kicad/pcbnew/class_board.cpp

2201 lines
60 KiB
C++

/**
* @file class_board.cpp
* @brief BOARD class functions.
*/
#include <limits.h>
#include <algorithm>
#include <fctsys.h>
#include <common.h>
#include <pcbcommon.h>
#include <wxBasePcbFrame.h>
#include <pcbnew.h>
#include <colors_selection.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <class_marker_pcb.h>
/* This is an odd place for this, but CvPcb won't link if it is
* in class_board_item.cpp like I first tried it.
*/
wxPoint BOARD_ITEM::ZeroOffset( 0, 0 );
BOARD::BOARD() :
BOARD_ITEM( (BOARD_ITEM*) NULL, PCB_T ),
m_NetInfo( this ),
m_NetClasses( this )
{
// we have not loaded a board yet, assume latest until then.
m_fileFormatVersionAtLoad = BOARD_FILE_VERSION;
m_Status_Pcb = 0; // Status word: bit 1 = calculate.
SetColorsSettings( &g_ColorsSettings );
m_NbNodes = 0; // Number of connected pads.
m_NbNoconnect = 0; // Number of unconnected nets.
m_CurrentZoneContour = NULL; // This ZONE_CONTAINER handle the
// zone contour currently in progress
BuildListOfNets(); // prepare pad and netlist containers.
for( int layer = 0; layer < NB_COPPER_LAYERS; ++layer )
{
m_Layer[layer].m_Name = GetDefaultLayerName( layer );
m_Layer[layer].m_Type = LT_SIGNAL;
}
m_NetClasses.GetDefault()->SetDescription( _( "This is the default net class." ) );
m_ViaSizeSelector = 0;
m_TrackWidthSelector = 0;
/* Dick 5-Feb-2012: this seems unnecessary. I don't believe the comment
near line 70 of class_netclass.cpp. I stepped through with debugger.
Perhaps something else is at work, it is not a constructor race.
// Initialize default values in default netclass.
*/
m_NetClasses.GetDefault()->SetParams();
SetCurrentNetClass( m_NetClasses.GetDefault()->GetName() );
}
BOARD::~BOARD()
{
/* @todo
NO! this has nothing to do with a BOARD
Do this in the UI, not in the storage container please.
if( m_PcbFrame && m_PcbFrame->GetScreen() )
m_PcbFrame->GetScreen()->ClearUndoRedoList();
*/
while( m_ZoneDescriptorList.size() )
{
ZONE_CONTAINER* area_to_remove = m_ZoneDescriptorList[0];
Delete( area_to_remove );
}
m_FullRatsnest.clear();
m_LocalRatsnest.clear();
DeleteMARKERs();
DeleteZONEOutlines();
delete m_CurrentZoneContour;
m_CurrentZoneContour = NULL;
}
void BOARD::chainMarkedSegments( wxPoint aPosition, int aLayerMask, TRACK_PTRS* aList )
{
TRACK* segment; // The current segment being analyzed.
TRACK* via; // The via identified, eventually destroy
TRACK* candidate; // The end segment to destroy (or NULL = segment)
int NbSegm;
if( m_Track == NULL )
return;
/* Set the BUSY flag of all connected segments, first search starting at
* aPosition. The search ends when a pad is found (end of a track), a
* segment end has more than one other segment end connected, or when no
* connected item found.
*
* Vias are a special case because they must look for segments connected
* on other layers and they change the layer mask. They can be a track
* end or not. They will be analyzer later and vias on terminal points
* of the track will be considered as part of this track if they do not
* connect segments of an other track together and will be considered as
* part of an other track when removing the via, the segments of that other
* track are disconnected.
*/
for( ; ; )
{
if( GetPadFast( aPosition, aLayerMask ) != NULL )
return;
/* Test for a via: a via changes the layer mask and can connect a lot
* of segments at location aPosition. When found, the via is just
* pushed in list. Vias will be examined later, when all connected
* segment are found and push in list. This is because when a via
* is found we do not know at this time the number of connected items
* and we do not know if this via is on the track or finish the track
*/
via = m_Track->GetVia( NULL, aPosition, aLayerMask );
if( via )
{
aLayerMask = via->ReturnMaskLayer();
aList->push_back( via );
}
/* Now we search all segments connected to point aPosition
* if only 1 segment: this segment is candidate
* if > 1 segment:
* end of track (more than 2 segment connected at this location)
*/
segment = m_Track; candidate = NULL;
NbSegm = 0;
while( ( segment = ::GetTrace( segment, NULL, aPosition, aLayerMask ) ) != NULL )
{
if( segment->GetState( BUSY ) ) // already found and selected: skip it
{
segment = segment->Next();
continue;
}
if( segment == via ) // just previously found: skip it
{
segment = segment->Next();
continue;
}
NbSegm++;
if( NbSegm == 1 ) /* First time we found a connected item: segment is candidate */
{
candidate = segment;
segment = segment->Next();
}
else /* More than 1 segment connected -> this location is an end of the track */
{
return;
}
}
if( candidate ) // A candidate is found: flag it an push it in list
{
/* Initialize parameters to search items connected to this
* candidate:
* we must analyze connections to its other end
*/
aLayerMask = candidate->ReturnMaskLayer();
if( aPosition == candidate->m_Start )
{
aPosition = candidate->m_End;
}
else
{
aPosition = candidate->m_Start;
}
segment = m_Track; /* restart list of tracks to analyze */
/* flag this item an push it in list of selected items */
aList->push_back( candidate );
candidate->SetState( BUSY, ON );
}
else
{
return;
}
}
}
void BOARD::PushHighLight()
{
m_hightLightPrevious = m_hightLight;
}
void BOARD::PopHighLight()
{
m_hightLight = m_hightLightPrevious;
m_hightLightPrevious.Clear();
}
bool BOARD::SetCurrentNetClass( const wxString& aNetClassName )
{
NETCLASS* netClass = m_NetClasses.Find( aNetClassName );
bool lists_sizes_modified = false;
// if not found (should not happen) use the default
if( netClass == NULL )
netClass = m_NetClasses.GetDefault();
m_CurrentNetClassName = netClass->GetName();
// Initialize others values:
if( m_ViasDimensionsList.size() == 0 )
{
VIA_DIMENSION viadim;
lists_sizes_modified = true;
m_ViasDimensionsList.push_back( viadim );
}
if( m_TrackWidthList.size() == 0 )
{
lists_sizes_modified = true;
m_TrackWidthList.push_back( 0 );
}
/* note the m_ViasDimensionsList[0] and m_TrackWidthList[0] values
* are always the Netclass values
*/
if( m_ViasDimensionsList[0].m_Diameter != netClass->GetViaDiameter() )
lists_sizes_modified = true;
m_ViasDimensionsList[0].m_Diameter = netClass->GetViaDiameter();
if( m_TrackWidthList[0] != netClass->GetTrackWidth() )
lists_sizes_modified = true;
m_TrackWidthList[0] = netClass->GetTrackWidth();
if( m_ViaSizeSelector >= m_ViasDimensionsList.size() )
m_ViaSizeSelector = m_ViasDimensionsList.size();
if( m_TrackWidthSelector >= m_TrackWidthList.size() )
m_TrackWidthSelector = m_TrackWidthList.size();
return lists_sizes_modified;
}
int BOARD::GetBiggestClearanceValue()
{
int clearance = m_NetClasses.GetDefault()->GetClearance();
//Read list of Net Classes
for( NETCLASSES::const_iterator nc = m_NetClasses.begin(); nc != m_NetClasses.end(); nc++ )
{
NETCLASS* netclass = nc->second;
clearance = MAX( clearance, netclass->GetClearance() );
}
return clearance;
}
int BOARD::GetSmallestClearanceValue()
{
int clearance = m_NetClasses.GetDefault()->GetClearance();
//Read list of Net Classes
for( NETCLASSES::const_iterator nc = m_NetClasses.begin(); nc != m_NetClasses.end(); nc++ )
{
NETCLASS* netclass = nc->second;
clearance = MIN( clearance, netclass->GetClearance() );
}
return clearance;
}
int BOARD::GetCurrentMicroViaSize()
{
NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName );
return netclass->GetuViaDiameter();
}
int BOARD::GetCurrentMicroViaDrill()
{
NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName );
return netclass->GetuViaDrill();
}
wxString BOARD::GetLayerName( int aLayerIndex ) const
{
if( !IsValidLayerIndex( aLayerIndex ) )
return wxEmptyString;
// copper layer names are stored in the BOARD.
