kicad/pcbnew/exporters/export_vrml.cpp

1448 lines
44 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2009-2013 Lorenzo Mercantonio
* Copyright (C) 2014 Cirilo Bernado
* Copyright (C) 2013 Jean-Pierre Charras jp.charras at wanadoo.fr
* Copyright (C) 2004-2015 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <fctsys.h>
#include <kicad_string.h>
#include <wxPcbStruct.h>
#include <drawtxt.h>
#include <trigo.h>
#include <pgm_base.h>
#include <3d_struct.h>
#include <macros.h>
#include <exception>
#include <fstream>
#include <iomanip>
#include <pcbnew.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <class_edge_mod.h>
#include <class_pcb_text.h>
#include <convert_from_iu.h>
#include "../3d-viewer/modelparsers.h"
#include <vector>
#include <cmath>
#include <vrml_layer.h>
// minimum width (mm) of a VRML line
#define MIN_VRML_LINEWIDTH 0.12
// offset for art layers, mm (silk, paste, etc)
#define ART_OFFSET 0.025
struct VRML_COLOR
{
float diffuse_red;
float diffuse_grn;
float diffuse_blu;
float spec_red;
float spec_grn;
float spec_blu;
float emit_red;
float emit_grn;
float emit_blu;
float ambient;
float transp;
float shiny;
VRML_COLOR()
{
// default green
diffuse_red = 0.13;
diffuse_grn = 0.81;
diffuse_blu = 0.22;
spec_red = 0.13;
spec_grn = 0.81;
spec_blu = 0.22;
emit_red = 0.0;
emit_grn = 0.0;
emit_blu = 0.0;
ambient = 1.0;
transp = 0;
shiny = 0.2;
}
VRML_COLOR( float dr, float dg, float db,
float sr, float sg, float sb,
float er, float eg, float eb,
float am, float tr, float sh )
{
diffuse_red = dr;
diffuse_grn = dg;
diffuse_blu = db;
spec_red = sr;
spec_grn = sg;
spec_blu = sb;
emit_red = er;
emit_grn = eg;
emit_blu = eb;
ambient = am;
transp = tr;
shiny = sh;
}
};
enum VRML_COLOR_INDEX
{
VRML_COLOR_PCB = 0,
VRML_COLOR_TRACK,
VRML_COLOR_SILK,
VRML_COLOR_TIN,
VRML_COLOR_LAST
};
class MODEL_VRML
{
private:
double layer_z[LAYER_ID_COUNT];
VRML_COLOR colors[VRML_COLOR_LAST];
int iMaxSeg; // max. sides to a small circle
double arcMinLen, arcMaxLen; // min and max lengths of an arc chord
public:
VRML_LAYER holes;
VRML_LAYER board;
VRML_LAYER top_copper;
VRML_LAYER bot_copper;
VRML_LAYER top_silk;
VRML_LAYER bot_silk;
VRML_LAYER top_tin;
VRML_LAYER bot_tin;
VRML_LAYER plated_holes;
bool plainPCB;
double scale; // board internal units to output scaling
double minLineWidth; // minimum width of a VRML line segment
int precision; // precision of output units
double tx; // global translation along X
double ty; // global translation along Y
double board_thickness; // depth of the PCB
LAYER_NUM s_text_layer;
int s_text_width;
MODEL_VRML()
{
for( unsigned i = 0; i < DIM( layer_z ); ++i )
