kicad/pcbnew/router/pns_walkaround.cpp

419 lines
11 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016-2020 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <core/optional.h>
#include <geometry/shape_line_chain.h>
#include "pns_walkaround.h"
#include "pns_optimizer.h"
#include "pns_utils.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
namespace PNS {
void WALKAROUND::start( const LINE& aInitialPath )
{
m_iteration = 0;
m_iterationLimit = 50;
}
NODE::OPT_OBSTACLE WALKAROUND::nearestObstacle( const LINE& aPath )
{
NODE::OPT_OBSTACLE obs = m_world->NearestObstacle( &aPath, m_itemMask, m_restrictedSet.empty() ? NULL : &m_restrictedSet );
if( m_restrictedSet.empty() )
return obs;
else if( obs && m_restrictedSet.find ( obs->m_item ) != m_restrictedSet.end() )
return obs;
return NODE::OPT_OBSTACLE();
}
WALKAROUND::WALKAROUND_STATUS WALKAROUND::singleStep( LINE& aPath,
bool aWindingDirection )
{
OPT<OBSTACLE>& current_obs =
aWindingDirection ? m_currentObstacle[0] : m_currentObstacle[1];
if( !current_obs )
return DONE;
SHAPE_LINE_CHAIN path_walk[2];
if( aPath.PointCount() > 1 )
{
VECTOR2I last = aPath.CPoint( -1 );
if( ( current_obs->m_hull ).PointInside( last ) || ( current_obs->m_hull ).PointOnEdge( last ) )
{
m_recursiveBlockageCount++;
if( m_recursiveBlockageCount < 3 )
aPath.Line().Append( current_obs->m_hull.NearestPoint( last ) );
else
{
aPath = aPath.ClipToNearestObstacle( m_world );
return DONE;
}
}
}
aPath.Walkaround( current_obs->m_hull, path_walk[0],
aWindingDirection );
aPath.Walkaround( current_obs->m_hull, path_walk[1],
!aWindingDirection );
if( !aPath.Walkaround( current_obs->m_hull, path_walk[1], !aWindingDirection ) )
return STUCK;
auto l =aPath.CLine();
#if 0
if( m_logger )
{
m_logger->NewGroup( aWindingDirection ? "walk-cw" : "walk-ccw", m_iteration );
m_logger->Log( &path_walk[0], 0, "path_walk" );
m_logger->Log( &path_pre[0], 1, "path_pre" );
m_logger->Log( &path_post[0], 4, "path_post" );
m_logger->Log( &current_obs->m_hull, 2, "hull" );
m_logger->Log( current_obs->m_item, 3, "item" );
}
#endif
if ( Dbg() )
{
Dbg()->BeginGroup("hull/walk");
char name[128];
snprintf(name, sizeof(name), "hull-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration );
Dbg()->AddLine( current_obs->m_hull, 1, 1, name);
snprintf(name, sizeof(name), "path-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration );
Dbg()->AddLine( aPath.CLine(), 2, 1, name );
Dbg()->EndGroup();
}
int len_pre = path_walk[0].Length();
int len_alt = path_walk[1].Length();
LINE walk_path( aPath, path_walk[1] );
bool alt_collides = static_cast<bool>( m_world->CheckColliding( &walk_path, m_itemMask ) );
SHAPE_LINE_CHAIN pnew;
/*if( !m_forceLongerPath && len_alt < len_pre && !alt_collides && !prev_recursive )
{
pnew = path_pre[1];
pnew.Append( path_walk[1] );
pnew.Append( path_post[1] );
if( !path_post[1].PointCount() || !path_walk[1].PointCount() )
current_obs = nearestObstacle( LINE( aPath, path_pre[1] ) );
else
current_obs = nearestObstacle( LINE( aPath, path_post[1] ) );
}
else*/
{
pnew = path_walk[0];
current_obs = nearestObstacle( LINE( aPath, path_walk[0] ) );
}
pnew.Simplify();
aPath.SetShape( pnew );
return IN_PROGRESS;
}
bool clipToLoopStart( SHAPE_LINE_CHAIN& l )
{
auto ip = l.SelfIntersecting();
if(!ip)
return false;
else {
int pidx = l.Split( ip->p );
auto lead = l.Slice(0, pidx);
auto tail = l.Slice(pidx + 1, -1);
int pidx2 = tail.Split( ip->p );
auto dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator();
dbg->AddPoint( ip->p, 5 );
l = lead;
l.Append( tail.Slice( 0, pidx2 ) );
//l = l.Slice(0, pidx);
return true;
}
}
const WALKAROUND::RESULT WALKAROUND::Route( const LINE& aInitialPath )
{
LINE path_cw( aInitialPath ), path_ccw( aInitialPath );
WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS;
SHAPE_LINE_CHAIN best_path;
RESULT result;
// special case for via-in-the-middle-of-track placement
if( aInitialPath.PointCount() <= 1 )
{
if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(), m_itemMask ) )
return RESULT( STUCK, STUCK );
return RESULT( DONE, DONE, aInitialPath, aInitialPath );
}
start( aInitialPath );
m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath );
m_recursiveBlockageCount = 0;
result.lineCw = aInitialPath;
result.lineCcw = aInitialPath;
if( m_forceWinding )
{
s_cw = m_forceCw ? IN_PROGRESS : STUCK;
