kicad/pcbnew/zone_filler.cpp

1118 lines
41 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014-2017 CERN
* Copyright (C) 2014-2018 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Włostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <cstdint>
#include <thread>
#include <mutex>
#include <class_board.h>
#include <class_zone.h>
#include <class_module.h>
#include <class_edge_mod.h>
#include <class_drawsegment.h>
#include <class_track.h>
#include <class_pcb_text.h>
#include <class_pcb_target.h>
#include <connectivity_data.h>
#include <board_commit.h>
#include <widgets/progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_file_io.h>
#include <geometry/convex_hull.h>
#include "zone_filler.h"
#ifdef USE_OPENMP
#include <omp.h>
#endif /* USE_OPENMP */
extern void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
const D_PAD& aPad,
int aThermalGap,
int aCopperThickness,
int aMinThicknessValue,
int aCircleToSegmentsCount,
double aCorrectionFactor,
double aThermalRot );
static double s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads
static const bool s_DumpZonesWhenFilling = false;
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) :
m_board( aBoard ), m_commit( aCommit ), m_progressReporter( nullptr ), m_count_done( 0 )
{
}
ZONE_FILLER::~ZONE_FILLER()
{
}
void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter )
{
m_progressReporter = aReporter;
}
void ZONE_FILLER::Fill( std::vector<ZONE_CONTAINER*> aZones )
{
std::vector<CN_ZONE_ISOLATED_ISLAND_LIST> toFill;
auto connectivity = m_board->GetConnectivity();
if( !connectivity->TryLock() )
return;
// Remove segment zones
m_board->m_Zone.DeleteAll();
for( auto zone : aZones )
{
// Keepout zones are not filled
if( zone->GetIsKeepout() )
continue;
CN_ZONE_ISOLATED_ISLAND_LIST l;
l.m_zone = zone;
toFill.push_back( l );
}
for( unsigned i = 0; i < toFill.size(); i++ )
{
if( m_commit )
{
m_commit->Modify( toFill[i].m_zone );
}
}
if( m_progressReporter )
{
m_progressReporter->Report( _( "Calculating zone fills..." ) );
m_progressReporter->SetMaxProgress( toFill.size() );
}
m_count_done = 0;
std::thread fillWorker( [ this, toFill ]()
{
for( unsigned i = 0; i < toFill.size(); i++ )
{
SHAPE_POLY_SET rawPolys, finalPolys;
ZONE_SEGMENT_FILL segFill;
fillSingleZone( toFill[i].m_zone, rawPolys, finalPolys );
toFill[i].m_zone->SetRawPolysList( rawPolys );
toFill[i].m_zone->SetFilledPolysList( finalPolys );
toFill[i].m_zone->SetIsFilled( true );
if( m_progressReporter )
m_progressReporter->AdvanceProgress();
m_count_done.fetch_add( 1 );
}
} );
while( m_count_done.load() < toFill.size() )
{
if( m_progressReporter )
m_progressReporter->KeepRefreshing();
else
wxMilliSleep( 20 );
}
fillWorker.join();
// Now remove insulated copper islands
if( m_progressReporter )
{
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Removing insulated copper islands..." ) );
m_progressReporter->KeepRefreshing();
}
connectivity->SetProgressReporter( m_progressReporter );
connectivity->FindIsolatedCopperIslands( toFill );
for( auto& zone : toFill )
{
std::sort( zone.m_islands.begin(), zone.m_islands.end(), std::greater<int>() );
SHAPE_POLY_SET poly = zone.m_zone->GetFilledPolysList();
for( auto idx : zone.m_islands )
{
poly.DeletePolygon( idx );
}
zone.m_zone->SetFilledPolysList( poly );
}
if( m_progressReporter )
{
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Caching polygon triangulations..." ) );
m_progressReporter->SetMaxProgress( toFill.size() );
}
m_count_done = 0;
std::thread triangulationWorker( [ this, toFill ]()
{
for( unsigned i = 0; i < toFill.size(); i++ )
{
if( m_progressReporter )
m_progressReporter->AdvanceProgress();
toFill[i].m_zone->CacheTriangulation();
m_count_done.fetch_add( 1 );
}
} );
while( m_count_done.load() < toFill.size() )
{
if( m_progressReporter )
m_progressReporter->KeepRefreshing();
else
wxMilliSleep( 10 );
}
triangulationWorker.join();