layer_z[i] = 0;
holes.GetArcParams( iMaxSeg, arcMinLen, arcMaxLen );
// this default only makes sense if the output is in mm
board_thickness = 1.6;
// pcb green
colors[ VRML_COLOR_PCB ] = VRML_COLOR( .07, .3, .12, .07, .3, .12,
0, 0, 0, 1, 0, 0.2 );
// track green
colors[ VRML_COLOR_TRACK ] = VRML_COLOR( .08, .5, .1, .08, .5, .1,
0, 0, 0, 1, 0, 0.2 );
// silkscreen white
colors[ VRML_COLOR_SILK ] = VRML_COLOR( .9, .9, .9, .9, .9, .9,
0, 0, 0, 1, 0, 0.2 );
// pad silver
colors[ VRML_COLOR_TIN ] = VRML_COLOR( .749, .756, .761, .749, .756, .761,
0, 0, 0, 0.8, 0, 0.8 );
plainPCB = false;
SetScale( 1.0 );
SetOffset( 0.0, 0.0 );
s_text_layer = F_Cu;
s_text_width = 1;
}
VRML_COLOR& GetColor( VRML_COLOR_INDEX aIndex )
{
return colors[aIndex];
}
void SetOffset( double aXoff, double aYoff )
{
tx = aXoff;
ty = -aYoff;
holes.SetVertexOffsets( aXoff, aYoff );
board.SetVertexOffsets( aXoff, aYoff );
top_copper.SetVertexOffsets( aXoff, aYoff );
bot_copper.SetVertexOffsets( aXoff, aYoff );
top_silk.SetVertexOffsets( aXoff, aYoff );
bot_silk.SetVertexOffsets( aXoff, aYoff );
top_tin.SetVertexOffsets( aXoff, aYoff );
bot_tin.SetVertexOffsets( aXoff, aYoff );
plated_holes.SetVertexOffsets( aXoff, aYoff );
}
double GetLayerZ( LAYER_NUM aLayer )
{
if( unsigned( aLayer ) >= DIM( layer_z ) )
return 0;
return layer_z[ aLayer ];
}
void SetLayerZ( LAYER_NUM aLayer, double aValue )
{
layer_z[aLayer] = aValue;
}
// set the scaling of the VRML world
bool SetScale( double aWorldScale )
{
if( aWorldScale < 0.001 || aWorldScale > 10.0 )
throw( std::runtime_error( "WorldScale out of range (valid range is 0.001 to 10.0)" ) );
scale = aWorldScale * MM_PER_IU;
minLineWidth = aWorldScale * MIN_VRML_LINEWIDTH;
// set the precision of the VRML coordinates
if( aWorldScale < 0.01 )
precision = 8;
else if( aWorldScale < 0.1 )
precision = 7;
else if( aWorldScale< 1.0 )
precision = 6;
else if( aWorldScale < 10.0 )
precision = 5;
else
precision = 4;
double smin = arcMinLen * aWorldScale;
double smax = arcMaxLen * aWorldScale;
holes.SetArcParams( iMaxSeg, smin, smax );
board.SetArcParams( iMaxSeg, smin, smax );
top_copper.SetArcParams( iMaxSeg, smin, smax);
bot_copper.SetArcParams( iMaxSeg, smin, smax);
top_silk.SetArcParams( iMaxSeg, smin, smax );
bot_silk.SetArcParams( iMaxSeg, smin, smax );
top_tin.SetArcParams( iMaxSeg, smin, smax );
bot_tin.SetArcParams( iMaxSeg, smin, smax );
plated_holes.SetArcParams( iMaxSeg, smin, smax );
return true;
}
};
// static var. for dealing with text
static MODEL_VRML* model_vrml;
// select the VRML layer object to draw on; return true if
// a layer has been selected.
