kicad/pcbnew/connectivity/connectivity_algo.cpp

825 lines
23 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2016-2018 CERN
* Copyright (C) 2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <connectivity/connectivity_algo.h>
#include <widgets/progress_reporter.h>
#include <geometry/geometry_utils.h>
#include <board_commit.h>
#include <wx/log.h>
#include <thread>
#include <mutex>
#include <algorithm>
#include <future>
#ifdef PROFILE
#include <profile.h>
#endif
bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem )
{
markItemNetAsDirty( aItem );
switch( aItem->Type() )
{
case PCB_FOOTPRINT_T:
for( PAD* pad : static_cast<FOOTPRINT*>( aItem )->Pads() )
{
m_itemMap[pad].MarkItemsAsInvalid();
m_itemMap.erase( pad );
}
m_itemList.SetDirty( true );
break;
case PCB_PAD_T:
m_itemMap[aItem].MarkItemsAsInvalid();
m_itemMap.erase( aItem );
m_itemList.SetDirty( true );
break;
case PCB_TRACE_T:
case PCB_ARC_T:
m_itemMap[aItem].MarkItemsAsInvalid();
m_itemMap.erase( aItem );
m_itemList.SetDirty( true );
break;
case PCB_VIA_T:
m_itemMap[aItem].MarkItemsAsInvalid();
m_itemMap.erase( aItem );
m_itemList.SetDirty( true );
break;
case PCB_ZONE_T:
m_itemMap[aItem].MarkItemsAsInvalid();
m_itemMap.erase ( aItem );
m_itemList.SetDirty( true );
break;
default:
return false;
}
// Once we delete an item, it may connect between lists, so mark both as potentially invalid
m_itemList.SetHasInvalid( true );
return true;
}
void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem )
{
if( aItem->IsConnected() )
{
auto citem = static_cast<const BOARD_CONNECTED_ITEM*>( aItem );
MarkNetAsDirty( citem->GetNetCode() );
}
else
{
if( aItem->Type() == PCB_FOOTPRINT_T )
{
const FOOTPRINT* footprint = static_cast<const FOOTPRINT*>( aItem );
for( PAD* pad : footprint->Pads() )
MarkNetAsDirty( pad->GetNetCode() );
}
}
}
bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem )
{
if( !aItem->IsOnCopperLayer() )
return false;
markItemNetAsDirty ( aItem );
switch( aItem->Type() )
{
case PCB_NETINFO_T:
MarkNetAsDirty( static_cast<NETINFO_ITEM*>( aItem )->GetNetCode() );
break;
case PCB_FOOTPRINT_T:
for( PAD* pad : static_cast<FOOTPRINT*>( aItem )->Pads() )
{
if( m_itemMap.find( pad ) != m_itemMap.end() )
return false;
add( m_itemList, pad );
}
break;
case PCB_PAD_T:
if( m_itemMap.find ( aItem ) != m_itemMap.end() )
return false;
add( m_itemList, static_cast<PAD*>( aItem ) );
break;
case PCB_TRACE_T:
if( m_itemMap.find( aItem ) != m_itemMap.end() )
return false;
add( m_itemList, static_cast<TRACK*>( aItem ) );
break;
case PCB_ARC_T:
if( m_itemMap.find( aItem ) != m_itemMap.end() )
return false;
add( m_itemList, static_cast<ARC*>( aItem ) );
break;
case PCB_VIA_T:
if( m_itemMap.find( aItem ) != m_itemMap.end() )
return false;
add( m_itemList, static_cast<VIA*>( aItem ) );
break;
case PCB_ZONE_T:
{
ZONE* zone = static_cast<ZONE*>( aItem );
if( m_itemMap.find( aItem ) != m_itemMap.end() )
return false;
m_itemMap[zone] = ITEM_MAP_ENTRY();
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
for( CN_ITEM* zitem : m_itemList.Add( zone, layer ) )
m_itemMap[zone].Link( zitem );
}
}
break;
default:
return false;
}
return true;
}
void CN_CONNECTIVITY_ALGO::searchConnections()
{
#ifdef PROFILE
PROF_COUNTER garbage_collection( "garbage-collection" );
#endif
std::vector<CN_ITEM*> garbage;
garbage.reserve( 1024 );
