1083 lines
30 KiB
C++
1083 lines
30 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
|
|
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
|
|
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
|
|
*
|
|
* Copyright (C) 1992-2012 KiCad Developers, see change_log.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <fctsys.h>
|
|
#include <class_drawpanel.h>
|
|
#include <confirm.h>
|
|
#include <pcbnew.h>
|
|
#include <pcb_edit_frame.h>
|
|
#include <gr_basic.h>
|
|
#include <macros.h>
|
|
#include <msgpanel.h>
|
|
|
|
#include <class_board.h>
|
|
#include <class_module.h>
|
|
#include <class_track.h>
|
|
#include <class_drawsegment.h>
|
|
#include <class_pad.h>
|
|
|
|
#include <board_commit.h>
|
|
|
|
#include <connectivity_data.h>
|
|
#include <ratsnest_data.h>
|
|
|
|
#include <widgets/progress_reporter.h>
|
|
|
|
#include "ar_matrix.h"
|
|
#include "ar_cell.h"
|
|
#include "ar_autoplacer.h"
|
|
|
|
#define AR_GAIN 16
|
|
#define AR_KEEPOUT_MARGIN 500
|
|
#define AR_ABORT_PLACEMENT -1
|
|
|
|
/* Penalty (cost) for CntRot90 and CntRot180:
|
|
* CntRot90 and CntRot180 are from 0 (rotation allowed) to 10 (rotation not allowed)
|
|
*/
|
|
static const double OrientationPenalty[11] =
|
|
{
|
|
2.0, // CntRot = 0 rotation prohibited
|
|
1.9, // CntRot = 1
|
|
1.8, // CntRot = 2
|
|
1.7, // CntRot = 3
|
|
1.6, // CntRot = 4
|
|
1.5, // CntRot = 5
|
|
1.4, // CntRot = 5
|
|
1.3, // CntRot = 7
|
|
1.2, // CntRot = 8
|
|
1.1, // CntRot = 9
|
|
1.0 // CntRot = 10 rotation authorized, no penalty
|
|
};
|
|
|
|
|
|
AR_AUTOPLACER::AR_AUTOPLACER( BOARD* aBoard )
|
|
{
|
|
m_board = aBoard;
|
|
m_connectivity.reset( new CONNECTIVITY_DATA );
|
|
|
|
for( auto mod : m_board->Modules() )
|
|
m_connectivity->Add( mod );
|
|
|
|
m_gridSize = Millimeter2iu( 0.5 );
|
|
m_progressReporter = nullptr;
|
|
m_refreshCallback = nullptr;
|
|
}
|
|
|
|
|
|
void AR_AUTOPLACER::placeModule( MODULE* aModule, bool aDoNotRecreateRatsnest, const wxPoint& aPos )
|
|
{
|
|
if( !aModule )
|
|
return;
|
|
|
|
aModule->SetPosition( aPos );
|
|
m_connectivity->Update( aModule );
|
|
}
|
|
|
|
|
|
int AR_AUTOPLACER::genPlacementRoutingMatrix()
|
|
{
|
|
m_matrix.UnInitRoutingMatrix();
|
|
|
|
EDA_RECT bbox = m_board->GetBoardEdgesBoundingBox();
|
|
|
|
if( bbox.GetWidth() == 0 || bbox.GetHeight() == 0 )
|
|
{
|
|
//DisplayError( NULL, _( "No PCB edge found, unknown board size!" ) );
|
|
// fixme: no wx here
|
|
return 0;
|
|
}
|
|
|
|
m_matrix.ComputeMatrixSize( bbox );
|
|
int nbCells = m_matrix.m_Ncols * m_matrix.m_Nrows;
|
|
|
|
// Choose the number of board sides.
|
|
m_matrix.m_RoutingLayersCount = 2;
|
|
m_matrix.InitRoutingMatrix();
|
|
|
|
m_matrix.m_routeLayerBottom = F_Cu;
|
|
|
|
if( m_matrix.m_RoutingLayersCount > 1 )
|
|
m_matrix.m_routeLayerBottom = B_Cu;
|
|
|
|
m_matrix.m_routeLayerTop = F_Cu;
|
|
|
|
// Place the edge layer segments
|
|
TRACK tmp( NULL );
|
|
|
|
tmp.SetLayer( UNDEFINED_LAYER );
|
|
tmp.SetNetCode( -1 );
|
|
tmp.SetWidth( m_matrix.m_GridRouting / 2 );
|
|
|
|
for( auto drawing : m_board->Drawings() )
|
|
{
|
|
DRAWSEGMENT* DrawSegm;
|
|
|
|
switch( drawing->Type() )
|
|
{
|
|
case PCB_LINE_T:
|
|
DrawSegm = (DRAWSEGMENT*) drawing;
|
|
|
|
if( DrawSegm->GetLayer() != Edge_Cuts )
|
|
break;
|
|
|
|
|
|
//printf("addSeg %p grid %d\n", DrawSegm, m_matrix.m_GridRouting );
|
|
m_matrix.TraceSegmentPcb( DrawSegm, CELL_IS_HOLE | CELL_IS_EDGE,
|
|
m_matrix.m_GridRouting, AR_MATRIX::WRITE_CELL );
|
|
break;
|
|
|
|
case PCB_TEXT_T:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Mark cells of the routing matrix to CELL_IS_ZONE
|
|
// (i.e. availlable cell to place a module )
|
|
// Init a starting point of attachment to the area.