if( IsValidCopperLayerIndex( aLayerIndex ) && IsLayerEnabled( aLayerIndex ) )
{
// default names were set in BOARD::BOARD() but they may be
// over-ridden by BOARD::SetLayerName()
return m_Layer[aLayerIndex].m_Name;
}
return GetDefaultLayerName( aLayerIndex );
}
wxString BOARD::GetDefaultLayerName( int aLayerNumber )
{
const wxChar* txt;
// These are only default layer names. For Pcbnew the copper names
// may be over-ridden in the BOARD (*.brd) file.
// Use a switch to explicitly show the mapping more clearly
switch( aLayerNumber )
{
case LAYER_N_FRONT: txt = _( "Front" ); break;
case LAYER_N_2: txt = _( "Inner2" ); break;
case LAYER_N_3: txt = _( "Inner3" ); break;
case LAYER_N_4: txt = _( "Inner4" ); break;
case LAYER_N_5: txt = _( "Inner5" ); break;
case LAYER_N_6: txt = _( "Inner6" ); break;
case LAYER_N_7: txt = _( "Inner7" ); break;
case LAYER_N_8: txt = _( "Inner8" ); break;
case LAYER_N_9: txt = _( "Inner9" ); break;
case LAYER_N_10: txt = _( "Inner10" ); break;
case LAYER_N_11: txt = _( "Inner11" ); break;
case LAYER_N_12: txt = _( "Inner12" ); break;
case LAYER_N_13: txt = _( "Inner13" ); break;
case LAYER_N_14: txt = _( "Inner14" ); break;
case LAYER_N_15: txt = _( "Inner15" ); break;
case LAYER_N_BACK: txt = _( "Back" ); break;
case ADHESIVE_N_BACK: txt = _( "Adhes_Back" ); break;
case ADHESIVE_N_FRONT: txt = _( "Adhes_Front" ); break;
case SOLDERPASTE_N_BACK: txt = _( "SoldP_Back" ); break;
case SOLDERPASTE_N_FRONT: txt = _( "SoldP_Front" ); break;
case SILKSCREEN_N_BACK: txt = _( "SilkS_Back" ); break;
case SILKSCREEN_N_FRONT: txt = _( "SilkS_Front" ); break;
case SOLDERMASK_N_BACK: txt = _( "Mask_Back" ); break;
case SOLDERMASK_N_FRONT: txt = _( "Mask_Front" ); break;
case DRAW_N: txt = _( "Drawings" ); break;
case COMMENT_N: txt = _( "Comments" ); break;
case ECO1_N: txt = _( "Eco1" ); break;
case ECO2_N: txt = _( "Eco2" ); break;
case EDGE_N: txt = _( "PCB_Edges" ); break;
default: txt = _( "BAD INDEX" ); break;
}
return wxString( txt );
}
bool BOARD::SetLayerName( int aLayerIndex, const wxString& aLayerName )
{
if( !IsValidCopperLayerIndex( aLayerIndex ) )
return false;
if( aLayerName == wxEmptyString || aLayerName.Len() > 20 )
return false;
// no quote chars in the name allowed
if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND )
return false;
wxString NameTemp = aLayerName;
// replace any spaces with underscores before we do any comparing
NameTemp.Replace( wxT( " " ), wxT( "_" ) );
if( IsLayerEnabled( aLayerIndex ) )
{
for( int i = 0; i < NB_COPPER_LAYERS; i++ )
{
if( i != aLayerIndex && IsLayerEnabled( i ) && NameTemp == m_Layer[i].m_Name )
return false;
}
m_Layer[aLayerIndex].m_Name = NameTemp;
return true;
}
return false;
}
LAYER_T BOARD::GetLayerType( int aLayerIndex ) const
{
if( !IsValidCopperLayerIndex( aLayerIndex ) )
return LT_SIGNAL;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayerIndex ) )
return m_Layer[aLayerIndex].m_Type;
return LT_SIGNAL;
}
bool BOARD::SetLayerType( int aLayerIndex, LAYER_T aLayerType )
{
if( !IsValidCopperLayerIndex( aLayerIndex ) )
return false;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayerIndex ) )
{
m_Layer[aLayerIndex].m_Type = aLayerType;
return true;
}
return false;
}
const char* LAYER::ShowType( LAYER_T aType )
{
const char* cp;
switch( aType )
{
default:
case LT_SIGNAL:
cp = "signal";
break;
case LT_POWER:
cp = "power";
break;
case LT_MIXED:
cp = "mixed";
break;
case LT_JUMPER:
cp = "jumper";
break;
}
return cp;
}
LAYER_T LAYER::ParseType( const char* aType )
{
if( strcmp( aType, "signal" ) == 0 )
return LT_SIGNAL;
else if( strcmp( aType, "power" ) == 0 )
return LT_POWER;
else if( strcmp( aType, "mixed" ) == 0 )
return LT_MIXED;
else if( strcmp( aType, "jumper" ) == 0 )
return LT_JUMPER;
else
return LAYER_T( -1 );
}
int BOARD::GetCopperLayerCount() const
{
return m_designSettings.GetCopperLayerCount();
}
void BOARD::SetCopperLayerCount( int aCount )
{
m_designSettings.SetCopperLayerCount( aCount );
}
int BOARD::GetEnabledLayers() const
{
return m_designSettings.GetEnabledLayers();
}
int BOARD::GetVisibleLayers() const
{
return m_designSettings.GetVisibleLayers();
}
void BOARD::SetEnabledLayers( int aLayerMask )
{
m_designSettings.SetEnabledLayers( aLayerMask );
}
void BOARD::SetVisibleLayers( int aLayerMask )
{
m_designSettings.SetVisibleLayers( aLayerMask );
}
void BOARD::SetVisibleElements( int aMask )
{
// Call SetElementVisibility for each item
// to ensure specific calculations that can be needed by some items,
// just changing the visibility flags could be not sufficient.