// If some zones must be filled by segments, create the filling segments
// (note, this is a outdated option, but it exists)
int zones_to_fill_count = 0;
for( unsigned i = 0; i < toFill.size(); i++ )
{
if( toFill[i].m_zone->GetFillMode() == ZFM_SEGMENTS )
zones_to_fill_count++;
}
if( zones_to_fill_count )
{
if( m_progressReporter )
{
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Fill with segments..." ) );
m_progressReporter->SetMaxProgress( zones_to_fill_count );
}
// TODO: use OPENMP to speedup calculations:
for( unsigned i = 0; i < toFill.size(); i++ )
{
ZONE_CONTAINER* zone = toFill[i].m_zone;
if( zone->GetFillMode() != ZFM_SEGMENTS )
continue;
if( m_progressReporter )
{
m_progressReporter->AdvanceProgress();
}
ZONE_SEGMENT_FILL segFill;
fillZoneWithSegments( zone, zone->GetFilledPolysList(), segFill );
toFill[i].m_zone->SetFillSegments( segFill );
}
}
if( m_progressReporter )
{
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Committing changes..." ) );
}
connectivity->SetProgressReporter( nullptr );
if( m_commit )
{
m_commit->Push( _( "Fill Zone(s)" ), false );
}
else
{
for( unsigned i = 0; i < toFill.size(); i++ )
{
connectivity->Update( toFill[i].m_zone );
}
connectivity->RecalculateRatsnest();
}
connectivity->Unlock();
}
void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
SHAPE_POLY_SET& aFeatures ) const
{
int segsPerCircle;
double correctionFactor;
// Set the number of segments in arc approximations
if( aZone->GetArcSegmentCount() == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF )
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
else
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;
/* calculates the coeff to compensate radius reduction of holes clearance
* due to the segment approx.
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
* correctionFactor is 1 /cos( PI/s_CircleToSegmentsCount )
*/
correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );
aFeatures.RemoveAllContours();
int outline_half_thickness = aZone->GetMinThickness() / 2;
// When removing holes, the holes must be expanded by outline_half_thickness
// to take in account the thickness of the zone outlines
int zone_clearance = aZone->GetClearance() + outline_half_thickness;
// When holes are created by non copper items (edge cut items), use only
// the m_ZoneClearance parameter (zone clearance with no netclass clearance)
int zone_to_edgecut_clearance = aZone->GetZoneClearance() + outline_half_thickness;
/* store holes (i.e. tracks and pads areas as polygons outlines)
* in a polygon list
*/
/* items ouside the zone bounding box are skipped
* the bounding box is the zone bounding box + the biggest clearance found in Netclass list
*/
EDA_RECT item_boundingbox;
EDA_RECT zone_boundingbox = aZone->GetBoundingBox();
int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
biggest_clearance = std::max( biggest_clearance, zone_clearance );
zone_boundingbox.Inflate( biggest_clearance );
/*
* First : Add pads. Note: pads having the same net as zone are left in zone.
* Thermal shapes will be created later if necessary
*/
/* Use a dummy pad to calculate hole clearance when a pad is not on all copper layers
* and this pad has a hole
* This dummy pad has the size and shape of the hole
* Therefore, this dummy pad is a circle or an oval.
* A pad must have a parent because some functions expect a non null parent
* to find the parent board, and some other data
*/
MODULE dummymodule( m_board ); // Creates a dummy parent
D_PAD dummypad( &dummymodule );
for( MODULE* module = m_board->m_Modules; module; module = module->Next() )
{
D_PAD* nextpad;
for( D_PAD* pad = module->PadsList(); pad != NULL; pad = nextpad )
{
nextpad = pad->Next(); // pad pointer can be modified by next code, so
// calculate the next pad here
if( !pad->IsOnLayer( aZone->GetLayer() ) )
{
/* Test for pads that are on top or bottom only and have a hole.