|
|
m_matrix.OrCell( m_matrix.m_Nrows / 2, m_matrix.m_Ncols / 2,
|
|
AR_SIDE_BOTTOM, CELL_IS_ZONE );
|
|
|
|
// find and mark all other availlable cells:
|
|
for( int ii = 1; ii != 0; )
|
|
ii = propagate();
|
|
|
|
// Initialize top layer. to the same value as the bottom layer
|
|
if( m_matrix.m_BoardSide[AR_SIDE_TOP] )
|
|
memcpy( m_matrix.m_BoardSide[AR_SIDE_TOP], m_matrix.m_BoardSide[AR_SIDE_BOTTOM],
|
|
nbCells * sizeof(AR_MATRIX::MATRIX_CELL) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
void AR_AUTOPLACER::rotateModule( MODULE* module, double angle, bool incremental )
|
|
{
|
|
if( module == NULL )
|
|
return;
|
|
|
|
if( incremental )
|
|
module->SetOrientation( module->GetOrientation() + angle );
|
|
else
|
|
module->SetOrientation( angle );
|
|
|
|
|
|
m_board->GetConnectivity()->Update( module );
|
|
}
|
|
|
|
|
|
/**
|
|
* Function propagate
|
|
* Used only in autoplace calculations
|
|
* Uses the routing matrix to fill the cells within the zone
|
|
* Search and mark cells within the zone, and agree with DRC options.
|
|
* Requirements:
|
|
* Start from an initial point, to fill zone
|
|
* The zone must have no "copper island"
|
|
* Algorithm:
|
|
* If the current cell has a neighbor flagged as "cell in the zone", it
|
|
* become a cell in the zone
|
|
* The first point in the zone is the starting point
|
|
* 4 searches within the matrix are made:
|
|
* 1 - Left to right and top to bottom
|
|
* 2 - Right to left and top to bottom
|
|
* 3 - bottom to top and Right to left
|
|
* 4 - bottom to top and Left to right
|
|
* Given the current cell, for each search, we consider the 2 neighbor cells
|
|
* the previous cell on the same line and the previous cell on the same column.
|
|
*
|
|
* This function can request some iterations
|
|
* Iterations are made until no cell is added to the zone.
|
|
* @return added cells count (i.e. which the attribute CELL_IS_ZONE is set)
|
|
*/
|
|
|
|
int AR_AUTOPLACER::propagate()
|
|
{
|
|
int row, col;
|
|
long current_cell, old_cell_H;
|
|
std::vector<int> pt_cell_V;
|
|
int nbpoints = 0;
|
|
|
|
const uint32_t NO_CELL_ZONE = CELL_IS_HOLE | CELL_IS_EDGE | CELL_IS_ZONE;
|
|
|
|
pt_cell_V.reserve( std::max( m_matrix.m_Nrows, m_matrix.m_Ncols ) );
|
|
fill( pt_cell_V.begin(), pt_cell_V.end(), 0 );
|
|
|
|
// Search from left to right and top to bottom.
|
|
for( row = 0; row < m_matrix.m_Nrows; row++ )
|
|
{
|
|
old_cell_H = 0;
|
|
|
|
for( col = 0; col < m_matrix.m_Ncols; col++ )
|
|
{
|
|
current_cell = m_matrix.GetCell( row, col, AR_SIDE_BOTTOM ) & NO_CELL_ZONE;
|
|
|
|
if( current_cell == 0 ) // a free cell is found
|
|
{
|
|
if( (old_cell_H & CELL_IS_ZONE) || (pt_cell_V[col] & CELL_IS_ZONE) )
|
|
{
|
|
m_matrix.OrCell( row, col, AR_SIDE_BOTTOM, CELL_IS_ZONE );
|
|
current_cell = CELL_IS_ZONE;
|
|
nbpoints++;
|
|
}
|
|
}
|
|
|
|
pt_cell_V[col] = old_cell_H = current_cell;
|
|
}
|
|
}
|
|
|
|
// Search from right to left and top to bottom/
|
|
fill( pt_cell_V.begin(), pt_cell_V.end(), 0 );
|
|
|
|
for( row = 0; row < m_matrix.m_Nrows; row++ )
|
|
{
|
|
old_cell_H = 0;
|
|
|
|
for( col = m_matrix.m_Ncols - 1; col >= 0; col-- )
|
|
{
|
|
current_cell = m_matrix.GetCell( row, col, AR_SIDE_BOTTOM ) & NO_CELL_ZONE;
|
|
|
|
if( current_cell == 0 ) // a free cell is found
|
|
{
|
|
if( (old_cell_H & CELL_IS_ZONE) || (pt_cell_V[col] & CELL_IS_ZONE) )
|
|
{
|
|
m_matrix.OrCell( row, col, AR_SIDE_BOTTOM, CELL_IS_ZONE );
|
|
current_cell = CELL_IS_ZONE;
|
|
nbpoints++;
|
|
}
|
|
}
|
|
|
|
pt_cell_V[col] = old_cell_H = current_cell;
|
|
}
|
|
}
|
|
|
|
// Search from bottom to top and right to left.