for( int ii = 0; ii < PCB_VISIBLE( END_PCB_VISIBLE_LIST ); ii++ )
{
int item_mask = 1 << ii;
SetElementVisibility( ii, bool( aMask & item_mask ) );
}
}
void BOARD::SetVisibleAlls()
{
SetVisibleLayers( FULL_LAYERS );
// Call SetElementVisibility for each item,
// to ensure specific calculations that can be needed by some items
for( int ii = 0; ii < PCB_VISIBLE(END_PCB_VISIBLE_LIST); ii++ )
SetElementVisibility( ii, true );
}
int BOARD::GetVisibleElements() const
{
return m_designSettings.GetVisibleElements();
}
bool BOARD::IsElementVisible( int aPCB_VISIBLE ) const
{
return m_designSettings.IsElementVisible( aPCB_VISIBLE );
}
void BOARD::SetElementVisibility( int aPCB_VISIBLE, bool isEnabled )
{
m_designSettings.SetElementVisibility( aPCB_VISIBLE, isEnabled );
switch( aPCB_VISIBLE )
{
case RATSNEST_VISIBLE:
// we must clear or set the CH_VISIBLE flags to hide/show ratsnest
// because we have a tool to show/hide ratsnest relative to a pad or a module
// so the hide/show option is a per item selection
if( IsElementVisible( RATSNEST_VISIBLE ) )
{
for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ )
m_FullRatsnest[ii].m_Status |= CH_VISIBLE;
}
else
{
for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ )
m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE;
}
break;
default:
;
}
}
int BOARD::GetVisibleElementColor( int aPCB_VISIBLE )
{
int color = -1;
switch( aPCB_VISIBLE )
{
case VIA_THROUGH_VISIBLE:
case VIA_MICROVIA_VISIBLE:
case VIA_BBLIND_VISIBLE:
case MOD_TEXT_FR_VISIBLE:
case MOD_TEXT_BK_VISIBLE:
case MOD_TEXT_INVISIBLE:
case ANCHOR_VISIBLE:
case PAD_FR_VISIBLE:
case PAD_BK_VISIBLE:
case RATSNEST_VISIBLE:
case GRID_VISIBLE:
color = GetColorsSettings()->GetItemColor( aPCB_VISIBLE );
break;
default:
wxLogDebug( wxT( "BOARD::GetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE );
}
return color;
}
void BOARD::SetVisibleElementColor( int aPCB_VISIBLE, int aColor )
{
switch( aPCB_VISIBLE )
{
case VIA_THROUGH_VISIBLE:
case VIA_MICROVIA_VISIBLE:
case VIA_BBLIND_VISIBLE:
case MOD_TEXT_FR_VISIBLE:
case MOD_TEXT_BK_VISIBLE:
case MOD_TEXT_INVISIBLE:
case ANCHOR_VISIBLE:
case PAD_FR_VISIBLE:
case PAD_BK_VISIBLE:
case GRID_VISIBLE:
case RATSNEST_VISIBLE:
GetColorsSettings()->SetItemColor( aPCB_VISIBLE, aColor );
break;
default:
wxLogDebug( wxT( "BOARD::SetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE );
}
}
void BOARD::SetLayerColor( int aLayer, int aColor )
{
GetColorsSettings()->SetLayerColor( aLayer, aColor );
}
int BOARD::GetLayerColor( int aLayer )
{
return GetColorsSettings()->GetLayerColor( aLayer );
}
bool BOARD::IsModuleLayerVisible( int layer )
{
if( layer==LAYER_N_FRONT )
return IsElementVisible( PCB_VISIBLE(MOD_FR_VISIBLE) );
else if( layer==LAYER_N_BACK )
return IsElementVisible( PCB_VISIBLE(MOD_BK_VISIBLE) );
else
return true;
}
void BOARD::Add( BOARD_ITEM* aBoardItem, int aControl )
{
if( aBoardItem == NULL )
{
wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem NULL" ) );
return;
}
switch( aBoardItem->Type() )
{
// this one uses a vector
case PCB_MARKER_T:
aBoardItem->SetParent( this );
m_markers.push_back( (MARKER_PCB*) aBoardItem );
break;
// this one uses a vector
case PCB_ZONE_AREA_T:
aBoardItem->SetParent( this );
m_ZoneDescriptorList.push_back( (ZONE_CONTAINER*) aBoardItem );
break;
case PCB_TRACE_T:
case PCB_VIA_T:
TRACK* insertAid;
insertAid = ( (TRACK*) aBoardItem )->GetBestInsertPoint( this );
m_Track.Insert( (TRACK*) aBoardItem, insertAid );
break;
case PCB_ZONE_T:
if( aControl & ADD_APPEND )
m_Zone.PushBack( (SEGZONE*) aBoardItem );
else
m_Zone.PushFront( (SEGZONE*) aBoardItem );
aBoardItem->SetParent( this );
break;
case PCB_MODULE_T:
if( aControl & ADD_APPEND )
m_Modules.PushBack( (MODULE*) aBoardItem );
else
m_Modules.PushFront( (MODULE*) aBoardItem );
aBoardItem->SetParent( this );
// Because the list of pads has changed, reset the status
// This indicate the list of pad and nets must be recalculated before use
m_Status_Pcb = 0;
break;
case PCB_DIMENSION_T:
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_MODULE_EDGE_T:
case PCB_TARGET_T:
if( aControl & ADD_APPEND )
m_Drawings.PushBack( aBoardItem );
else
m_Drawings.PushFront( aBoardItem );
aBoardItem->SetParent( this );
break;
// other types may use linked list
default:
{
wxString msg;
msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ),
aBoardItem->Type() );
wxFAIL_MSG( msg );
}
break;
}
}
BOARD_ITEM* BOARD::Remove( BOARD_ITEM* aBoardItem )
{
// find these calls and fix them! Don't send me no stinking' NULL.
wxASSERT( aBoardItem );
switch( aBoardItem->Type() )
{
case PCB_MARKER_T:
// find the item in the vector, then remove it
for( unsigned i = 0; i<m_markers.size(); ++i )
{
if( m_markers[i] == (MARKER_PCB*) aBoardItem )
{
m_markers.erase( m_markers.begin() + i );
break;
}
}
break;
case PCB_ZONE_AREA_T: // this one uses a vector
// find the item in the vector, then delete then erase it.