* There are curious pads but they can be used for some components that are
* inside the board (in fact inside the hole. Some photo diodes and Leds are
* like this)
*/
if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
continue;
// Use a dummy pad to calculate a hole shape that have the same dimension as
// the pad hole
dummypad.SetSize( pad->GetDrillSize() );
dummypad.SetOrientation( pad->GetOrientation() );
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
dummypad.SetPosition( pad->GetPosition() );
pad = &dummypad;
}
// Note: netcode <=0 means not connected item
if( ( pad->GetNetCode() != aZone->GetNetCode() ) || ( pad->GetNetCode() <= 0 ) )
{
int item_clearance = pad->GetClearance() + outline_half_thickness;
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( item_clearance );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
int clearance = std::max( zone_clearance, item_clearance );
// PAD_SHAPE_CUSTOM can have a specific keepout, to avoid to break the shape
if( pad->GetShape() == PAD_SHAPE_CUSTOM
&& pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
// the pad shape in zone can be its convex hull or
// the shape itself
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
outline.Inflate( KiROUND( clearance * correctionFactor ), segsPerCircle );
pad->CustomShapeAsPolygonToBoardPosition( &outline,
pad->GetPosition(), pad->GetOrientation() );
if( pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, outline );
aFeatures.NewOutline();
for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
aFeatures.Append( convex_hull[ii] );
}
else
aFeatures.Append( outline );
}
else
pad->TransformShapeWithClearanceToPolygon( aFeatures,
clearance,
segsPerCircle,
correctionFactor );
}
continue;
}
// Pads are removed from zone if the setup is PAD_ZONE_CONN_NONE
// or if they have a custom shape, because a thermal relief will break
// the shape
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_NONE
|| pad->GetShape() == PAD_SHAPE_CUSTOM )
{
int gap = zone_clearance;
int thermalGap = aZone->GetThermalReliefGap( pad );
gap = std::max( gap, thermalGap );
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( gap );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
// PAD_SHAPE_CUSTOM has a specific keepout, to avoid to break the shape
// the pad shape in zone can be its convex hull or the shape itself
if( pad->GetShape() == PAD_SHAPE_CUSTOM
&& pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
// the pad shape in zone can be its convex hull or
// the shape itself
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
outline.Inflate( KiROUND( gap * correctionFactor ), segsPerCircle );
pad->CustomShapeAsPolygonToBoardPosition( &outline,
pad->GetPosition(), pad->GetOrientation() );
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, outline );
aFeatures.NewOutline();
for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
aFeatures.Append( convex_hull[ii] );
}
else
pad->TransformShapeWithClearanceToPolygon( aFeatures,
gap, segsPerCircle, correctionFactor );
}
}
}
}
/* Add holes (i.e. tracks and vias areas as polygons outlines)
* in cornerBufferPolysToSubstract
*/
for( auto track : m_board->Tracks() )
{
if( !track->IsOnLayer( aZone->GetLayer() ) )
continue;
if( track->GetNetCode() == aZone->GetNetCode() && ( aZone->GetNetCode() != 0) )
continue;
int item_clearance = track->GetClearance() + outline_half_thickness;
item_boundingbox = track->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
int clearance = std::max( zone_clearance, item_clearance );
track->TransformShapeWithClearanceToPolygon( aFeatures,
clearance,
segsPerCircle,
correctionFactor );
}
}
/* Add module edge items that are on copper layers
* Pcbnew allows these items to be on copper layers in microwave applictions
* This is a bad thing, but must be handled here, until a better way is found
*/
for( auto module : m_board->Modules() )
{
for( auto item : module->GraphicalItems() )
{
if( !item->IsOnLayer( aZone->GetLayer() ) && !item->IsOnLayer( Edge_Cuts ) )
continue;
if( item->Type() != PCB_MODULE_EDGE_T )
continue;
item_boundingbox = item->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
int zclearance = zone_clearance;
if( item->IsOnLayer( Edge_Cuts ) )
// use only the m_ZoneClearance, not the clearance using
// the netclass value, because we do not have a copper item
zclearance = zone_to_edgecut_clearance;
( (EDGE_MODULE*) item )->TransformShapeWithClearanceToPolygon(
aFeatures, zclearance, segsPerCircle, correctionFactor );
}
}
}
// Add graphic items (copper texts) and board edges
// Currently copper texts have no net, so only the zone_clearance
// is used.