m_itemList.RemoveInvalidItems( garbage );
for( auto item : garbage )
delete item;
#ifdef PROFILE
garbage_collection.Show();
PROF_COUNTER search_basic( "search-basic" );
#endif
std::vector<CN_ITEM*> dirtyItems;
std::copy_if( m_itemList.begin(), m_itemList.end(), std::back_inserter( dirtyItems ),
[] ( CN_ITEM* aItem )
{
return aItem->Dirty();
} );
if( m_progressReporter )
{
m_progressReporter->SetMaxProgress( dirtyItems.size() );
if( !m_progressReporter->KeepRefreshing() )
return;
}
if( m_itemList.IsDirty() )
{
size_t parallelThreadCount = std::min<size_t>( std::thread::hardware_concurrency(),
( dirtyItems.size() + 7 ) / 8 );
std::atomic<size_t> nextItem( 0 );
std::vector<std::future<size_t>> returns( parallelThreadCount );
auto conn_lambda =
[&nextItem, &dirtyItems]( CN_LIST* aItemList,
PROGRESS_REPORTER* aReporter) -> size_t
{
for( size_t i = nextItem++; i < dirtyItems.size(); i = nextItem++ )
{
CN_VISITOR visitor( dirtyItems[i] );
aItemList->FindNearby( dirtyItems[i], visitor );
if( aReporter )
{
if( aReporter->IsCancelled() )
break;
else
aReporter->AdvanceProgress();
}
}
return 1;
};
if( parallelThreadCount <= 1 )
conn_lambda( &m_itemList, m_progressReporter );
else
{
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
returns[ii] = std::async( std::launch::async, conn_lambda, &m_itemList,
m_progressReporter );
}
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
// Here we balance returns with a 100ms timeout to allow UI updating
std::future_status status;
do
{
if( m_progressReporter )
m_progressReporter->KeepRefreshing();
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) );
} while( status != std::future_status::ready );
}
}
if( m_progressReporter )
m_progressReporter->KeepRefreshing();
}
#ifdef PROFILE
search_basic.Show();
#endif
m_itemList.ClearDirtyFlags();
}
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode )
{
constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_ARC_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_T,
PCB_FOOTPRINT_T, EOT };
constexpr KICAD_T no_zones[] = { PCB_TRACE_T, PCB_ARC_T, PCB_PAD_T, PCB_VIA_T,
PCB_FOOTPRINT_T, EOT };
if( aMode == CSM_PROPAGATE )
return SearchClusters( aMode, no_zones, -1 );
else
return SearchClusters( aMode, types, -1 );
}
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode,
const KICAD_T aTypes[],
int aSingleNet )
{
bool withinAnyNet = ( aMode != CSM_PROPAGATE );
std::deque<CN_ITEM*> Q;
std::set<CN_ITEM*> item_set;
CLUSTERS clusters;
if( m_itemList.IsDirty() )
searchConnections();
auto addToSearchList =
[&item_set, withinAnyNet, aSingleNet, aTypes]( CN_ITEM *aItem )
{
if( withinAnyNet && aItem->Net() <= 0 )
return;
if( !aItem->Valid() )
return;
if( aSingleNet >=0 && aItem->Net() != aSingleNet )
return;
bool found = false;
for( int i = 0; aTypes[i] != EOT; i++ )
{
if( aItem->Parent()->Type() == aTypes[i] )
{
found = true;
break;
}
}
if( !found )
return;
aItem->SetVisited( false );
item_set.insert( aItem );
};
std::for_each( m_itemList.begin(), m_itemList.end(), addToSearchList );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return CLUSTERS();
while( !item_set.empty() )
{
CN_CLUSTER_PTR cluster = std::make_shared<CN_CLUSTER>();
CN_ITEM* root;
auto it = item_set.begin();
while( it != item_set.end() && (*it)->Visited() )
it = item_set.erase( item_set.begin() );
if( it == item_set.end() )
break;