for( unsigned i = 0; i<m_ZoneDescriptorList.size(); ++i )
{
if( m_ZoneDescriptorList[i] == (ZONE_CONTAINER*) aBoardItem )
{
m_ZoneDescriptorList.erase( m_ZoneDescriptorList.begin() + i );
break;
}
}
break;
case PCB_MODULE_T:
m_Modules.Remove( (MODULE*) aBoardItem );
break;
case PCB_TRACE_T:
case PCB_VIA_T:
m_Track.Remove( (TRACK*) aBoardItem );
break;
case PCB_ZONE_T:
m_Zone.Remove( (SEGZONE*) aBoardItem );
break;
case PCB_DIMENSION_T:
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_MODULE_EDGE_T:
case PCB_TARGET_T:
m_Drawings.Remove( aBoardItem );
break;
// other types may use linked list
default:
wxFAIL_MSG( wxT( "BOARD::Remove() needs more ::Type() support" ) );
}
return aBoardItem;
}
void BOARD::DeleteMARKERs()
{
// the vector does not know how to delete the MARKER_PCB, it holds pointers
for( unsigned i = 0; i<m_markers.size(); ++i )
delete m_markers[i];
m_markers.clear();
}
void BOARD::DeleteZONEOutlines()
{
// the vector does not know how to delete the ZONE Outlines, it holds
// pointers
for( unsigned i = 0; i<m_ZoneDescriptorList.size(); ++i )
delete m_ZoneDescriptorList[i];
m_ZoneDescriptorList.clear();
}
int BOARD::GetNumSegmTrack() const
{
return m_Track.GetCount();
}
int BOARD::GetNumSegmZone() const
{
return m_Zone.GetCount();
}
unsigned BOARD::GetNoconnectCount() const
{
return m_NbNoconnect;
}
unsigned BOARD::GetNodesCount() const
{
return m_NbNodes;
}
EDA_RECT BOARD::ComputeBoundingBox( bool aBoardEdgesOnly )
{
bool hasItems = false;
EDA_RECT area;
// Check segments, dimensions, texts, and fiducials
for( BOARD_ITEM* item = m_Drawings; item; item = item->Next() )
{
if( aBoardEdgesOnly && (item->Type() != PCB_LINE_T || item->GetLayer() != EDGE_N ) )
continue;
if( !hasItems )
area = item->GetBoundingBox();
else
area.Merge( item->GetBoundingBox() );
hasItems = true;
}
if( !aBoardEdgesOnly )
{
// Check modules
for( MODULE* module = m_Modules; module; module = module->Next() )
{
if( !hasItems )
area = module->GetBoundingBox();
else
area.Merge( module->GetBoundingBox() );
hasItems = true;
}
// Check tracks
for( TRACK* track = m_Track; track; track = track->Next() )
{
if( !hasItems )
area = track->GetBoundingBox();
else
area.Merge( track->GetBoundingBox() );
hasItems = true;
}
// Check segment zones
for( TRACK* track = m_Zone; track; track = track->Next() )
{
if( !hasItems )
area = track->GetBoundingBox();
else
area.Merge( track->GetBoundingBox() );
hasItems = true;
}
// Check polygonal zones
for( unsigned int i = 0; i < m_ZoneDescriptorList.size(); i++ )
{
ZONE_CONTAINER* aZone = m_ZoneDescriptorList[i];
if( !hasItems )
area = aZone->GetBoundingBox();
else
area.Merge( aZone->GetBoundingBox() );
area.Merge( aZone->GetBoundingBox() );
hasItems = true;
}
}
m_BoundingBox = area; // save for BOARD::GetBoundingBox()
return area;
}
// virtual, see pcbstruct.h
void BOARD::DisplayInfo( EDA_DRAW_FRAME* frame )
{
wxString txt;
frame->ClearMsgPanel();
int viasCount = 0;
int trackSegmentsCount = 0;
for( BOARD_ITEM* item = m_Track; item; item = item->Next() )
{
if( item->Type() == PCB_VIA_T )
viasCount++;
else
trackSegmentsCount++;
}
txt.Printf( wxT( "%d" ), GetPadCount() );
frame->AppendMsgPanel( _( "Pads" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), viasCount );
frame->AppendMsgPanel( _( "Vias" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), trackSegmentsCount );
frame->AppendMsgPanel( _( "trackSegm" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNodesCount() );
frame->AppendMsgPanel( _( "Nodes" ), txt, DARKCYAN );
txt.Printf( wxT( "%d" ), m_NetInfo.GetNetCount() );
frame->AppendMsgPanel( _( "Nets" ), txt, RED );
/* These parameters are known only if the full ratsnest is available,
* so, display them only if this is the case
*/
if( (m_Status_Pcb & NET_CODES_OK) )
{
txt.Printf( wxT( "%d" ), GetRatsnestsCount() );
frame->AppendMsgPanel( _( "Links" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetRatsnestsCount() - GetNoconnectCount() );
frame->AppendMsgPanel( _( "Connect" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNoconnectCount() );
frame->AppendMsgPanel( _( "Unconnected" ), txt, BLUE );
}
}
// virtual, see pcbstruct.h
SEARCH_RESULT BOARD::Visit( INSPECTOR* inspector, const void* testData,
const KICAD_T scanTypes[] )
{
KICAD_T stype;
SEARCH_RESULT result = SEARCH_CONTINUE;
const KICAD_T* p = scanTypes;
bool done = false;
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' ';
#endif
while( !done )
{
stype = *p;
switch( stype )
{
case PCB_T:
result = inspector->Inspect( this, testData ); // inspect me
// skip over any types handled in the above call.
++p;
break;
/* Instances of the requested KICAD_T live in a list, either one
* that I manage, or that my modules manage. If it's a type managed
* by class MODULE, then simply pass it on to each module's
* MODULE::Visit() function by way of the
* IterateForward( m_Modules, ... ) call.
*/
case PCB_MODULE_T:
case PCB_PAD_T:
case PCB_MODULE_TEXT_T:
case PCB_MODULE_EDGE_T:
// this calls MODULE::Visit() on each module.
result = IterateForward( m_Modules, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case PCB_MODULE_T:
case PCB_PAD_T:
case PCB_MODULE_TEXT_T:
case PCB_MODULE_EDGE_T:
continue;
default:
;
}
break;
}
break;
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_DIMENSION_T:
case PCB_TARGET_T:
result = IterateForward( m_Drawings, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_DIMENSION_T:
case PCB_TARGET_T:
continue;
default:
;
}
break;
}
;
break;
#if 0 // both these are on same list, so we must scan it twice in order
// to get VIA priority, using new #else code below.
// But we are not using separate lists for TRACKs and SEGVIAs, because
// items are ordered (sorted) in the linked
// list by netcode AND by physical distance:
// when created, if a track or via is connected to an existing track or
// via, it is put in linked list after this existing track or via
// So usually, connected tracks or vias are grouped in this list
// So the algorithm (used in ratsnest computations) which computes the
// track connectivity is faster (more than 100 time regarding to
// a non ordered list) because when it searches for a connexion, first
// it tests the near (near in term of linked list) 50 items
// from the current item (track or via) in test.
// Usually, because of this sort, a connected item (if exists) is
// found.