for( auto item : m_board->Drawings() )
{
if( item->GetLayer() != aZone->GetLayer() && item->GetLayer() != Edge_Cuts )
continue;
int zclearance = zone_clearance;
if( item->GetLayer() == Edge_Cuts )
// use only the m_ZoneClearance, not the clearance using
// the netclass value, because we do not have a copper item
zclearance = zone_to_edgecut_clearance;
switch( item->Type() )
{
case PCB_LINE_T:
( (DRAWSEGMENT*) item )->TransformShapeWithClearanceToPolygon(
aFeatures,
zclearance, segsPerCircle, correctionFactor );
break;
case PCB_TEXT_T:
( (TEXTE_PCB*) item )->TransformBoundingBoxWithClearanceToPolygon(
aFeatures, zclearance );
break;
default:
break;
}
}
// Add zones outlines having an higher priority and keepout
for( int ii = 0; ii < m_board->GetAreaCount(); ii++ )
{
ZONE_CONTAINER* zone = m_board->GetArea( ii );
// If the zones share no common layers
if( !aZone->CommonLayerExists( zone->GetLayerSet() ) )
continue;
if( !zone->GetIsKeepout() && zone->GetPriority() <= aZone->GetPriority() )
continue;
if( zone->GetIsKeepout() && !zone->GetDoNotAllowCopperPour() )
continue;
// A highter priority zone or keepout area is found: remove this area
item_boundingbox = zone->GetBoundingBox();
if( !item_boundingbox.Intersects( zone_boundingbox ) )
continue;
// Add the zone outline area.
// However if the zone has the same net as the current zone,
// do not add any clearance.
// the zone will be connected to the current zone, but filled areas
// will use different parameters (clearance, thermal shapes )
bool same_net = aZone->GetNetCode() == zone->GetNetCode();
bool use_net_clearance = true;
int min_clearance = zone_clearance;
// Do not forget to make room to draw the thick outlines
// of the hole created by the area of the zone to remove
int holeclearance = zone->GetClearance() + outline_half_thickness;
// The final clearance is obviously the max value of each zone clearance
min_clearance = std::max( min_clearance, holeclearance );
if( zone->GetIsKeepout() || same_net )
{
// Just take in account the fact the outline has a thickness, so
// the actual area to substract is inflated to take in account this fact
min_clearance = outline_half_thickness;
use_net_clearance = false;
}
zone->TransformOutlinesShapeWithClearanceToPolygon(
aFeatures, min_clearance, use_net_clearance );
}
// Remove thermal symbols
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
// Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD )
continue;
if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL
&& aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL )
continue;
if( !pad->IsOnLayer( aZone->GetLayer() ) )
continue;
if( pad->GetNetCode() != aZone->GetNetCode() )
continue;
item_boundingbox = pad->GetBoundingBox();
int thermalGap = aZone->GetThermalReliefGap( pad );
item_boundingbox.Inflate( thermalGap, thermalGap );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
CreateThermalReliefPadPolygon( aFeatures,
*pad, thermalGap,
aZone->GetThermalReliefCopperBridge( pad ),
aZone->GetMinThickness(),
segsPerCircle,
correctionFactor, s_thermalRot );
}
}
}
}
/**
* Function ComputeRawFilledAreas
* Supports a min thickness area constraint.
* Add non copper areas polygons (pads and tracks with clearance)
* to the filled copper area found
* in BuildFilledPolysListData after calculating filled areas in a zone
* Non filled copper areas are pads and track and their clearance areas
* The filled copper area must be computed just before.