root = *it;
root->SetVisited( true );
Q.clear();
Q.push_back( root );
while( Q.size() )
{
CN_ITEM* current = Q.front();
Q.pop_front();
cluster->Add( current );
for( auto n : current->ConnectedItems() )
{
if( withinAnyNet && n->Net() != root->Net() )
continue;
if( !n->Visited() && n->Valid() )
{
n->SetVisited( true );
Q.push_back( n );
}
}
}
clusters.push_back( cluster );
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
return CLUSTERS();
std::sort( clusters.begin(), clusters.end(),
[]( CN_CLUSTER_PTR a, CN_CLUSTER_PTR b )
{
return a->OriginNet() < b->OriginNet();
} );
return clusters;
}
void reportProgress( PROGRESS_REPORTER* aReporter, int aCount, int aSize, int aDelta )
{
if( aReporter && ( ( aCount % aDelta ) == 0 || aCount == aSize - 1 ) )
{
aReporter->SetCurrentProgress( (double) aCount / (double) aSize );
aReporter->KeepRefreshing( false );
}
}
void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard, PROGRESS_REPORTER* aReporter )
{
const int delta = 100; // Number of additions between 2 calls to the progress bar
int ii = 0;
int size = 0;
size += aBoard->Zones().size();
size += aBoard->Tracks().size();
for( FOOTPRINT* footprint : aBoard->Footprints() )
size += footprint->Pads().size();
size *= 2; // Our caller us gets the other half of the progress bar
for( ZONE* zone : aBoard->Zones() )
{
Add( zone );
reportProgress( aReporter, ii++, size, delta );
}
for( TRACK* tv : aBoard->Tracks() )
{
Add( tv );
reportProgress( aReporter, ii++, size, delta );
}
for( FOOTPRINT* footprint : aBoard->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
Add( pad );
reportProgress( aReporter, ii++, size, delta );
}
}
}
void CN_CONNECTIVITY_ALGO::Build( const std::vector<BOARD_ITEM*>& aItems )
{
for( auto item : aItems )
{
switch( item->Type() )
{
case PCB_TRACE_T:
case PCB_ARC_T:
case PCB_VIA_T:
case PCB_PAD_T:
Add( item );
break;
case PCB_FOOTPRINT_T:
for( PAD* pad : static_cast<FOOTPRINT*>( item )->Pads() )
Add( pad );
break;
default:
break;
}
}
}
void CN_CONNECTIVITY_ALGO::propagateConnections( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode )
{
bool skipConflicts = ( aMode == PROPAGATE_MODE::SKIP_CONFLICTS );
wxLogTrace( "CN", "propagateConnections: propagate skip conflicts? %d", skipConflicts );
for( const auto& cluster : m_connClusters )
{
if( skipConflicts && cluster->IsConflicting() )
{
wxLogTrace( "CN", "Conflicting nets in cluster %p; skipping update", cluster.get() );
}
else if( cluster->IsOrphaned() )
{
wxLogTrace( "CN", "Skipping orphaned cluster %p [net: %s]", cluster.get(),
(const char*) cluster->OriginNetName().c_str() );
}
else if( cluster->HasValidNet() )
{
if( cluster->IsConflicting() )
{
wxLogTrace( "CN", "Conflicting nets in cluster %p; chose %d (%s)", cluster.get(),
cluster->OriginNet(), cluster->OriginNetName() );
}
// normal cluster: just propagate from the pads
int n_changed = 0;
for( auto item : *cluster )
{
if( item->CanChangeNet() )
{
if( item->Valid() && item->Parent()->GetNetCode() != cluster->OriginNet() )
{
MarkNetAsDirty( item->Parent()->GetNetCode() );
MarkNetAsDirty( cluster->OriginNet() );
if( aCommit )
aCommit->Modify( item->Parent() );
item->Parent()->SetNetCode( cluster->OriginNet() );
n_changed++;
}
}
}
if( n_changed )
{
wxLogTrace( "CN", "Cluster %p : net : %d %s", cluster.get(),
cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() );