static bool GetLayer( MODEL_VRML& aModel, LAYER_NUM layer, VRML_LAYER** vlayer )
{
switch( layer )
{
case B_Cu:
*vlayer = &aModel.bot_copper;
break;
case F_Cu:
*vlayer = &aModel.top_copper;
break;
case B_SilkS:
*vlayer = &aModel.bot_silk;
break;
case F_SilkS:
*vlayer = &aModel.top_silk;
break;
default:
return false;
}
return true;
}
static void write_triangle_bag( std::ofstream& output_file, VRML_COLOR& color,
VRML_LAYER* layer, bool plane, bool top,
double top_z, double bottom_z, int aPrecision )
{
/* A lot of nodes are not required, but blender sometimes chokes
* without them */
static const char* shape_boiler[] =
{
"Transform {\n",
" children [\n",
" Group {\n",
" children [\n",
" Shape {\n",
" appearance Appearance {\n",
" material Material {\n",
0, // Material marker
" }\n",
" }\n",
" geometry IndexedFaceSet {\n",
" solid TRUE\n",
" coord Coordinate {\n",
" point [\n",
0, // Coordinates marker
" ]\n",
" }\n",
" coordIndex [\n",
0, // Index marker
" ]\n",
" }\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}\n",
0 // End marker
};
int marker_found = 0, lineno = 0;
while( marker_found < 4 )
{
if( shape_boiler[lineno] )
output_file << shape_boiler[lineno];
else
{
marker_found++;
switch( marker_found )
{
case 1: // Material marker
output_file << " diffuseColor " << std::setprecision(3);
output_file << color.diffuse_red << " ";
output_file << color.diffuse_grn << " ";
output_file << color.diffuse_blu << "\n";
output_file << " specularColor ";
output_file << color.spec_red << " ";
output_file << color.spec_grn << " ";
output_file << color.spec_blu << "\n";
output_file << " emissiveColor ";
output_file << color.emit_red << " ";
output_file << color.emit_grn << " ";
output_file << color.emit_blu << "\n";
output_file << " ambientIntensity " << color.ambient << "\n";
output_file << " transparency " << color.transp << "\n";
output_file << " shininess " << color.shiny << "\n";
break;
case 2:
if( plane )
layer->WriteVertices( top_z, output_file, aPrecision );
else
layer->Write3DVertices( top_z, bottom_z, output_file, aPrecision );
output_file << "\n";
break;
case 3:
if( plane )
layer->WriteIndices( top, output_file );
else
layer->Write3DIndices( output_file );
output_file << "\n";
break;
default:
break;
}
}
lineno++;
}
}
static void write_layers( MODEL_VRML& aModel, std::ofstream& output_file, BOARD* aPcb )
{
// VRML_LAYER board;
aModel.board.Tesselate( &aModel.holes );
double brdz = aModel.board_thickness / 2.0
- ( Millimeter2iu( ART_OFFSET / 2.0 ) ) * aModel.scale;
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_PCB ),
&aModel.board, false, false, brdz, -brdz, aModel.precision );
if( aModel.plainPCB )
return;
// VRML_LAYER top_copper;
aModel.top_copper.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TRACK ),
&aModel.top_copper, true, true,
aModel.GetLayerZ( F_Cu ), 0, aModel.precision );
// VRML_LAYER top_tin;
aModel.top_tin.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.top_tin, true, true,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * aModel.scale,
0, aModel.precision );
// VRML_LAYER bot_copper;
aModel.bot_copper.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TRACK ),
&aModel.bot_copper, true, false,
aModel.GetLayerZ( B_Cu ), 0, aModel.precision );
// VRML_LAYER bot_tin;
aModel.bot_tin.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.bot_tin, true, false,
aModel.GetLayerZ( B_Cu )
- Millimeter2iu( ART_OFFSET / 2.0 ) * aModel.scale,
0, aModel.precision );
// VRML_LAYER PTH;
aModel.plated_holes.Tesselate( NULL, true );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.plated_holes, false, false,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * aModel.scale,
aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * aModel.scale,
aModel.precision );
// VRML_LAYER top_silk;
aModel.top_silk.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_SILK ), &aModel.top_silk,
true, true, aModel.GetLayerZ( F_SilkS ), 0, aModel.precision );
// VRML_LAYER bot_silk;
aModel.bot_silk.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_SILK ), &aModel.bot_silk,
true, false, aModel.GetLayerZ( B_SilkS ), 0, aModel.precision );
}
static void compute_layer_Zs( MODEL_VRML& aModel, BOARD* pcb )
{
int copper_layers = pcb->GetCopperLayerCount();
// We call it 'layer' thickness, but it's the whole board thickness!