* BuildFilledPolysListData() call this function just after creating the
* filled copper area polygon (without clearance areas)
* to do that this function:
* 1 - Creates the main outline (zone outline) using a correction to shrink the resulting area
* with m_ZoneMinThickness/2 value.
* The result is areas with a margin of m_ZoneMinThickness/2
* When drawing outline with segments having a thickness of m_ZoneMinThickness, the
* outlines will match exactly the initial outlines
* 3 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance +
* m_ZoneMinThickness/2
* in a buffer
* - If Thermal shapes are wanted, add non filled area, in order to create these thermal shapes
* 4 - calculates the polygon A - B
* 5 - put resulting list of polygons (filled areas) in m_FilledPolysList
* This zone contains pads with the same net.
* 6 - Remove insulated copper islands
* 7 - If Thermal shapes are wanted, remove unconnected stubs in thermal shapes:
* creates a buffer of polygons corresponding to stubs to remove
* sub them to the filled areas.
* Remove new insulated copper islands
*/
void ZONE_FILLER::computeRawFilledAreas( const ZONE_CONTAINER* aZone,
const SHAPE_POLY_SET& aSmoothedOutline,
SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys ) const
{
int segsPerCircle;
double correctionFactor;
int outline_half_thickness = aZone->GetMinThickness() / 2;
std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO(
s_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) );
// Set the number of segments in arc approximations
if( aZone->GetArcSegmentCount() == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF )
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
else
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;
/* calculates the coeff to compensate radius reduction of holes clearance
* due to the segment approx.
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
* s_Correction is 1 /cos( PI/s_CircleToSegmentsCount )
*/
correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );
if( s_DumpZonesWhenFilling )
dumper->BeginGroup( "clipper-zone" );
SHAPE_POLY_SET solidAreas = aSmoothedOutline;
solidAreas.Inflate( -outline_half_thickness, segsPerCircle );
solidAreas.Simplify( SHAPE_POLY_SET::PM_FAST );
SHAPE_POLY_SET holes;
if( s_DumpZonesWhenFilling )
dumper->Write( &solidAreas, "solid-areas" );
buildZoneFeatureHoleList( aZone, holes );
if( s_DumpZonesWhenFilling )
dumper->Write( &holes, "feature-holes" );
holes.Simplify( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling )
dumper->Write( &holes, "feature-holes-postsimplify" );
// Generate the filled areas (currently, without thermal shapes, which will
// be created later).
// Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons
// needed by Gerber files and Fracture()
solidAreas.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( s_DumpZonesWhenFilling )
dumper->Write( &solidAreas, "solid-areas-minus-holes" );
SHAPE_POLY_SET areas_fractured = solidAreas;
areas_fractured.Fracture( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling )
dumper->Write( &areas_fractured, "areas_fractured" );
aFinalPolys = areas_fractured;
SHAPE_POLY_SET thermalHoles;
// Test thermal stubs connections and add polygons to remove unconnected stubs.
