
}
static bool sort_by_point( const wxPoint& ref, const wxPoint& compare )
{
if( ref.x == compare.x )
return ref.y < compare.y;
return ref.x < compare.x;
}
/* Function BuildAirWiresTargetsList
* Build a list of candidates that can be a coonection point
* when a track is started.
* This functions prepares data to show airwires to nearest connecting points (pads)
* from the current new track to candidates during track creation
*/
void PCB_BASE_FRAME::BuildAirWiresTargetsList( BOARD_CONNECTED_ITEM* aItemRef,
const wxPoint& aPosition, bool aInit )
{
if( ( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 )
|| ( ( m_Pcb->m_Status_Pcb & LISTE_PAD_OK ) == 0 )
|| ( ( m_Pcb->m_Status_Pcb & NET_CODES_OK ) == 0 ) )
{
s_TargetsLocations.clear();
return;
}
s_CursorPos = aPosition; // needed for sort_by_distance
if( aInit )
{
s_TargetsLocations.clear();
if( aItemRef == NULL )
return;
int net_code = aItemRef->GetNetCode();
int subnet = aItemRef->GetSubNet();
if( net_code <= 0 )
return;
NETINFO_ITEM* net = m_Pcb->FindNet( net_code );
if( net == NULL ) // Should not occur
{
wxMessageBox( wxT( "BuildAirWiresTargetsList() error: net not found" ) );
return;
}
// Create a list of pads candidates ( pads not already connected to the
// current track ):
for( unsigned ii = 0; ii < net->m_PadInNetList.size(); ii++ )
{
D_PAD* pad = net->m_PadInNetList[ii];
if( pad == aItemRef )
continue;
if( !pad->GetSubNet() || (pad->GetSubNet() != subnet) )
s_TargetsLocations.push_back( pad->GetPosition() );
}
// Create a list of tracks ends candidates, not already connected to the
// current track:
for( TRACK* track = m_Pcb->m_Track; track; track = track->Next() )
{
if( track->GetNetCode() < net_code )
continue;
if( track->GetNetCode() > net_code )
break;
if( !track->GetSubNet() || (track->GetSubNet() != subnet) )
{
if( aPosition != track->GetStart() )
s_TargetsLocations.push_back( track->GetStart() );
if( aPosition != track->GetEnd() && track->GetStart() != track->GetEnd() )
s_TargetsLocations.push_back( track->GetEnd() );
}
}
// Remove duplicate targets, using the C++ unique algorithm
sort( s_TargetsLocations.begin(), s_TargetsLocations.end(), sort_by_point );
std::vector< wxPoint >::iterator it = unique( s_TargetsLocations.begin(), s_TargetsLocations.end() );
// Using the C++ unique algorithm only moves the duplicate entries to the end of
// of the array. This removes the duplicate entries from the array.
s_TargetsLocations.resize( it - s_TargetsLocations.begin() );
} // end if Init
// in all cases, sort by distances:
sort( s_TargetsLocations.begin(), s_TargetsLocations.end(), sort_by_distance );
}
void PCB_BASE_FRAME::TraceAirWiresToTargets( wxDC* aDC )
{
if( aDC == NULL )
return;
if( s_TargetsLocations.size() == 0 )
return;
GRSetDrawMode( aDC, GR_XOR );
DISPLAY_OPTIONS* displ_opts = (DISPLAY_OPTIONS*)GetDisplayOptions();
for( int ii = 0; ii < (int) s_TargetsLocations.size(); ii++ )
{
if( ii >= displ_opts->m_MaxLinksShowed )
break;
GRLine( m_canvas->GetClipBox(), aDC, s_CursorPos, s_TargetsLocations[ii], 0, YELLOW );
}
}