s_ccw = m_forceCw ? STUCK : IN_PROGRESS;
m_forceSingleDirection = true;
} else {
m_forceSingleDirection = false;
}
while( m_iteration < m_iterationLimit )
{
if( s_cw != STUCK )
s_cw = singleStep( path_cw, true );
if( s_ccw != STUCK )
s_ccw = singleStep( path_ccw, false );
auto old = path_cw.CLine();
if( clipToLoopStart( path_cw.Line() ) )
s_cw = ALMOST_DONE;
if( clipToLoopStart( path_ccw.Line() ) )
s_ccw = ALMOST_DONE;
if( s_cw != IN_PROGRESS )
{
result.lineCw = path_cw;
result.statusCw = s_cw;
}
if( s_ccw != IN_PROGRESS )
{
result.lineCcw = path_ccw;
result.statusCcw = s_ccw;
}
if( s_cw != IN_PROGRESS && s_ccw != IN_PROGRESS )
break;
m_iteration++;
}
if( s_cw == IN_PROGRESS )
{
result.lineCw = path_cw;
result.statusCw = ALMOST_DONE;
}
if( s_ccw == IN_PROGRESS )
{
result.lineCcw = path_ccw;
result.statusCcw = ALMOST_DONE;
}
result.lineCw.Line().Simplify();
result.lineCcw.Line().Simplify();
if( result.lineCw.SegmentCount() < 1 || result.lineCw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) )
{
result.statusCw = STUCK;
}
if( result.lineCw.PointCount() > 0 && result.lineCw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) )
{
result.statusCw = ALMOST_DONE;
}
if( result.lineCcw.SegmentCount() < 1 || result.lineCcw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) )
{
result.statusCcw = STUCK;
}
if( result.lineCcw.PointCount() > 0 && result.lineCcw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) )
{
result.statusCcw = ALMOST_DONE;
}
return result;
}
WALKAROUND::WALKAROUND_STATUS WALKAROUND::Route( const LINE& aInitialPath,
LINE& aWalkPath, bool aOptimize )
{
LINE path_cw( aInitialPath ), path_ccw( aInitialPath );
WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS;
SHAPE_LINE_CHAIN best_path;
// special case for via-in-the-middle-of-track placement
if( aInitialPath.PointCount() <= 1 )
{
if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(), m_itemMask ) )
return STUCK;
aWalkPath = aInitialPath;
return DONE;
}
start( aInitialPath );
m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath );
m_recursiveBlockageCount = 0;
aWalkPath = aInitialPath;
if( m_forceWinding )
{
s_cw = m_forceCw ? IN_PROGRESS : STUCK;
s_ccw = m_forceCw ? STUCK : IN_PROGRESS;
m_forceSingleDirection = true;
} else {
m_forceSingleDirection = false;
}
while( m_iteration < m_iterationLimit )
{
if( s_cw != STUCK )
s_cw = singleStep( path_cw, true );
if( s_ccw != STUCK )
s_ccw = singleStep( path_ccw, false );
if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) )
{
int len_cw = path_cw.CLine().Length();
int len_ccw = path_ccw.CLine().Length();
if( m_forceLongerPath )
aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw );
else
aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw );
break;
}
else if( s_cw == DONE && !m_forceLongerPath )
{
aWalkPath = path_cw;
break;
}
else if( s_ccw == DONE && !m_forceLongerPath )
{
aWalkPath = path_ccw;
break;
}
m_iteration++;
}
if( m_iteration == m_iterationLimit )
{
int len_cw = path_cw.CLine().Length();
int len_ccw = path_ccw.CLine().Length();
if( m_forceLongerPath )
aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw );
else
aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw );
}
if( m_cursorApproachMode )
{
// int len_cw = path_cw.GetCLine().Length();
// int len_ccw = path_ccw.GetCLine().Length();
bool found = false;
SHAPE_LINE_CHAIN l = aWalkPath.CLine();
for( int i = 0; i < l.SegmentCount(); i++ )
{
const SEG s = l.Segment( i );
VECTOR2I nearest = s.NearestPoint( m_cursorPos );
VECTOR2I::extended_type dist_a = ( s.A - m_cursorPos ).SquaredEuclideanNorm();
VECTOR2I::extended_type dist_b = ( s.B - m_cursorPos ).SquaredEuclideanNorm();
VECTOR2I::extended_type dist_n = ( nearest - m_cursorPos ).SquaredEuclideanNorm();
if( dist_n <= dist_a && dist_n < dist_b )
{
l.Remove( i + 1, -1 );
l.Append( nearest );
l.Simplify();
found = true;
break;
}
}
if( found )
{
aWalkPath = aInitialPath;
aWalkPath.SetShape( l );
}
}
aWalkPath.Line().Simplify();
if( aWalkPath.SegmentCount() < 1 )
return STUCK;
if( aWalkPath.CPoint( -1 ) != aInitialPath.CPoint( -1 ) )
return ALMOST_DONE;
if( aWalkPath.CPoint( 0 ) != aInitialPath.CPoint( 0 ) )
return STUCK;
WALKAROUND_STATUS st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK;
if( st == DONE )
{
if( aOptimize )
OPTIMIZER::Optimize( &aWalkPath, OPTIMIZER::MERGE_OBTUSE, m_world );
}
return st;
}
}