// (this is a refinement for thermal relief shapes)
if( aZone->GetNetCode() > 0 )
{
buildUnconnectedThermalStubsPolygonList( thermalHoles, aZone, aFinalPolys,
correctionFactor, s_thermalRot );
}
// remove copper areas corresponding to not connected stubs
if( !thermalHoles.IsEmpty() )
{
thermalHoles.Simplify( SHAPE_POLY_SET::PM_FAST );
// Remove unconnected stubs. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons
// needed by Gerber files and Fracture()
solidAreas.BooleanSubtract( thermalHoles, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( s_DumpZonesWhenFilling )
dumper->Write( &thermalHoles, "thermal-holes" );
// put these areas in m_FilledPolysList
SHAPE_POLY_SET th_fractured = solidAreas;
th_fractured.Fracture( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling )
dumper->Write( &th_fractured, "th_fractured" );
aFinalPolys = th_fractured;
}
aRawPolys = aFinalPolys;
if( s_DumpZonesWhenFilling )
dumper->EndGroup();
}
/* Build the filled solid areas data from real outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes
* ( holes are linked by overlapping segments to the main outline)
*/
bool ZONE_FILLER::fillSingleZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys ) const
{
SHAPE_POLY_SET smoothedPoly;
/* convert outlines + holes to outlines without holes (adding extra segments if necessary)
* m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building
* this zone
*/
if ( !aZone->BuildSmoothedPoly( smoothedPoly ) )
return false;
if( aZone->IsOnCopperLayer() )
{
computeRawFilledAreas( aZone, smoothedPoly, aRawPolys, aFinalPolys );
}
else
{
aRawPolys = smoothedPoly;
aFinalPolys = smoothedPoly;
aFinalPolys.Inflate( -aZone->GetMinThickness() / 2, 16 );
aFinalPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
}
return true;
}
bool ZONE_FILLER::fillZoneWithSegments( const ZONE_CONTAINER* aZone,
const SHAPE_POLY_SET& aFilledPolys,
ZONE_SEGMENT_FILL& aFillSegs ) const
{
bool success = true;
// segments are on something like a grid. Give it a minimal size
// to avoid too many segments, and use the m_ZoneMinThickness when (this is usually the case)
// the size is > mingrid_size.
// This is not perfect, but the actual purpose of this code
// is to allow filling zones on a grid, with grid size > m_ZoneMinThickness,
// in order to have really a grid.
//
// Using a user selectable grid size is for future Kicad versions.
// For now the area is fully filled.
int mingrid_size = Millimeter2iu( 0.05 );
int grid_size = std::max( mingrid_size, aZone->GetMinThickness() );
// Make segments slightly overlapping to ensure a good full filling
grid_size -= grid_size/20;
// Creates the horizontal segments
for ( int index = 0; index < aFilledPolys.OutlineCount(); index++ )
{
const SHAPE_LINE_CHAIN& outline0 = aFilledPolys.COutline( index );
success = fillPolygonWithHorizontalSegments( outline0, aFillSegs, grid_size );
if( !success )
break;
// Creates the vertical segments. Because the filling algo creates horizontal segments,
// to reuse the fillPolygonWithHorizontalSegments function, we rotate the polygons to fill
// then fill them, then inverse rotate the result
SHAPE_LINE_CHAIN outline90;
outline90.Append( outline0 );
// Rotate 90 degrees the outline:
for( int ii = 0; ii < outline90.PointCount(); ii++ )
{
VECTOR2I& point = outline90.Point( ii );
std::swap( point.x, point.y );
point.y = -point.y;
}
int first_point = aFillSegs.size();
success = fillPolygonWithHorizontalSegments( outline90, aFillSegs, grid_size );
if( !success )
break;
// Rotate -90 degrees the segments:
for( unsigned ii = first_point; ii < aFillSegs.size(); ii++ )
{
SEG& segm = aFillSegs[ii];
std::swap( segm.A.x, segm.A.y );
std::swap( segm.B.x, segm.B.y );
segm.A.x = - segm.A.x;
segm.B.x = - segm.B.x;
}
}
return success;
}
/** Helper function fillPolygonWithHorizontalSegments
* fills a polygon with horizontal segments.