// If not found (and only in this case) an exhaustive (and time
// consuming) search is made, but this case is statistically rare.
case PCB_VIA_T:
case PCB_TRACE_T:
result = IterateForward( m_Track, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case PCB_VIA_T:
case PCB_TRACE_T:
continue;
default:
;
}
break;
}
break;
#else
case PCB_VIA_T:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
case PCB_TRACE_T:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
#endif
case PCB_MARKER_T:
// MARKER_PCBS are in the m_markers std::vector
for( unsigned i = 0; i<m_markers.size(); ++i )
{
result = m_markers[i]->Visit( inspector, testData, p );
if( result == SEARCH_QUIT )
break;
}
++p;
break;
case PCB_ZONE_AREA_T:
// PCB_ZONE_AREA_T are in the m_ZoneDescriptorList std::vector
for( unsigned i = 0; i< m_ZoneDescriptorList.size(); ++i )
{
result = m_ZoneDescriptorList[i]->Visit( inspector, testData, p );
if( result == SEARCH_QUIT )
break;
}
++p;
break;
case PCB_ZONE_T:
result = IterateForward( m_Zone, inspector, testData, p );
++p;
break;
default: // catch EOT or ANY OTHER type here and return.
done = true;
break;
}
if( result == SEARCH_QUIT )
break;
}
return result;
}
/* now using PcbGeneralLocateAndDisplay(), but this remains a useful example
* of how the INSPECTOR can be used in a lightweight way.
* // see pcbstruct.h
* BOARD_ITEM* BOARD::FindPadOrModule( const wxPoint& refPos, int layer )
* {
* class PadOrModule : public INSPECTOR
* {
* public:
* BOARD_ITEM* found;
* int layer;
* int layer_mask;
*
* PadOrModule( int alayer ) :
* found(0), layer(alayer), layer_mask( g_TabOneLayerMask[alayer] )
* {}
*
* SEARCH_RESULT Inspect( EDA_ITEM* testItem, const void* testData
* )
* {
* BOARD_ITEM* item = (BOARD_ITEM*) testItem;
* const wxPoint& refPos = *(const wxPoint*) testData;
*
* if( item->Type() == PCB_PAD_T )
* {
* D_PAD* pad = (D_PAD*) item;
* if( pad->HitTest( refPos ) )
* {
* if( layer_mask & pad->GetLayerMask() )
* {
* found = item;
* return SEARCH_QUIT;
* }
* else if( !found )
* {
* MODULE* parent = (MODULE*) pad->m_Parent;
* if( IsModuleLayerVisible( parent->GetLayer() ) )
* found = item;
* }
* }
* }
*
* else if( item->Type() == PCB_MODULE_T )
* {
* MODULE* module = (MODULE*) item;
*
* // consider only visible modules
* if( IsModuleLayerVisible( module->GetLayer() ) )
* {
* if( module->HitTest( refPos ) )
* {
* if( layer == module->GetLayer() )
* {
* found = item;
* return SEARCH_QUIT;
* }
*
* // layer mismatch, save in case we don't find a
* // future layer match hit.
* if( !found )
* found = item;
* }
* }
* }
* return SEARCH_CONTINUE;
* }
* };
*
* PadOrModule inspector( layer );
*
* // search only for PADs first, then MODULES, and preferably a layer match
* static const KICAD_T scanTypes[] = { PCB_PAD_T, PCB_MODULE_T, EOT };
*
* // visit this BOARD with the above inspector
* Visit( &inspector, &refPos, scanTypes );
*
* return inspector.found;
* }
*/
NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const
{
// the first valid netcode is 1 and the last is m_NetInfo.GetCount()-1.
// zero is reserved for "no connection" and is not used.
// NULL is returned for non valid netcodes
NETINFO_ITEM* net = m_NetInfo.GetNetItem( aNetcode );
#if defined(DEBUG)
if( net ) // item can be NULL if anetcode is not valid
{
if( aNetcode != net->GetNet() )
{
printf( "FindNet() anetcode %d != GetNet() %d (net: %s)\n",
aNetcode, net->GetNet(), TO_UTF8( net->GetNetname() ) );
}
}
#endif
return net;
}
NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const
{
// the first valid netcode is 1.
// zero is reserved for "no connection" and is not used.
if( aNetname.IsEmpty() )
return NULL;
int ncount = m_NetInfo.GetNetCount();
// Search for a netname = aNetname
#if 0
// Use a sequential search: easy to understand, but slow
for( int ii = 1; ii < ncount; ii++ )
{
NETINFO_ITEM* item = m_NetInfo.GetNetItem( ii );
if( item && item->GetNetname() == aNetname )
{
return item;
}
}
#else
// Use a fast binary search,
// this is possible because Nets are alphabetically ordered in list
// see NETINFO_LIST::BuildListOfNets() and
// NETINFO_LIST::Build_Pads_Full_List()
int imax = ncount - 1;
int index = imax;
while( ncount > 0 )
{
int ii = ncount;
ncount >>= 1;
if( (ii & 1) && ( ii > 1 ) )
ncount++;
NETINFO_ITEM* item = m_NetInfo.GetNetItem( index );
if( item == NULL )
return NULL;
int icmp = item->GetNetname().Cmp( aNetname );
if( icmp == 0 ) // found !
{
return item;
}
if( icmp < 0 ) // must search after item
{
index += ncount;
if( index > imax )
index = imax;
continue;
}
if( icmp > 0 ) // must search before item
{
index -= ncount;
if( index < 1 )
index = 1;
continue;
}
}
#endif
return NULL;
}
MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const
{
struct FindModule : public INSPECTOR
{
MODULE* found;
FindModule() : found( 0 ) {}
// implement interface INSPECTOR
SEARCH_RESULT Inspect( EDA_ITEM* item, const void* data )
{
MODULE* module = (MODULE*) item;
const wxString& ref = *(const wxString*) data;
if( ref == module->GetReference() )
{
found = module;
return SEARCH_QUIT;
}
return SEARCH_CONTINUE;
}
} inspector;
// search only for MODULES
static const KICAD_T scanTypes[] = { PCB_MODULE_T, EOT };
// visit this BOARD with the above inspector
BOARD* nonconstMe = (BOARD*) this;
nonconstMe->Visit( &inspector, &aReference, scanTypes );
return inspector.found;
}
// Sort nets by decreasing pad count
static bool s_SortByNodes( const NETINFO_ITEM* a, const NETINFO_ITEM* b )
{
return b->GetNodesCount() < a->GetNodesCount();
}
int BOARD::ReturnSortedNetnamesList( wxArrayString& aNames, bool aSortbyPadsCount )
{
if( m_NetInfo.GetNetCount() == 0 )
return 0;
// Build the list
std::vector <NETINFO_ITEM*> netBuffer;
netBuffer.reserve( m_NetInfo.GetNetCount() );
for( unsigned ii = 1; ii < m_NetInfo.GetNetCount(); ii++ )
{
if( m_NetInfo.GetNetItem( ii )->GetNet() > 0 )
netBuffer.push_back( m_NetInfo.GetNetItem( ii ) );
}
// sort the list
if( aSortbyPadsCount )
sort( netBuffer.begin(), netBuffer.end(), s_SortByNodes );
for( unsigned ii = 0; ii < netBuffer.size(); ii++ )
aNames.Add( netBuffer[ii]->GetNetname() );
return netBuffer.size();
}
void BOARD::RedrawAreasOutlines( EDA_DRAW_PANEL* panel, wxDC* aDC, int aDrawMode, int aLayer )
{
if( !aDC )
return;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* edge_zone = GetArea( ii );
if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) )
edge_zone->Draw( panel, aDC, aDrawMode );
}
}
void BOARD::RedrawFilledAreas( EDA_DRAW_PANEL* panel, wxDC* aDC, int aDrawMode, int aLayer )
{
if( !aDC )
return;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* edge_zone = GetArea( ii );
if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) )
edge_zone->DrawFilledArea( panel, aDC, aDrawMode );
}
}
ZONE_CONTAINER* BOARD::HitTestForAnyFilledArea( const wxPoint& aRefPos,
int aStartLayer,
int aEndLayer )
{
if( aEndLayer < 0 )
aEndLayer = aStartLayer;
if( aEndLayer < aStartLayer )
EXCHG( aEndLayer, aStartLayer );
for( unsigned ia = 0; ia < m_ZoneDescriptorList.size(); ia++ )
{
ZONE_CONTAINER* area = m_ZoneDescriptorList[ia];
int layer = area->GetLayer();
if( (layer < aStartLayer) || (layer > aEndLayer) )
continue;
// In locate functions we must skip tagged items with BUSY flag set.
