kicad/common/geometry/seg.cpp

151 lines
3.9 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <geometry/seg.h>
template <typename T> int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
bool SEG::PointCloserThan (const VECTOR2I& aP, int dist) const
{
VECTOR2I d = b - a;
ecoord dist_sq = (ecoord) dist * dist;
SEG::ecoord l_squared = d.Dot(d);
SEG::ecoord t = d.Dot(aP - a);
if( t <= 0 || !l_squared )
return (aP - a).SquaredEuclideanNorm() < dist_sq;
else if( t >= l_squared )
return (aP - b).SquaredEuclideanNorm() < dist_sq;
int dxdy = abs(d.x) - abs(d.y);
if( (dxdy >= -1 && dxdy <= 1) || abs(d.x) <= 1 || abs(d.y) <= 1)
{
int ca = -sgn(d.y);
int cb = sgn(d.x);
int cc = -ca * a.x - cb * a.y;
ecoord num = ca * aP.x + cb * aP.y + cc;
num *= num;
if(ca && cb)
num >>= 1;
if(num > (dist_sq + 100))
return false;
else if(num < (dist_sq - 100))
return true;
}
VECTOR2I nearest;
nearest.x = a.x + rescale(t, (ecoord)d.x, l_squared);
nearest.y = a.y + rescale(t, (ecoord)d.y, l_squared);
return (nearest - aP).SquaredEuclideanNorm() <= dist_sq;
}
SEG::ecoord SEG::SquaredDistance( const SEG& aSeg ) const
{
// fixme: rather inefficient....
if(Intersect(aSeg))
return 0;
const VECTOR2I pts[4] =
{
aSeg.NearestPoint(a) - a,
aSeg.NearestPoint(b) - b,
NearestPoint(aSeg.a) - aSeg.a,
NearestPoint(aSeg.b) - aSeg.b
};
ecoord m = VECTOR2I::ECOORD_MAX;
for (int i = 0; i<4 ; i++)
m = std::min(m, pts[i].SquaredEuclideanNorm());
return m;
}
OPT_VECTOR2I SEG::Intersect( const SEG& aSeg, bool aIgnoreEndpoints, bool aLines ) const
{
const VECTOR2I e (b - a);
const VECTOR2I f (aSeg.b - aSeg.a);
const VECTOR2I ac (aSeg.a - a);
ecoord d = f.Cross(e);
ecoord p = f.Cross(ac);
ecoord q = e.Cross(ac);
if(d == 0)
return OPT_VECTOR2I();
if (!aLines && d > 0 && (q < 0 || q > d || p < 0 || p > d))
return OPT_VECTOR2I();
if (!aLines && d < 0 && (q < d || p < d || p > 0 || q > 0))
return OPT_VECTOR2I();
if (!aLines && aIgnoreEndpoints && (q == 0 || q == d) && (p == 0 || p == d))
return OPT_VECTOR2I();
VECTOR2I ip ( aSeg.a.x + rescale(q, (ecoord)f.x, d),
aSeg.a.y + rescale(q, (ecoord)f.y, d) );
return ip;
}
bool SEG::ccw ( const VECTOR2I& a, const VECTOR2I& b, const VECTOR2I &c ) const
{
return (ecoord)(c.y - a.y) * (b.x - a.x) > (ecoord)(b.y - a.y) * (c.x - a.x);
}
bool SEG::Collide( const SEG& aSeg, int aClearance ) const
{
// check for intersection
// fixme: move to a method
if( ccw(a,aSeg.a,aSeg.b) != ccw(b,aSeg.a,aSeg.b) && ccw(a,b,aSeg.a) != ccw(a,b,aSeg.b) )
return true;
#define CHK(_seg, _pt) \
if( (_seg).PointCloserThan (_pt, aClearance ) ) return true;
CHK(*this, aSeg.a);
CHK(*this, aSeg.b);
CHK(aSeg, a);
CHK(aSeg, b);
#undef CHK
return false;
}
bool SEG::Contains(const VECTOR2I& aP) const
{
return PointCloserThan(aP, 1);
}