* It can be used for any angle, if the zone outline to fill is rotated by this angle
* and the result is rotated by -angle
* @param aPolygon = a SHAPE_LINE_CHAIN polygon to fill
* @param aFillSegmList = a std::vector\<SEGMENT\> which will be populated by filling segments
* @param aStep = the horizontal grid size
*/
bool ZONE_FILLER::fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon,
ZONE_SEGMENT_FILL& aFillSegmList, int aStep ) const
{
std::vector <int> x_coordinates;
bool success = true;
// Creates the horizontal segments
const SHAPE_LINE_CHAIN& outline = aPolygon;
const BOX2I& rect = outline.BBox();
// Calculate the y limits of the zone
for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += aStep )
{
// find all intersection points of an infinite line with polyline sides
x_coordinates.clear();
for( int v = 0; v < outline.PointCount(); v++ )
{
int seg_startX = outline.CPoint( v ).x;
int seg_startY = outline.CPoint( v ).y;
int seg_endX = outline.CPoint( v + 1 ).x;
int seg_endY = outline.CPoint( v + 1 ).y;
/* Trivial cases: skip if ref above or below the segment to test */
if( ( seg_startY > refy ) && ( seg_endY > refy ) )
continue;
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
continue;
/* at this point refy is between seg_startY and seg_endY
* see if an horizontal line at Y = refy is intersecting this segment
*/
// calculate the x position of the intersection of this segment and the
// infinite line this is more easier if we move the X,Y axis origin to
// the segment start point:
seg_endX -= seg_startX;
seg_endY -= seg_startY;
double newrefy = (double) ( refy - seg_startY );
double intersec_x;
if ( seg_endY == 0 ) // horizontal segment on the same line: skip
continue;
// Now calculate the x intersection coordinate of the horizontal line at
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the
// horizontal line at the new refy position the line slope is:
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
// and the x pos relative to the new origin is:
// intersec_x = refy/slope = refy * inv_slope
// Note: because horizontal segments are already tested and skipped, slope
// exists (seg_end_y not O)
double inv_slope = (double) seg_endX / seg_endY;
intersec_x = newrefy * inv_slope;
x_coordinates.push_back( (int) intersec_x + seg_startX );
}
// A line scan is finished: build list of segments
// Sort intersection points by increasing x value:
// So 2 consecutive points are the ends of a segment
std::sort( x_coordinates.begin(), x_coordinates.end() );
// An even number of coordinates is expected, because a segment has 2 ends.
// An if this algorithm always works, it must always find an even count.
if( ( x_coordinates.size() & 1 ) != 0 )
{
success = false;
break;
}
// Create segments having the same Y coordinate
int iimax = x_coordinates.size() - 1;
for( int ii = 0; ii < iimax; ii += 2 )
{
VECTOR2I seg_start, seg_end;
seg_start.x = x_coordinates[ii];
seg_start.y = refy;
seg_end.x = x_coordinates[ii + 1];
seg_end.y = refy;
SEG segment( seg_start, seg_end );
aFillSegmList.push_back( segment );
}
} // End examine segments in one area
return success;
}
/**
* Function buildUnconnectedThermalStubsPolygonList
* Creates a set of polygons corresponding to stubs created by thermal shapes on pads
* which are not connected to a zone (dangling bridges)
* @param aCornerBuffer = a SHAPE_POLY_SET where to store polygons
* @param aZone = a pointer to the ZONE_CONTAINER to examine.
* @param aArcCorrection = arc correction factor.
* @param aRoundPadThermalRotation = the rotation in 1.0 degree for thermal stubs in round pads
*/
void ZONE_FILLER::buildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer,
const ZONE_CONTAINER* aZone,
const SHAPE_POLY_SET& aRawFilledArea,
double aArcCorrection,
double aRoundPadThermalRotation ) const
{
SHAPE_LINE_CHAIN spokes;
BOX2I itemBB;
VECTOR2I ptTest[4];
auto zoneBB = aRawFilledArea.BBox();
int zone_clearance = aZone->GetZoneClearance();
int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
biggest_clearance = std::max( biggest_clearance, zone_clearance );