|
|
fill( pt_cell_V.begin(), pt_cell_V.end(), 0 );
|
|
|
|
for( col = m_matrix.m_Ncols - 1; col >= 0; col-- )
|
|
{
|
|
old_cell_H = 0;
|
|
|
|
for( row = m_matrix.m_Nrows - 1; row >= 0; row-- )
|
|
{
|
|
current_cell = m_matrix.GetCell( row, col, AR_SIDE_BOTTOM ) & NO_CELL_ZONE;
|
|
|
|
if( current_cell == 0 ) // a free cell is found
|
|
{
|
|
if( (old_cell_H & CELL_IS_ZONE) || (pt_cell_V[row] & CELL_IS_ZONE) )
|
|
{
|
|
m_matrix.OrCell( row, col, AR_SIDE_BOTTOM, CELL_IS_ZONE );
|
|
current_cell = CELL_IS_ZONE;
|
|
nbpoints++;
|
|
}
|
|
}
|
|
|
|
pt_cell_V[row] = old_cell_H = current_cell;
|
|
}
|
|
}
|
|
|
|
// Search from bottom to top and left to right.
|
|
fill( pt_cell_V.begin(), pt_cell_V.end(), 0 );
|
|
|
|
for( col = 0; col < m_matrix.m_Ncols; col++ )
|
|
{
|
|
old_cell_H = 0;
|
|
|
|
for( row = m_matrix.m_Nrows - 1; row >= 0; row-- )
|
|
{
|
|
current_cell = m_matrix.GetCell( row, col, AR_SIDE_BOTTOM ) & NO_CELL_ZONE;
|
|
|
|
if( current_cell == 0 ) // a free cell is found
|
|
{
|
|
if( (old_cell_H & CELL_IS_ZONE) || (pt_cell_V[row] & CELL_IS_ZONE) )
|
|
{
|
|
m_matrix.OrCell( row, col, AR_SIDE_BOTTOM, CELL_IS_ZONE );
|
|
current_cell = CELL_IS_ZONE;
|
|
nbpoints++;
|
|
}
|
|
}
|
|
|
|
pt_cell_V[row] = old_cell_H = current_cell;
|
|
}
|
|
}
|
|
|
|
return nbpoints;
|
|
}
|
|
|
|
|
|
void AR_AUTOPLACER::genModuleOnRoutingMatrix( MODULE* Module )
|
|
{
|
|
int ox, oy, fx, fy;
|
|
LSET layerMask;
|
|
EDA_RECT fpBBox = Module->GetBoundingBox();
|
|
|
|
fpBBox.Inflate( m_matrix.m_GridRouting / 2 );
|
|
ox = fpBBox.GetX();
|
|
fx = fpBBox.GetRight();
|
|
oy = fpBBox.GetY();
|
|
fy = fpBBox.GetBottom();
|
|
|
|
if( ox < m_matrix.m_BrdBox.GetX() )
|
|
ox = m_matrix.m_BrdBox.GetX();
|
|
|
|
if( ox > m_matrix.m_BrdBox.GetRight() )
|
|
ox = m_matrix.m_BrdBox.GetRight();
|
|
|
|
if( fx < m_matrix.m_BrdBox.GetX() )
|
|
fx = m_matrix.m_BrdBox.GetX();
|
|
|
|
if( fx > m_matrix.m_BrdBox.GetRight() )
|
|
fx = m_matrix.m_BrdBox.GetRight();
|
|
|
|
if( oy < m_matrix.m_BrdBox.GetY() )
|
|
oy = m_matrix.m_BrdBox.GetY();
|
|
|
|
if( oy > m_matrix.m_BrdBox.GetBottom() )
|
|
oy = m_matrix.m_BrdBox.GetBottom();
|
|
|
|
if( fy < m_matrix.m_BrdBox.GetY() )
|
|
fy = m_matrix.m_BrdBox.GetY();
|
|
|
|
if( fy > m_matrix.m_BrdBox.GetBottom() )
|
|
fy = m_matrix.m_BrdBox.GetBottom();
|
|
|
|
if( Module->GetLayer() == F_Cu )
|
|
layerMask.set( F_Cu );
|
|
|
|
if( Module->GetLayer() == B_Cu )
|
|
layerMask.set( B_Cu );
|
|
|
|
m_matrix.TraceFilledRectangle( ox, oy, fx, fy, layerMask,
|
|
CELL_IS_MODULE, AR_MATRIX::WRITE_OR_CELL );
|
|
|
|
// Trace pads + clearance areas.
|
|
for( auto pad : Module->Pads() )
|
|
{
|
|
int margin = (m_matrix.m_GridRouting / 2) + pad->GetClearance();
|
|
m_matrix.PlacePad( pad, CELL_IS_MODULE, margin, AR_MATRIX::WRITE_OR_CELL );
|
|
}
|
|
|
|
// Trace clearance.