}
else
wxLogTrace( "CN", "Cluster %p : nothing to propagate", cluster.get() );
}
else
{
wxLogTrace( "CN", "Cluster %p : connected to unused net", cluster.get() );
}
}
}
void CN_CONNECTIVITY_ALGO::PropagateNets( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode )
{
m_connClusters = SearchClusters( CSM_PROPAGATE );
propagateConnections( aCommit, aMode );
}
void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE* aZone, PCB_LAYER_ID aLayer,
std::vector<int>& aIslands )
{
if( aZone->GetFilledPolysList( aLayer ).IsEmpty() )
return;
aIslands.clear();
Remove( aZone );
Add( aZone );
m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );
for( const auto& cluster : m_connClusters )
{
if( cluster->Contains( aZone ) && cluster->IsOrphaned() )
{
for( auto z : *cluster )
{
if( z->Parent() == aZone && z->Layer() == aLayer )
{
aIslands.push_back( static_cast<CN_ZONE_LAYER*>(z)->SubpolyIndex() );
}
}
}
}
wxLogTrace( "CN", "Found %u isolated islands\n", (unsigned)aIslands.size() );
}
void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( std::vector<CN_ZONE_ISOLATED_ISLAND_LIST>& aZones )
{
for( auto& z : aZones )
{
Remove( z.m_zone );
Add( z.m_zone );
}
m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );
for( CN_ZONE_ISOLATED_ISLAND_LIST& zone : aZones )
{
for( PCB_LAYER_ID layer : zone.m_zone->GetLayerSet().Seq() )
{
if( zone.m_zone->GetFilledPolysList( layer ).IsEmpty() )
continue;
for( const CN_CLUSTER_PTR& cluster : m_connClusters )
{
if( cluster->Contains( zone.m_zone ) && cluster->IsOrphaned() )
{
for( CN_ITEM* z : *cluster )
{
if( z->Parent() == zone.m_zone && z->Layer() == layer )
{
zone.m_islands[layer].push_back(
static_cast<CN_ZONE_LAYER*>( z )->SubpolyIndex() );
}
}
}
}
}
}
}
const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters()
{
m_ratsnestClusters = SearchClusters( CSM_RATSNEST );
return m_ratsnestClusters;
}
void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet )
{
if( aNet < 0 )
return;
if( (int) m_dirtyNets.size() <= aNet )
{
int lastNet = m_dirtyNets.size() - 1;
if( lastNet < 0 )
lastNet = 0;
m_dirtyNets.resize( aNet + 1 );
for( int i = lastNet; i < aNet + 1; i++ )
m_dirtyNets[i] = true;
}
m_dirtyNets[aNet] = true;
}
void CN_VISITOR::checkZoneItemConnection( CN_ZONE_LAYER* aZoneLayer, CN_ITEM* aItem )
{
if( aZoneLayer->Net() != aItem->Net() && !aItem->CanChangeNet() )
return;
if( !aZoneLayer->BBox().Intersects( aItem->BBox() ) )
return;
int accuracy = 0;
if( aItem->Parent()->Type() == PCB_VIA_T
|| aItem->Parent()->Type() == PCB_TRACE_T
|| aItem->Parent()->Type() == PCB_ARC_T )
{
accuracy = ( static_cast<TRACK*>( aItem->Parent() )->GetWidth() + 1 ) / 2;
}
for( int i = 0; i < aItem->AnchorCount(); ++i )
{
if( aZoneLayer->ContainsPoint( aItem->GetAnchor( i ), accuracy ) )
{
aZoneLayer->Connect( aItem );
aItem->Connect( aZoneLayer );
return;
}
}
}
void CN_VISITOR::checkZoneZoneConnection( CN_ZONE_LAYER* aZoneLayerA, CN_ZONE_LAYER* aZoneLayerB )
{
const ZONE* zoneA = static_cast<const ZONE*>( aZoneLayerA->Parent() );
const ZONE* zoneB = static_cast<const ZONE*>( aZoneLayerB->Parent() );
if( aZoneLayerA->Layer() != aZoneLayerB->Layer() )
return;
if( aZoneLayerB->Net() != aZoneLayerA->Net() )
return; // we only test zones belonging to the same net
const BOX2I& boxA = aZoneLayerA->BBox();
const BOX2I& boxB = aZoneLayerB->BBox();