if( area->GetState( BUSY ) )
continue;
if( area->HitTestFilledArea( aRefPos ) )
return area;
}
return NULL;
}
int BOARD::SetAreasNetCodesFromNetNames( void )
{
int error_count = 0;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
if( !GetArea( ii )->IsOnCopperLayer() )
{
GetArea( ii )->SetNet( 0 );
continue;
}
if( GetArea( ii )->GetNet() != 0 ) // i.e. if this zone is connected to a net
{
const NETINFO_ITEM* net = FindNet( GetArea( ii )->m_Netname );
if( net )
{
GetArea( ii )->SetNet( net->GetNet() );
}
else
{
error_count++;
// keep Net Name and set m_NetCode to -1 : error flag.
GetArea( ii )->SetNet( -1 );
}
}
}
return error_count;
}
TRACK* BOARD::GetViaByPosition( const wxPoint& aPosition, int aLayerMask )
{
TRACK* track;
for( track = m_Track; track; track = track->Next() )
{
if( track->Type() != PCB_VIA_T )
continue;
if( track->m_Start != aPosition )
continue;
if( track->GetState( BUSY | IS_DELETED ) )
continue;
if( aLayerMask < 0 )
break;
if( track->IsOnLayer( aLayerMask ) )
break;
}
return track;
}
D_PAD* BOARD::GetPad( const wxPoint& aPosition, int aLayerMask )
{
D_PAD* pad = NULL;
for( MODULE* module = m_Modules; module && ( pad == NULL ); module = module->Next() )
{
if( aLayerMask )
pad = module->GetPad( aPosition, aLayerMask );
else
pad = module->GetPad( aPosition, ALL_LAYERS );
}
return pad;
}
D_PAD* BOARD::GetPad( TRACK* aTrace, int aEndPoint )
{
D_PAD* pad = NULL;
wxPoint aPosition;
int aLayerMask = GetLayerMask( aTrace->GetLayer() );
if( aEndPoint == START )
{
aPosition = aTrace->m_Start;
}
else
{
aPosition = aTrace->m_End;
}
for( MODULE* module = m_Modules; module; module = module->Next() )
{
pad = module->GetPad( aPosition, aLayerMask );
if( pad != NULL )
break;
}
return pad;
}
D_PAD* BOARD::GetPadFast( const wxPoint& aPosition, int aLayerMask )
{
for( unsigned i=0; i<GetPadCount(); ++i )
{
D_PAD* pad = m_NetInfo.GetPad(i);
if( pad->GetPosition() != aPosition )
continue;
/* Pad found, it must be on the correct layer */
if( pad->GetLayerMask() & aLayerMask )
return pad;
}
return NULL;
}
D_PAD* BOARD::GetPad( std::vector<D_PAD*>& aPadList, const wxPoint& aPosition, int aLayerMask )
{
// Search the aPoint coordinates in aPadList
// aPadList is sorted by X then Y values, and a fast binary search is used
int idxmax = aPadList.size()-1;
int delta = aPadList.size();
int idx = 0; // Starting index is the beginning of list
while( delta )
{
// Calculate half size of remaining interval to test.
// Ensure the computed value is not truncated (too small)
if( (delta & 1) && ( delta > 1 ) )
delta++;
delta /= 2;
D_PAD* pad = aPadList[idx];
if( pad->GetPosition() == aPosition ) // candidate found
{
// The pad must match the layer mask:
if( (aLayerMask & pad->GetLayerMask()) != 0 )
return pad;
// More than one pad can be at aPosition
// search for a pad at aPosition that matched this mask
// search next
for( int ii = idx+1; ii <= idxmax; ii++ )
{
pad = aPadList[ii];
if( pad->GetPosition() != aPosition )
break;
if( (aLayerMask & pad->GetLayerMask()) != 0 )
return pad;
}
// search previous
for( int ii = idx-1 ;ii >=0; ii-- )
{
pad = aPadList[ii];
if( pad->GetPosition() != aPosition )
break;
if( (aLayerMask & pad->GetLayerMask()) != 0 )
return pad;
}
// Not found:
return 0;
}
if( pad->GetPosition().x == aPosition.x ) // Must search considering Y coordinate
{
if(pad->GetPosition().y < aPosition.y) // Must search after this item
{
idx += delta;
if( idx > idxmax )
idx = idxmax;
}
else // Must search before this item
{
idx -= delta;
if( idx < 0 )
idx = 0;
}
}
else if( pad->GetPosition().x < aPosition.x ) // Must search after this item
{
idx += delta;
if( idx > idxmax )
idx = idxmax;
}
else // Must search before this item
{
idx -= delta;
if( idx < 0 )
idx = 0;
}
}
return NULL;
}
/**
* Function SortPadsByXCoord
* is used by GetSortedPadListByXCoord to Sort a pad list by x coordinate value.