|
|
int margin = ( m_matrix.m_GridRouting * Module->GetPadCount() ) / AR_GAIN;
|
|
m_matrix.CreateKeepOutRectangle( ox, oy, fx, fy, margin, AR_KEEPOUT_MARGIN , layerMask );
|
|
}
|
|
|
|
|
|
/* Test if the rectangular area (ux, ux .. y0, y1):
|
|
* - is a free zone (except OCCUPED_By_MODULE returns)
|
|
* - is on the working surface of the board (otherwise returns OUT_OF_BOARD)
|
|
*
|
|
* Returns OUT_OF_BOARD, or OCCUPED_By_MODULE or FREE_CELL if OK
|
|
*/
|
|
int AR_AUTOPLACER::testRectangle( const EDA_RECT& aRect, int side )
|
|
{
|
|
EDA_RECT rect = aRect;
|
|
|
|
rect.Inflate( m_matrix.m_GridRouting / 2 );
|
|
|
|
wxPoint start = rect.GetOrigin();
|
|
wxPoint end = rect.GetEnd();
|
|
|
|
start -= m_matrix.m_BrdBox.GetOrigin();
|
|
end -= m_matrix.m_BrdBox.GetOrigin();
|
|
|
|
int row_min = start.y / m_matrix.m_GridRouting;
|
|
int row_max = end.y / m_matrix.m_GridRouting;
|
|
int col_min = start.x / m_matrix.m_GridRouting;
|
|
int col_max = end.x / m_matrix.m_GridRouting;
|
|
|
|
if( start.y > row_min * m_matrix.m_GridRouting )
|
|
row_min++;
|
|
|
|
if( start.x > col_min * m_matrix.m_GridRouting )
|
|
col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
|
|
if( row_max >= ( m_matrix.m_Nrows - 1 ) )
|
|
row_max = m_matrix.m_Nrows - 1;
|
|
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
|
|
if( col_max >= ( m_matrix.m_Ncols - 1 ) )
|
|
col_max = m_matrix.m_Ncols - 1;
|
|
|
|
for( int row = row_min; row <= row_max; row++ )
|
|
{
|
|
for( int col = col_min; col <= col_max; col++ )
|
|
{
|
|
unsigned int data = m_matrix.GetCell( row, col, side );
|
|
|
|
if( ( data & CELL_IS_ZONE ) == 0 )
|
|
return AR_OUT_OF_BOARD;
|
|
|
|
if( (data & CELL_IS_MODULE) )
|
|
return AR_OCCUIPED_BY_MODULE;
|
|
}
|
|
}
|
|
|
|
return AR_FREE_CELL;
|
|
}
|
|
|
|
|
|
/* Calculates and returns the clearance area of the rectangular surface
|
|
* aRect):
|
|
* (Sum of cells in terms of distance)
|
|
*/
|
|
unsigned int AR_AUTOPLACER::calculateKeepOutArea( const EDA_RECT& aRect, int side )
|
|
{
|
|
wxPoint start = aRect.GetOrigin();
|
|
wxPoint end = aRect.GetEnd();
|
|
|
|
start -= m_matrix.m_BrdBox.GetOrigin();
|
|
end -= m_matrix.m_BrdBox.GetOrigin();
|
|
|
|
int row_min = start.y / m_matrix.m_GridRouting;
|
|
int row_max = end.y / m_matrix.m_GridRouting;
|
|
int col_min = start.x / m_matrix.m_GridRouting;
|
|
int col_max = end.x / m_matrix.m_GridRouting;
|
|
|
|
if( start.y > row_min * m_matrix.m_GridRouting )
|
|
row_min++;
|
|
|
|
if( start.x > col_min * m_matrix.m_GridRouting )
|
|
col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
|
|
if( row_max >= ( m_matrix.m_Nrows - 1 ) )
|
|
row_max = m_matrix.m_Nrows - 1;
|
|
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
|
|
if( col_max >= ( m_matrix.m_Ncols - 1 ) )
|
|
col_max = m_matrix.m_Ncols - 1;
|
|
|
|
unsigned int keepOutCost = 0;
|
|
|
|
for( int row = row_min; row <= row_max; row++ )
|
|
{
|
|
for( int col = col_min; col <= col_max; col++ )
|
|
{
|
|
// m_matrix.GetDist returns the "cost" of the cell
|
|
// at position (row, col)
|
|
// in autoplace this is the cost of the cell, if it is
|
|
// inside aRect
|
|
keepOutCost += m_matrix.GetDist( row, col, side );
|
|
}
|
|
}
|
|
|
|
return keepOutCost;
|
|
}
|
|
|
|
|
|
/* Test if the module can be placed on the board.
|
|
* Returns the value TstRectangle().