zoneBB.Inflate( biggest_clearance );
// half size of the pen used to draw/plot zones outlines
int pen_radius = aZone->GetMinThickness() / 2;
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
// Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD )
continue;
if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL
&& aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL )
continue;
if( !pad->IsOnLayer( aZone->GetLayer() ) )
continue;
if( pad->GetNetCode() != aZone->GetNetCode() )
continue;
// Calculate thermal bridge half width
int thermalBridgeWidth = aZone->GetThermalReliefCopperBridge( pad )
- aZone->GetMinThickness();
if( thermalBridgeWidth <= 0 )
continue;
// we need the thermal bridge half width
// with a small extra size to be sure we create a stub
// slightly larger than the actual stub
thermalBridgeWidth = ( thermalBridgeWidth + 4 ) / 2;
int thermalReliefGap = aZone->GetThermalReliefGap( pad );
itemBB = pad->GetBoundingBox();
itemBB.Inflate( thermalReliefGap );
if( !( itemBB.Intersects( zoneBB ) ) )
continue;
// Thermal bridges are like a segment from a starting point inside the pad
// to an ending point outside the pad
// calculate the ending point of the thermal pad, outside the pad
VECTOR2I endpoint;
endpoint.x = ( pad->GetSize().x / 2 ) + thermalReliefGap;
endpoint.y = ( pad->GetSize().y / 2 ) + thermalReliefGap;
// Calculate the starting point of the thermal stub
// inside the pad
VECTOR2I startpoint;
int copperThickness = aZone->GetThermalReliefCopperBridge( pad )
- aZone->GetMinThickness();
if( copperThickness < 0 )
copperThickness = 0;
// Leave a small extra size to the copper area inside to pad
copperThickness += KiROUND( IU_PER_MM * 0.04 );
startpoint.x = std::min( pad->GetSize().x, copperThickness );
startpoint.y = std::min( pad->GetSize().y, copperThickness );
startpoint.x /= 2;
startpoint.y /= 2;
// This is a CIRCLE pad tweak
// for circle pads, the thermal stubs orientation is 45 deg
double fAngle = pad->GetOrientation();
if( pad->GetShape() == PAD_SHAPE_CIRCLE )
{
endpoint.x = KiROUND( endpoint.x * aArcCorrection );
endpoint.y = endpoint.x;
fAngle = aRoundPadThermalRotation;
}
// contour line width has to be taken into calculation to avoid "thermal stub bleed"
endpoint.x += pen_radius;
endpoint.y += pen_radius;
// compute north, south, west and east points for zone connection.
ptTest[0] = VECTOR2I( 0, endpoint.y ); // lower point
ptTest[1] = VECTOR2I( 0, -endpoint.y ); // upper point
ptTest[2] = VECTOR2I( endpoint.x, 0 ); // right point
ptTest[3] = VECTOR2I( -endpoint.x, 0 ); // left point
// Test all sides
for( int i = 0; i < 4; i++ )
{
// rotate point
RotatePoint( ptTest[i], fAngle );
// translate point
ptTest[i] += pad->ShapePos();
if( aRawFilledArea.Contains( ptTest[i] ) )
continue;
spokes.Clear();
// polygons are rectangles with width of copper bridge value
switch( i )
{
case 0: // lower stub
spokes.Append( -thermalBridgeWidth, endpoint.y );
spokes.Append( +thermalBridgeWidth, endpoint.y );
spokes.Append( +thermalBridgeWidth, startpoint.y );
spokes.Append( -thermalBridgeWidth, startpoint.y );
break;
case 1: // upper stub
spokes.Append( -thermalBridgeWidth, -endpoint.y );
spokes.Append( +thermalBridgeWidth, -endpoint.y );
spokes.Append( +thermalBridgeWidth, -startpoint.y );
spokes.Append( -thermalBridgeWidth, -startpoint.y );
break;
case 2: // right stub
spokes.Append( endpoint.x, -thermalBridgeWidth );
spokes.Append( endpoint.x, thermalBridgeWidth );
spokes.Append( +startpoint.x, thermalBridgeWidth );
spokes.Append( +startpoint.x, -thermalBridgeWidth );
break;
case 3: // left stub
spokes.Append( -endpoint.x, -thermalBridgeWidth );
spokes.Append( -endpoint.x, thermalBridgeWidth );
spokes.Append( -startpoint.x, thermalBridgeWidth );
spokes.Append( -startpoint.x, -thermalBridgeWidth );
break;
}
aCornerBuffer.NewOutline();
// add computed polygon to list
for( int ic = 0; ic < spokes.PointCount(); ic++ )
{
auto cpos = spokes.CPoint( ic );
RotatePoint( cpos, fAngle ); // Rotate according to module orientation
cpos += pad->ShapePos(); // Shift origin to position
aCornerBuffer.Append( cpos );
}
}
}
}
}