*/
static bool sortPadsByXthenYCoord( D_PAD* const & ref, D_PAD* const & comp )
{
if( ref->GetPosition().x == comp->GetPosition().x )
return ref->GetPosition().y < comp->GetPosition().y;
return ref->GetPosition().x < comp->GetPosition().x;
}
void BOARD::GetSortedPadListByXthenYCoord( std::vector<D_PAD*>& aVector, int aNetCode )
{
if( aNetCode < 0 )
{
aVector.insert( aVector.end(), m_NetInfo.m_PadsFullList.begin(),
m_NetInfo.m_PadsFullList.end() );
}
else
{
const NETINFO_ITEM* net = m_NetInfo.GetNetItem( aNetCode );
if( net )
{
aVector.insert( aVector.end(), net->m_PadInNetList.begin(),
net->m_PadInNetList.end() );
}
}
sort( aVector.begin(), aVector.end(), sortPadsByXthenYCoord );
}
TRACK* BOARD::GetTrace( TRACK* aTrace, const wxPoint& aPosition, int aLayerMask )
{
for( TRACK* track = aTrace; track; track = track->Next() )
{
int layer = track->GetLayer();
if( track->GetState( BUSY | IS_DELETED ) )
continue;
if( m_designSettings.IsLayerVisible( layer ) == false )
continue;
if( track->Type() == PCB_VIA_T ) /* VIA encountered. */
{
if( track->HitTest( aPosition ) )
return track;
}
else
{
if( (GetLayerMask( layer ) & aLayerMask) == 0 )
continue; /* Segments on different layers. */
if( track->HitTest( aPosition ) )
return track;
}
}
return NULL;
}
TRACK* BOARD::MarkTrace( TRACK* aTrace,
int* aCount,
int* aTraceLength,
int* aDieLength,
bool aReorder )
{
int NbSegmBusy;
TRACK_PTRS trackList;
if( aCount )
*aCount = 0;
if( aTraceLength )
*aTraceLength = 0;
if( aTrace == NULL )
return NULL;
// Ensure the flag BUSY of all tracks of the board is cleared
// because we use it to mark segments of the track
for( TRACK* track = m_Track; track; track = track->Next() )
track->SetState( BUSY, OFF );
/* Set flags of the initial track segment */
aTrace->SetState( BUSY, ON );
int layerMask = aTrace->ReturnMaskLayer();
trackList.push_back( aTrace );
/* Examine the initial track segment : if it is really a segment, this is
* easy.
* If it is a via, one must search for connected segments.
* If <=2, this via connect 2 segments (or is connected to only one
* segment) and this via and these 2 segments are a part of a track.
* If > 2 only this via is flagged (the track has only this via)
*/
if( aTrace->Type() == PCB_VIA_T )
{
TRACK* Segm1, * Segm2 = NULL, * Segm3 = NULL;
Segm1 = ::GetTrace( m_Track, NULL, aTrace->m_Start, layerMask );
if( Segm1 )
{
Segm2 = ::GetTrace( Segm1->Next(), NULL, aTrace->m_Start, layerMask );
}
if( Segm2 )
{
Segm3 = ::GetTrace( Segm2->Next(), NULL, aTrace->m_Start, layerMask );
}
if( Segm3 ) // More than 2 segments are connected to this via. the track" is only this via
{
if( aCount )
*aCount = 1;
return aTrace;
}
if( Segm1 ) // search for others segments connected to the initial segment start point
{
layerMask = Segm1->ReturnMaskLayer();
chainMarkedSegments( aTrace->m_Start, layerMask, &trackList );
}
if( Segm2 ) // search for others segments connected to the initial segment end point
{
layerMask = Segm2->ReturnMaskLayer();
chainMarkedSegments( aTrace->m_Start, layerMask, &trackList );
}
}
else // mark the chain using both ends of the initial segment
{
chainMarkedSegments( aTrace->m_Start, layerMask, &trackList );
chainMarkedSegments( aTrace->m_End, layerMask, &trackList );
}
// Now examine selected vias and flag them if they are on the track
// If a via is connected to only one or 2 segments, it is flagged (is on the track)
// If a via is connected to more than 2 segments, it is a track end, and it
// is removed from the list
// go through the list backwards.
for( int i = trackList.size() - 1; i>=0; --i )
{
TRACK* via = trackList[i];
if( via->Type() != PCB_VIA_T )
continue;
if( via == aTrace )
continue;
via->SetState( BUSY, ON ); // Try to flag it. the flag will be cleared later if needed
layerMask = via->ReturnMaskLayer();
TRACK* track = ::GetTrace( m_Track, NULL, via->m_Start, layerMask );
// GetTrace does not consider tracks flagged BUSY.
// So if no connected track found, this via is on the current track
// only: keep it
if( track == NULL )
continue;
/* If a track is found, this via connects also others segments of an
* other track. This case happens when the vias ends the selected
* track but must we consider this via is on the selected track, or
* on an other track.
* (this is important when selecting a track for deletion: must this
* via be deleted or not?)
* We consider here this via on the track if others segment connected
* to this via remain connected when removing this via.
* We search for all others segment connected together:
* if there are on the same layer, the via is on the selected track
* if there are on different layers, the via is on an other track
*/
int layer = track->GetLayer();
while( ( track = ::GetTrace( track->Next(), NULL, via->m_Start, layerMask ) ) != NULL )
{
if( layer != track->GetLayer() )
{
// The via connects segments of an other track: it is removed
// from list because it is member of an other track
via->SetState( BUSY, OFF );
break;
}
}
}
/* Rearrange the track list in order to have flagged segments linked
* from firstTrack so the NbSegmBusy segments are consecutive segments
* in list, the first item in the full track list is firstTrack, and
* the NbSegmBusy-1 next items (NbSegmBusy when including firstTrack)
* are the flagged segments
*/
NbSegmBusy = 0;
TRACK* firstTrack;
for( firstTrack = m_Track; firstTrack; firstTrack = firstTrack->Next() )
{
// Search for the first flagged BUSY segments
if( firstTrack->GetState( BUSY ) )
{
NbSegmBusy = 1;
break;
}
}
if( firstTrack == NULL )
return NULL;
double full_len = 0;
double lenDie = 0;
if( aReorder )
{
DLIST<TRACK>* list = (DLIST<TRACK>*)firstTrack->GetList();
wxASSERT( list );
/* Rearrange the chain starting at firstTrack
* All others flagged items are moved from their position to the end
* of the flagged list
*/
TRACK* next;
for( TRACK* track = firstTrack->Next(); track; track = next )
{
next = track->Next();
if( track->GetState( BUSY ) ) // move it!
{
NbSegmBusy++;
track->UnLink();
list->Insert( track, firstTrack->Next() );
if( aTraceLength )
full_len += track->GetLength();
if( aDieLength ) // Add now length die.
{
// In fact only 2 pads (maximum) will be taken in account:
// that are on each end of the track, if any
if( track->GetState( BEGIN_ONPAD ) )
{
D_PAD * pad = (D_PAD *) track->start;
lenDie += (double) pad->GetDieLength();
}
if( track->GetState( END_ONPAD ) )
{
D_PAD * pad = (D_PAD *) track->end;
lenDie += (double) pad->GetDieLength();
}
}
}
}
}
else if( aTraceLength )
{
NbSegmBusy = 0;
for( TRACK* track = firstTrack; track; track = track->Next() )
{
if( track->GetState( BUSY ) )
{
NbSegmBusy++;
track->SetState( BUSY, OFF );
full_len += track->GetLength();
// Add now length die.