|
|
* Module is known by its bounding box
|
|
*/
|
|
int AR_AUTOPLACER::testModuleOnBoard( MODULE* aModule, bool TstOtherSide, const wxPoint& aOffset )
|
|
{
|
|
int side = AR_SIDE_TOP;
|
|
int otherside = AR_SIDE_BOTTOM;
|
|
|
|
if( aModule->GetLayer() == B_Cu )
|
|
{
|
|
side = AR_SIDE_BOTTOM; otherside = AR_SIDE_TOP;
|
|
}
|
|
|
|
EDA_RECT fpBBox = aModule->GetFootprintRect();
|
|
fpBBox.Move( -aOffset );
|
|
|
|
int diag = testRectangle( fpBBox, side );
|
|
|
|
if( diag != AR_FREE_CELL )
|
|
return diag;
|
|
|
|
if( TstOtherSide )
|
|
{
|
|
diag = testRectangle( fpBBox, otherside );
|
|
|
|
if( diag != AR_FREE_CELL )
|
|
return diag;
|
|
}
|
|
|
|
int marge = ( m_matrix.m_GridRouting * aModule->GetPadCount() ) / AR_GAIN;
|
|
|
|
fpBBox.Inflate( marge );
|
|
return calculateKeepOutArea( fpBBox, side );
|
|
}
|
|
|
|
|
|
int AR_AUTOPLACER::getOptimalModulePlacement(MODULE* aModule)
|
|
{
|
|
int error = 1;
|
|
wxPoint LastPosOK;
|
|
double min_cost, curr_cost, Score;
|
|
bool TstOtherSide;
|
|
|
|
aModule->CalculateBoundingBox();
|
|
|
|
LastPosOK = m_matrix.m_BrdBox.GetOrigin();
|
|
|
|
wxPoint mod_pos = aModule->GetPosition();
|
|
EDA_RECT fpBBox = aModule->GetFootprintRect();
|
|
|
|
// Move fpBBox to have the footprint position at (0,0)
|
|
fpBBox.Move( -mod_pos );
|
|
wxPoint fpBBoxOrg = fpBBox.GetOrigin();
|
|
|
|
// Calculate the limit of the footprint position, relative
|
|
// to the routing matrix area
|
|
wxPoint xylimit = m_matrix.m_BrdBox.GetEnd() - fpBBox.GetEnd();
|
|
|
|
wxPoint initialPos = m_matrix.m_BrdBox.GetOrigin() - fpBBoxOrg;
|
|
|
|
// Stay on grid.
|
|
initialPos.x -= initialPos.x % m_matrix.m_GridRouting;
|
|
initialPos.y -= initialPos.y % m_matrix.m_GridRouting;
|
|
|
|
m_curPosition = initialPos;
|
|
auto moduleOffset = mod_pos - m_curPosition;
|
|
|
|
/* Examine pads, and set TstOtherSide to true if a footprint
|
|
* has at least 1 pad through.
|
|
*/
|
|
TstOtherSide = false;
|
|
|
|
if( m_matrix.m_RoutingLayersCount > 1 )
|
|
{
|
|
LSET other( aModule->GetLayer() == B_Cu ? F_Cu : B_Cu );
|
|
|
|
for( auto pad : aModule->Pads() )
|
|
{
|
|
if( !( pad->GetLayerSet() & other ).any() )
|
|
continue;
|
|
|
|
TstOtherSide = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
fpBBox.SetOrigin( fpBBoxOrg + m_curPosition );
|
|
|
|
min_cost = -1.0;
|
|
// m_frame->SetStatusText( wxT( "Score ??, pos ??" ) );
|
|
|
|
|
|
for( ; m_curPosition.x < xylimit.x; m_curPosition.x += m_matrix.m_GridRouting )
|
|
{
|
|
if ( m_refreshCallback )
|
|
{
|
|
if ( m_refreshCallback() == AR_ABORT_PLACEMENT )
|
|
return AR_ABORT_PLACEMENT;
|
|
}
|
|
|
|
m_curPosition.y = initialPos.y;
|
|
|
|
for( ; m_curPosition.y < xylimit.y; m_curPosition.y += m_matrix.m_GridRouting )
|
|
{
|
|
|
|
fpBBox.SetOrigin( fpBBoxOrg + m_curPosition );
|
|
moduleOffset = mod_pos - m_curPosition;
|
|
int keepOutCost = testModuleOnBoard( aModule, TstOtherSide, moduleOffset );
|
|
|
|
if( keepOutCost >= 0 ) // i.e. if the module can be put here
|
|
{
|
|
error = 0;
|
|
// m_frame->build_ratsnest_module( aModule ); // fixme
|
|
curr_cost = computePlacementRatsnestCost( aModule, moduleOffset );
|
|
Score = curr_cost + keepOutCost;
|
|
|
|
if( (min_cost >= Score ) || (min_cost < 0 ) )
|
|
{
|
|
LastPosOK = m_curPosition;
|
|
min_cost = Score;
|
|
wxString msg;
|
|
/* msg.Printf( wxT( "Score %g, pos %s, %s" ),
|
|
min_cost,
|
|
GetChars( ::CoordinateToString( LastPosOK.x ) ),
|
|
GetChars( ::CoordinateToString( LastPosOK.y ) ) );
|
|
m_frame->SetStatusText( msg );*/
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Regeneration of the modified variable.
