kicad/3d-viewer/3d_rendering/3d_render_raytracing/shapes2D/cring2d.cpp

205 lines
5.9 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file cring2d.cpp
* @brief
*/
#include "cring2d.h"
#include "../../../3d_fastmath.h"
#include <wx/debug.h>
CRING2D::CRING2D( const SFVEC2F& aCenter, float aInnerRadius, float aOuterRadius,
const BOARD_ITEM& aBoardItem )
: COBJECT2D( OBJECT2D_TYPE::RING, aBoardItem )
{
wxASSERT( aInnerRadius < aOuterRadius );
m_center = aCenter;
m_inner_radius = aInnerRadius;
m_outer_radius = aOuterRadius;
m_inner_radius_squared = aInnerRadius * aInnerRadius;
m_outer_radius_squared = aOuterRadius * aOuterRadius;
m_bbox.Reset();
m_bbox.Set( m_center - SFVEC2F( aOuterRadius, aOuterRadius ),
m_center + SFVEC2F( aOuterRadius, aOuterRadius ) );
m_bbox.ScaleNextUp();
m_centroid = m_bbox.GetCenter();
wxASSERT( m_bbox.IsInitialized() );
}
bool CRING2D::Overlaps( const CBBOX2D &aBBox ) const
{
// NOT IMPLEMENTED
return false;
}
bool CRING2D::Intersects( const CBBOX2D &aBBox ) const
{
// !TODO: check the inside for a great improovment
return aBBox.Intersects( m_center, m_outer_radius_squared );
}
bool CRING2D::Intersect( const RAYSEG2D &aSegRay,
float *aOutT,
SFVEC2F *aNormalOut ) const
{
// This code used directly from Steve Marschner's CS667 framework
// http://cs665pd.googlecode.com/svn/trunk/photon/sphere.cpp
// Compute some factors used in computation
const float qx = (aSegRay.m_Start.x - m_center.x);
const float qy = (aSegRay.m_Start.y - m_center.y);
const float qd = qx * aSegRay.m_Dir.x + qy * aSegRay.m_Dir.y;
const float qq = qx * qx + qy * qy;
// solving the quadratic equation for t at the pts of intersection
// dd*t^2 + (2*qd)*t + (qq-r^2) = 0
const float discriminantsqr = qd * qd - qq;
const float discriminantsqr_outer = discriminantsqr + m_outer_radius_squared;
// If the discriminant is less than zero, there is no intersection
if( discriminantsqr_outer < FLT_EPSILON )
return false;
// Otherwise check and make sure that the intersections occur on the ray (t
// > 0) and return the closer one
const float discriminant = sqrt( discriminantsqr_outer );
float t = (-qd - discriminant);
if( (t > FLT_EPSILON) && (t < aSegRay.m_Length) )
{
if( aNormalOut )
{
SFVEC2F hitPoint = aSegRay.at( t );
*aNormalOut = (hitPoint - m_center) / m_outer_radius;
}
}
else
{
const float discriminantsqr_inter = discriminantsqr + m_inner_radius_squared;
if( discriminantsqr_inter > FLT_EPSILON )
{
const float discriminant_inner = sqrt( discriminantsqr_inter );
const float t2_inner = (-qd + discriminant_inner);
if( (t2_inner > FLT_EPSILON) && (t2_inner < aSegRay.m_Length) )
{
t = t2_inner;
if( aNormalOut )
{
const SFVEC2F hitPoint = aSegRay.at( t2_inner );
*aNormalOut = (m_center - hitPoint) / m_inner_radius;
}
}
else
return false;
}
else
return false;
}
wxASSERT( (t > 0.0f) && (t <= aSegRay.m_Length) );
// Convert the intersection to a normalized 0.0 .. 1.0
if( aOutT )
*aOutT = t / aSegRay.m_Length;
return true;
}
INTERSECTION_RESULT CRING2D::IsBBoxInside( const CBBOX2D &aBBox ) const
{
/*
if( !m_bbox.Overlaps( aBBox ) )
return INTERSECTION_RESULT::MISSES;
SFVEC2F v[4];
v[0] = aBBox.Min() - m_center;
v[1] = aBBox.Max() - m_center;
v[2] = SFVEC2F( aBBox.Min().x, aBBox.Max().y ) - m_center;
v[3] = SFVEC2F( aBBox.Max().x, aBBox.Min().y ) - m_center;
float s[4];
s[0] = v[0].x * v[0].x + v[0].y * v[0].y;
s[1] = v[1].x * v[1].x + v[1].y * v[1].y;
s[2] = v[2].x * v[2].x + v[2].y * v[2].y;
s[3] = v[3].x * v[3].x + v[3].y * v[3].y;
bool isInside[4];
isInside[0] = s[0] <= m_radius_squared;
isInside[1] = s[1] <= m_radius_squared;
isInside[2] = s[2] <= m_radius_squared;
isInside[3] = s[3] <= m_radius_squared;
// Check if all points are inside the circle
if( isInside[0] &&
isInside[1] &&
isInside[2] &&
isInside[3] )
return INTERSECTION_RESULT::FULL_INSIDE;
// Check if any point is inside the circle
if( isInside[0] ||
isInside[1] ||
isInside[2] ||
isInside[3] )
return INTERSECTION_RESULT::INTERSECTS;
*/
return INTERSECTION_RESULT::MISSES;
}
bool CRING2D::IsPointInside( const SFVEC2F &aPoint ) const
{
const SFVEC2F v = m_center - aPoint;
const float dot = glm::dot( v, v );
if( (dot <= m_outer_radius_squared) &&
(dot >= m_inner_radius_squared) )
return true;
return false;
}