// In fact only 2 pads (maximum) will be taken in account:
// that are on each end of the track, if any
if( track->GetState( BEGIN_ONPAD ) )
{
D_PAD * pad = (D_PAD *) track->start;
lenDie += (double) pad->GetDieLength();
}
if( track->GetState( END_ONPAD ) )
{
D_PAD * pad = (D_PAD *) track->end;
lenDie += (double) pad->GetDieLength();
}
}
}
}
if( aTraceLength )
*aTraceLength = wxRound( full_len );
if( aDieLength )
*aDieLength = wxRound( lenDie );
if( aCount )
*aCount = NbSegmBusy;
return firstTrack;
}
MODULE* BOARD::GetFootprint( const wxPoint& aPosition, int aActiveLayer,
bool aVisibleOnly, bool aIgnoreLocked )
{
MODULE* pt_module;
MODULE* module = NULL;
MODULE* Altmodule = NULL;
int min_dim = 0x7FFFFFFF;
int alt_min_dim = 0x7FFFFFFF;
int layer;
for( pt_module = m_Modules; pt_module; pt_module = (MODULE*) pt_module->Next() )
{
// is the ref point within the module's bounds?
if( !pt_module->HitTest( aPosition ) )
continue;
// if caller wants to ignore locked modules, and this one is locked, skip it.
if( aIgnoreLocked && pt_module->IsLocked() )
continue;
/* Calculate priority: the priority is given to the layer of the
* module and the copper layer if the module layer is indelible,
* adhesive copper, a layer if cmp module layer is indelible,
* adhesive component.
*/
layer = pt_module->GetLayer();
if( layer==ADHESIVE_N_BACK || layer==SILKSCREEN_N_BACK )
layer = LAYER_N_BACK;
else if( layer==ADHESIVE_N_FRONT || layer==SILKSCREEN_N_FRONT )
layer = LAYER_N_FRONT;
/* Test of minimum size to choosing the best candidate. */
EDA_RECT bb = pt_module->GetFootPrintRect();
int offx = bb.GetX() + bb.GetWidth() / 2;
int offy = bb.GetY() + bb.GetHeight() / 2;
//off x & offy point to the middle of the box.
int dist = abs( aPosition.x - offx ) + abs( aPosition.y - offy );
//int dist = MIN(lx, ly); // to pick the smallest module (kinda
// screwy with same-sized modules -- this is bad!)
if( aActiveLayer == layer )
{
if( dist <= min_dim )
{
/* better footprint shown on the active layer */
module = pt_module;
min_dim = dist;
}
}
else if( aVisibleOnly && IsModuleLayerVisible( layer ) )
{
if( dist <= alt_min_dim )
{
/* better footprint shown on other layers */
Altmodule = pt_module;
alt_min_dim = dist;
}
}
}
if( module )
{
return module;
}
if( Altmodule )
{
return Altmodule;
}
return NULL;
}
BOARD_CONNECTED_ITEM* BOARD::GetLockPoint( const wxPoint& aPosition, int aLayerMask )
{
for( MODULE* module = m_Modules; module; module = module->Next() )
{
D_PAD* pad = module->GetPad( aPosition, aLayerMask );
if( pad )
return pad;
}
/* No pad has been located so check for a segment of the trace. */
TRACK* segment = ::GetTrace( m_Track, NULL, aPosition, aLayerMask );
if( segment == NULL )
segment = GetTrace( m_Track, aPosition, aLayerMask );
return segment;
}
TRACK* BOARD::CreateLockPoint( wxPoint& aPosition, TRACK* aSegment, PICKED_ITEMS_LIST* aList )
{
/* creates an intermediate point on aSegment and break it into two segments
* at aPosition.
* The new segment starts from aPosition and ends at the end point of
* aSegment. The original segment now ends at aPosition.
*/
if( aSegment->m_Start == aPosition || aSegment->m_End == aPosition )
return NULL;
/* A via is a good lock point */
if( aSegment->Type() == PCB_VIA_T )
{
aPosition = aSegment->m_Start;
return aSegment;
}
// Calculation coordinate of intermediate point relative to the start point of aSegment
wxPoint delta = aSegment->m_End - aSegment->m_Start;
// calculate coordinates of aPosition relative to aSegment->m_Start
wxPoint lockPoint = aPosition - aSegment->m_Start;
// lockPoint must be on aSegment:
// Ensure lockPoint.y/lockPoint.y = delta.y/delta.x
if( delta.x == 0 )
lockPoint.x = 0; /* horizontal segment*/
else
lockPoint.y = wxRound( ( (double)lockPoint.x * delta.y ) / delta.x );
/* Create the intermediate point (that is to say creation of a new
* segment, beginning at the intermediate point.
*/
lockPoint += aSegment->m_Start;
TRACK* newTrack = (TRACK*)aSegment->Clone();
// The new segment begins at the new point,
newTrack->m_Start = lockPoint;
newTrack->start = aSegment;
newTrack->SetState( BEGIN_ONPAD, OFF );
DLIST<TRACK>* list = (DLIST<TRACK>*)aSegment->GetList();
wxASSERT( list );
list->Insert( newTrack, aSegment->Next() );
if( aList )
{
// Prepare the undo command for the now track segment
ITEM_PICKER picker( newTrack, UR_NEW );
aList->PushItem( picker );
// Prepare the undo command for the old track segment
// before modifications
picker.SetItem( aSegment );
picker.SetStatus( UR_CHANGED );
picker.SetLink( aSegment->Clone() );
aList->PushItem( picker );
}
// Old track segment now ends at new point.
aSegment->m_End = lockPoint;
aSegment->end = newTrack;
aSegment->SetState( END_ONPAD, OFF );
D_PAD * pad = GetPad( newTrack, START );
if ( pad )
{
newTrack->start = pad;
newTrack->SetState( BEGIN_ONPAD, ON );
aSegment->end = pad;
aSegment->SetState( END_ONPAD, ON );
}
aPosition = lockPoint;
return newTrack;
}
#if defined(DEBUG)
void BOARD::Show( int nestLevel, std::ostream& os ) const
{
BOARD_ITEM* p;
// for now, make it look like XML:
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << ">\n";
// specialization of the output:
NestedSpace( nestLevel + 1, os ) << "<modules>\n";
p = m_Modules;
for( ; p; p = p->Next() )
p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</modules>\n";
NestedSpace( nestLevel + 1, os ) << "<pdrawings>\n";
p = m_Drawings;
for( ; p; p = p->Next() )
p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</pdrawings>\n";
NestedSpace( nestLevel + 1, os ) << "<tracks>\n";
p = m_Track;
for( ; p; p = p->Next() )
p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</tracks>\n";
NestedSpace( nestLevel + 1, os ) << "<zones>\n";
p = m_Zone;
for( ; p; p = p->Next() )
p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</zones>\n";
NestedSpace( nestLevel+1, os ) << "<zone_containers>\n";
for( ZONE_CONTAINERS::const_iterator it = m_ZoneDescriptorList.begin();
it != m_ZoneDescriptorList.end(); ++it )
(*it)->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</zone_containers>\n";
p = (BOARD_ITEM*) m_Son;
for( ; p; p = p->Next() )
{
p->Show( nestLevel + 1, os );
}
NestedSpace( nestLevel, os ) << "</" << GetClass().Lower().mb_str() << ">\n";
}
#endif