|
|
m_curPosition = LastPosOK;
|
|
|
|
m_minCost = min_cost;
|
|
return error;
|
|
}
|
|
|
|
|
|
const D_PAD* AR_AUTOPLACER::nearestPad( MODULE *aRefModule, D_PAD* aRefPad, const wxPoint& aOffset)
|
|
{
|
|
const D_PAD* nearest = nullptr;
|
|
int64_t nearestDist = INT64_MAX;
|
|
|
|
for ( auto mod : m_board->Modules() )
|
|
{
|
|
if ( mod == aRefModule )
|
|
continue;
|
|
|
|
if( !m_matrix.m_BrdBox.Contains( mod->GetPosition() ) )
|
|
continue;
|
|
|
|
for ( auto pad: mod->Pads() )
|
|
{
|
|
if ( pad->GetNetCode() != aRefPad->GetNetCode() || pad->GetNetCode() <= 0 )
|
|
continue;
|
|
|
|
auto dist = (VECTOR2I( aRefPad->GetPosition() - aOffset ) - VECTOR2I( pad->GetPosition() ) ).EuclideanNorm();
|
|
|
|
//printf("Dist %lld pad %p\n", dist, pad );
|
|
|
|
if ( dist < nearestDist )
|
|
{
|
|
nearestDist = dist;
|
|
nearest = pad;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nearest;
|
|
}
|
|
|
|
|
|
double AR_AUTOPLACER::computePlacementRatsnestCost( MODULE *aModule, const wxPoint& aOffset )
|
|
{
|
|
double curr_cost;
|
|
VECTOR2I start; // start point of a ratsnest
|
|
VECTOR2I end; // end point of a ratsnest
|
|
int dx, dy;
|
|
|
|
curr_cost = 0;
|
|
|
|
for ( auto pad : aModule->Pads() )
|
|
{
|
|
auto nearest = nearestPad( aModule, pad, aOffset );
|
|
|
|
if( !nearest )
|
|
continue;
|
|
|
|
//printf("pad %s nearest %s\n", (const char *)aModule->GetReference().c_str(), (const char *)nearest->GetParent()->GetReference().c_str());
|
|
|
|
start = VECTOR2I( pad->GetPosition() ) - VECTOR2I(aOffset);
|
|
end = VECTOR2I( nearest->GetPosition() );
|
|
|
|
//m_overlay->SetIsStroke( true );
|
|
//m_overlay->SetStrokeColor( COLOR4D(0.0, 1.0, 0.0, 1.0) );
|
|
//m_overlay->Line( start, end );
|
|
|
|
// Cost of the ratsnest.
|
|
dx = end.x - start.x;
|
|
dy = end.y - start.y;
|
|
|
|
dx = abs( dx );
|
|
dy = abs( dy );
|
|
|
|
// ttry to have always dx >= dy to calculate the cost of the rastsnet
|
|
if( dx < dy )
|
|
std::swap( dx, dy );
|
|
|
|
// Cost of the connection = length + penalty due to the slope
|
|
// dx is the biggest length relative to the X or Y axis
|
|
// the penalty is max for 45 degrees ratsnests,
|
|
// and 0 for horizontal or vertical ratsnests.
|
|
// For Horizontal and Vertical ratsnests, dy = 0;
|
|
double conn_cost = hypot( dx, dy * 2.0 );
|
|
curr_cost += conn_cost; // Total cost = sum of costs of each connection
|
|
}
|
|
|
|
return curr_cost;
|
|
}
|
|
|
|
|
|
// Sort routines
|
|
static bool sortFootprintsByComplexity( MODULE* ref, MODULE* compare )
|
|
{
|
|
double ff1, ff2;
|
|
|
|
ff1 = ref->GetArea() * ref->GetPadCount();
|
|
ff2 = compare->GetArea() * compare->GetPadCount();
|
|
|
|
return ff2 < ff1;
|
|
}
|
|
|
|
|
|
static bool sortFootprintsByRatsnestSize( MODULE* ref, MODULE* compare )
|
|
{
|
|
double ff1, ff2;
|
|
|
|
ff1 = ref->GetArea() * ref->GetFlag();
|
|
ff2 = compare->GetArea() * compare->GetFlag();
|
|
return ff2 < ff1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Function Module
|
|
* find the "best" module place
|
|
* The criteria are:
|
|
* - Maximum ratsnest with modules already placed
|
|
* - Max size, and number of pads max
|
|
*/
|
|
MODULE* AR_AUTOPLACER::pickModule( )
|
|
{
|
|
MODULE* module;
|
|
std::vector <MODULE*> moduleList;
|
|
|
|
|
|
for( auto m : m_board->Modules() )
|
|
{
|
|
m->CalculateBoundingBox();
|
|
moduleList.push_back( m );
|
|
}
|
|
|
|
sort( moduleList.begin(), moduleList.end(), sortFootprintsByComplexity );
|
|
|
|
for( unsigned kk = 0; kk < moduleList.size(); kk++ )
|
|
{
|
|
module = moduleList[kk];
|
|
module->SetFlag( 0 );
|
|
|
|
if( !module->NeedsPlaced() )
|
|
continue;
|
|
|
|
m_connectivity->Update( module );
|
|
}
|
|
|
|
m_connectivity->RecalculateRatsnest();
|
|
|
|
for( unsigned kk = 0; kk < moduleList.size(); kk++ )
|
|
{
|
|
module = moduleList[kk];
|
|
|
|
auto edges = m_connectivity->GetRatsnestForComponent( module, true );
|
|
|
|
module->SetFlag( edges.size() ) ;
|
|
}
|
|
|
|
sort( moduleList.begin(), moduleList.end(), sortFootprintsByRatsnestSize );
|
|
|
|
// Search for "best" module.