int radiusA = 0;
int radiusB = 0;
if( zoneA->GetFilledPolysUseThickness() )
radiusA = ( zoneA->GetMinThickness() + 1 ) / 2;
if( zoneB->GetFilledPolysUseThickness() )
radiusB = ( zoneB->GetMinThickness() + 1 ) / 2;
PCB_LAYER_ID layer = static_cast<PCB_LAYER_ID>( aZoneLayerA->Layer() );
const SHAPE_LINE_CHAIN& outline =
zoneA->GetFilledPolysList( layer ).COutline( aZoneLayerA->SubpolyIndex() );
for( int i = 0; i < outline.PointCount(); i++ )
{
if( !boxB.Contains( outline.CPoint( i ) ) )
continue;
if( aZoneLayerB->ContainsPoint( outline.CPoint( i ), radiusA ) )
{
aZoneLayerA->Connect( aZoneLayerB );
aZoneLayerB->Connect( aZoneLayerA );
return;
}
}
const SHAPE_LINE_CHAIN& outline2 =
zoneB->GetFilledPolysList( layer ).COutline( aZoneLayerB->SubpolyIndex() );
for( int i = 0; i < outline2.PointCount(); i++ )
{
if( !boxA.Contains( outline2.CPoint( i ) ) )
continue;
if( aZoneLayerA->ContainsPoint( outline2.CPoint( i ), radiusB ) )
{
aZoneLayerA->Connect( aZoneLayerB );
aZoneLayerB->Connect( aZoneLayerA );
return;
}
}
}
bool CN_VISITOR::operator()( CN_ITEM* aCandidate )
{
const BOARD_CONNECTED_ITEM* parentA = aCandidate->Parent();
const BOARD_CONNECTED_ITEM* parentB = m_item->Parent();
if( !aCandidate->Valid() || !m_item->Valid() )
return true;
if( parentA == parentB )
return true;
if( !( parentA->GetLayerSet() & parentB->GetLayerSet() ).any() )
return true;
// If both m_item and aCandidate are marked dirty, they will both be searched
// Since we are reciprocal in our connection, we arbitrarily pick one of the connections
// to conduct the expensive search
if( aCandidate->Dirty() && aCandidate < m_item )
return true;
// We should handle zone-zone connection separately
if ( parentA->Type() == PCB_ZONE_T && parentB->Type() == PCB_ZONE_T )
{
checkZoneZoneConnection( static_cast<CN_ZONE_LAYER*>( m_item ),
static_cast<CN_ZONE_LAYER*>( aCandidate ) );
return true;
}
if( parentA->Type() == PCB_ZONE_T )
{
checkZoneItemConnection( static_cast<CN_ZONE_LAYER*>( aCandidate ), m_item );
return true;
}
if( parentB->Type() == PCB_ZONE_T )
{
checkZoneItemConnection( static_cast<CN_ZONE_LAYER*>( m_item ), aCandidate );
return true;
}
int accuracyA = 0;
int accuracyB = 0;
if( parentA->Type() == PCB_VIA_T
|| parentA->Type() == PCB_TRACE_T
|| parentA->Type() == PCB_ARC_T)
accuracyA = ( static_cast<const TRACK*>( parentA )->GetWidth() + 1 ) / 2;
if( parentB->Type() == PCB_VIA_T
|| parentB->Type() == PCB_TRACE_T
|| parentB->Type() == PCB_ARC_T )
accuracyB = ( static_cast<const TRACK*>( parentB )->GetWidth() + 1 ) / 2;
// Items do not necessarily have reciprocity as we only check for anchors
// therefore, we check HitTest both directions A->B & B->A
for( int i = 0; i < aCandidate->AnchorCount(); ++i )
{
if( parentB->HitTest( wxPoint( aCandidate->GetAnchor( i ) ), accuracyA ) )
{
m_item->Connect( aCandidate );
aCandidate->Connect( m_item );
return true;
}
}
for( int i = 0; i < m_item->AnchorCount(); ++i )
{
if( parentA->HitTest( wxPoint( m_item->GetAnchor( i ) ), accuracyB ) )
{
m_item->Connect( aCandidate );
aCandidate->Connect( m_item );
return true;
}
}
return true;
};
void CN_CONNECTIVITY_ALGO::Clear()
{
m_ratsnestClusters.clear();
m_connClusters.clear();
m_itemMap.clear();
m_itemList.Clear();
}
void CN_CONNECTIVITY_ALGO::SetProgressReporter( PROGRESS_REPORTER* aReporter )
{
m_progressReporter = aReporter;
}