|
|
MODULE* bestModule = nullptr;
|
|
MODULE* altModule = nullptr;
|
|
|
|
for( unsigned ii = 0; ii < moduleList.size(); ii++ )
|
|
{
|
|
module = moduleList[ii];
|
|
|
|
if( !module->NeedsPlaced() )
|
|
continue;
|
|
|
|
altModule = module;
|
|
|
|
if( module->GetFlag() == 0 )
|
|
continue;
|
|
|
|
bestModule = module;
|
|
break;
|
|
}
|
|
|
|
if( bestModule )
|
|
return bestModule;
|
|
else
|
|
return altModule;
|
|
}
|
|
|
|
|
|
void AR_AUTOPLACER::drawPlacementRoutingMatrix( )
|
|
{
|
|
int ii, jj;
|
|
COLOR4D color;
|
|
int ox, oy;
|
|
AR_MATRIX::MATRIX_CELL top_state, bottom_state;
|
|
|
|
|
|
for( ii = 0; ii < m_matrix.m_Nrows; ii++ )
|
|
{
|
|
oy = m_matrix.m_BrdBox.GetY() + ( ii * m_matrix.m_GridRouting );
|
|
|
|
for( jj = 0; jj < m_matrix.m_Ncols; jj++ )
|
|
{
|
|
ox = m_matrix.m_BrdBox.GetX() + (jj * m_matrix.m_GridRouting);
|
|
color = COLOR4D::BLACK;
|
|
|
|
top_state = m_matrix.GetCell( ii, jj, AR_SIDE_TOP );
|
|
bottom_state = m_matrix.GetCell( ii, jj, AR_SIDE_BOTTOM );
|
|
|
|
if(top_state || bottom_state)
|
|
{
|
|
// printf("[%d, %d] [%d, %d] TS %x BS %x\n",ii,jj, ox, oy, top_state, bottom_state );
|
|
}
|
|
|
|
if( top_state & CELL_IS_ZONE )
|
|
color = COLOR4D( BLUE );
|
|
|
|
// obstacles
|
|
if( ( top_state & CELL_IS_EDGE ) || ( bottom_state & CELL_IS_EDGE ) )
|
|
color = COLOR4D::WHITE;
|
|
else if( top_state & ( CELL_IS_HOLE | CELL_IS_MODULE ) )
|
|
color = COLOR4D( LIGHTRED );
|
|
else if( bottom_state & ( CELL_IS_HOLE | CELL_IS_MODULE) )
|
|
color = COLOR4D( LIGHTGREEN );
|
|
else // Display the filling and keep out regions.
|
|
{
|
|
if( m_matrix.GetDist( ii, jj, AR_SIDE_TOP )
|
|
|| m_matrix.GetDist( ii, jj, AR_SIDE_BOTTOM ) )
|
|
color = DARKGRAY;
|
|
}
|
|
|
|
m_overlay->SetIsFill(true);
|
|
m_overlay->SetFillColor( color );
|
|
|
|
VECTOR2D p(ox, oy);
|
|
m_overlay->Circle(p, m_matrix.m_GridRouting/4 );
|
|
}
|
|
}
|
|
}
|
|
|
|
AR_RESULT AR_AUTOPLACER::AutoplaceModules( std::vector<MODULE*> aModules, BOARD_COMMIT* aCommit, bool aPlaceOffboardModules )
|
|
{
|
|
wxPoint PosOK;
|
|
wxPoint memopos;
|
|
int error;
|
|
MODULE* module = nullptr;
|
|
bool cancelled = false;
|
|
|
|
memopos = m_curPosition;
|
|
|
|
//printf("set grid: %d\n", m_gridSize);
|
|
|
|
m_matrix.m_GridRouting = m_gridSize; //(int) m_frame->GetScreen()->GetGridSize().x;
|
|
|
|
// Ensure Board.m_GridRouting has a reasonable value:
|
|
if( m_matrix.m_GridRouting < Millimeter2iu( 0.25 ) )
|
|
m_matrix.m_GridRouting = Millimeter2iu( 0.25 );
|
|
|
|
// Compute module parameters used in auto place
|
|
if( genPlacementRoutingMatrix( ) == 0 )
|
|
return AR_FAILURE;
|
|
|
|
int moduleCount = 0;
|
|
|
|
for ( auto m : m_board->Modules() )
|
|
{
|
|
m->SetNeedsPlaced( false );
|
|
}
|
|
|
|
std::vector<MODULE *> offboardMods;
|
|
|
|
if( aPlaceOffboardModules )
|
|
{
|
|
for ( auto m : m_board->Modules() )
|
|
{
|
|
if( !m_matrix.m_BrdBox.Contains( m->GetPosition() ) )
|
|
{
|
|
offboardMods.push_back( m );
|
|
}
|
|
}
|
|
}
|
|
|
|
for ( auto m : aModules )
|
|
{
|
|
m->SetNeedsPlaced( true );
|
|
aCommit->Modify(m);
|
|
}
|
|
|
|
for ( auto m : offboardMods )
|
|
{
|
|
m->SetNeedsPlaced( true );
|
|
aCommit->Modify(m);
|
|
}
|
|
|
|
for ( auto m : m_board->Modules() )
|
|
{
|
|
if( m->NeedsPlaced() ) // Erase from screen
|
|
{
|
|
moduleCount++;
|
|
}
|
|
else
|
|
{
|
|
genModuleOnRoutingMatrix( m );
|
|
}
|
|
}
|
|
|
|
drawPlacementRoutingMatrix();
|
|
|
|
int cnt = 0;
|
|
wxString msg;
|
|
|
|
if( m_progressReporter )
|
|
{
|
|
m_progressReporter->Report( _( "Autoplacing components..." ) );
|
|
m_progressReporter->SetMaxProgress( moduleCount );
|
|
}
|
|
|
|
while( ( module = pickModule( ) ) != nullptr )
|
|
{
|
|
// Display some info about activity, module placement can take a while:
|
|
//printf( _( "Place footprint %d of %d [%s]\n" ), cnt, moduleCount, (const char *)module->GetReference().c_str() );
|
|
//m_frame->SetStatusText( msg );
|
|
|
|
double initialOrient = module->GetOrientation();
|
|
// Display fill area of interest, barriers, penalties.
|
|
//drawPlacementRoutingMatrix( );
|
|
|
|
error = getOptimalModulePlacement( module );
|
|
double bestScore = m_minCost;
|
|
double bestRotation = 0.0;
|
|
int rotAllowed;
|
|
PosOK = m_curPosition;
|
|
|
|
if( error == AR_ABORT_PLACEMENT )
|
|
goto end_of_tst;
|
|
|
|
// Try orientations 90, 180, 270 degrees from initial orientation
|
|
rotAllowed = module->GetPlacementCost180();
|
|
|
|
//printf("rotAllowed %d\n", rotAllowed);
|
|
|
|
if( rotAllowed != 0 )
|
|
{
|
|
rotateModule( module, 1800.0, true );
|
|
error = getOptimalModulePlacement( module );
|
|
m_minCost *= OrientationPenalty[rotAllowed];
|
|
|
|
if( bestScore > m_minCost ) // This orientation is better.
|
|
{
|
|
PosOK = m_curPosition;
|
|
bestScore = m_minCost;
|
|
bestRotation = 1800.0;
|
|
}
|
|
else
|
|
{
|
|
rotateModule( module, initialOrient, false );
|
|
}
|
|
|
|
if( error == AR_ABORT_PLACEMENT )
|
|
goto end_of_tst;
|
|
}
|
|
|
|
// Determine if the best orientation of a module is 90.
|
|
rotAllowed = module->GetPlacementCost90();
|
|
if( rotAllowed != 0 )
|
|
{
|
|
rotateModule( module, 900.0, true );
|
|
error = getOptimalModulePlacement( module );
|
|
m_minCost *= OrientationPenalty[rotAllowed];
|
|
|
|
if( bestScore > m_minCost ) // This orientation is better.
|
|
{
|
|
PosOK = m_curPosition;
|
|
bestScore = m_minCost;
|
|
bestRotation = 900.0;
|
|
}
|
|
else
|
|
{
|
|
rotateModule( module, initialOrient, false );
|
|
}
|
|
|
|
if( error == AR_ABORT_PLACEMENT )
|
|
goto end_of_tst;
|
|
}
|
|
|
|
// Determine if the best orientation of a module is -90.
|
|
if( rotAllowed != 0 )
|
|
{
|
|
rotateModule( module, 2700.0, true );
|
|
error = getOptimalModulePlacement( module );
|
|
m_minCost *= OrientationPenalty[rotAllowed];
|
|
|
|
if( bestScore > m_minCost ) // This orientation is better.
|
|
{
|
|
PosOK = m_curPosition;
|
|
bestScore = m_minCost;
|
|
bestRotation = 2700.0;
|
|
}
|
|
else
|
|
{
|
|
rotateModule( module, initialOrient, false );
|
|
}
|
|
|
|
if( error == AR_ABORT_PLACEMENT )
|
|
goto end_of_tst;
|
|
}
|
|
|
|
end_of_tst:
|
|
|
|
if( error == AR_ABORT_PLACEMENT )
|
|
break;
|
|
|
|
|
|
bestRotation += initialOrient;
|
|
|
|
if( bestRotation != module->GetOrientation() )
|
|
{
|
|
//printf("best rotation %d\n", bestRotation );
|
|
rotateModule( module, bestRotation, false );
|
|
}
|
|
|
|
// Place module.
|
|
placeModule( module, true, m_curPosition );
|
|
|
|
module->CalculateBoundingBox();
|
|
genModuleOnRoutingMatrix( module );
|
|
module->SetIsPlaced( true );
|
|
module->SetNeedsPlaced( false );
|
|
|
|
|
|
if( m_progressReporter )
|
|
{
|
|
m_progressReporter->AdvanceProgress();
|
|
if ( !m_progressReporter->KeepRefreshing( false ) )
|
|
{
|
|
cancelled = true;
|
|
break;
|
|
}
|
|
}
|
|
cnt++;
|
|
}
|
|
|
|
m_curPosition = memopos;
|
|
|
|
m_matrix.UnInitRoutingMatrix();
|
|
|
|
for ( auto m : m_board->Modules() )
|
|
{
|
|
m->CalculateBoundingBox();
|
|
}
|
|
|
|
return cancelled ? AR_CANCELLED : AR_COMPLETED;
|
|
}
|