aModel.board_thickness = pcb->GetDesignSettings().GetBoardThickness() * aModel.scale;
double half_thickness = aModel.board_thickness / 2;
// Compute each layer's Z value, more or less like the 3d view
for( LSEQ seq = LSET::AllCuMask().Seq(); seq; ++seq )
{
LAYER_ID i = *seq;
if( i < copper_layers )
aModel.SetLayerZ( i, half_thickness - aModel.board_thickness * i / (copper_layers - 1) );
else
aModel.SetLayerZ( i, - half_thickness ); // bottom layer
}
/* To avoid rounding interference, we apply an epsilon to each
* successive layer */
double epsilon_z = Millimeter2iu( ART_OFFSET ) * aModel.scale;
aModel.SetLayerZ( B_Paste, -half_thickness - epsilon_z * 4 );
aModel.SetLayerZ( B_Adhes, -half_thickness - epsilon_z * 3 );
aModel.SetLayerZ( B_SilkS, -half_thickness - epsilon_z * 2 );
aModel.SetLayerZ( B_Mask, -half_thickness - epsilon_z );
aModel.SetLayerZ( F_Mask, half_thickness + epsilon_z );
aModel.SetLayerZ( F_SilkS, half_thickness + epsilon_z * 2 );
aModel.SetLayerZ( F_Adhes, half_thickness + epsilon_z * 3 );
aModel.SetLayerZ( F_Paste, half_thickness + epsilon_z * 4 );
aModel.SetLayerZ( Dwgs_User, half_thickness + epsilon_z * 5 );
aModel.SetLayerZ( Cmts_User, half_thickness + epsilon_z * 6 );
aModel.SetLayerZ( Eco1_User, half_thickness + epsilon_z * 7 );
aModel.SetLayerZ( Eco2_User, half_thickness + epsilon_z * 8 );
aModel.SetLayerZ( Edge_Cuts, 0 );
}
static void export_vrml_line( MODEL_VRML& aModel, LAYER_NUM layer,
double startx, double starty,
double endx, double endy, double width )
{
VRML_LAYER* vlayer;
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( width < aModel.minLineWidth)
width = aModel.minLineWidth;
starty = -starty;
endy = -endy;
double angle = atan2( endy - starty, endx - startx ) * 180.0 / M_PI;
double length = Distance( startx, starty, endx, endy ) + width;
double cx = ( startx + endx ) / 2.0;
double cy = ( starty + endy ) / 2.0;
if( !vlayer->AddSlot( cx, cy, length, width, angle, false ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
static void export_vrml_circle( MODEL_VRML& aModel, LAYER_NUM layer,
double startx, double starty,
double endx, double endy, double width )
{
VRML_LAYER* vlayer;
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( width < aModel.minLineWidth )
width = aModel.minLineWidth;
starty = -starty;
endy = -endy;
double hole, radius;
radius = Distance( startx, starty, endx, endy ) + ( width / 2);
hole = radius - width;
if( !vlayer->AddCircle( startx, starty, radius, false ) )
throw( std::runtime_error( vlayer->GetError() ) );
if( hole > 0.0001 )
{
if( !vlayer->AddCircle( startx, starty, hole, true ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
}
static void export_vrml_arc( MODEL_VRML& aModel, LAYER_NUM layer,
double centerx, double centery,
double arc_startx, double arc_starty,
double width, double arc_angle )
{
VRML_LAYER* vlayer;
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( width < aModel.minLineWidth )
width = aModel.minLineWidth;
centery = -centery;
arc_starty = -arc_starty;
if( !vlayer->AddArc( centerx, centery, arc_startx, arc_starty, width, arc_angle, false ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
static void export_vrml_drawsegment( MODEL_VRML& aModel, DRAWSEGMENT* drawseg )
{
LAYER_NUM layer = drawseg->GetLayer();
double w = drawseg->GetWidth() * aModel.scale;
double x = drawseg->GetStart().x * aModel.scale;
double y = drawseg->GetStart().y * aModel.scale;
double xf = drawseg->GetEnd().x * aModel.scale;
double yf = drawseg->GetEnd().y * aModel.scale;
// Items on the edge layer are handled elsewhere; just return
if( layer == Edge_Cuts )
return;
switch( drawseg->GetShape() )
{
case S_ARC:
export_vrml_arc( aModel, layer,
(double) drawseg->GetCenter().x,
(double) drawseg->GetCenter().y,
(double) drawseg->GetArcStart().x,
(double) drawseg->GetArcStart().y,
w, drawseg->GetAngle() / 10 );
break;
case S_CIRCLE:
export_vrml_circle( aModel, layer, x, y, xf, yf, w );
break;
default:
export_vrml_line( aModel, layer, x, y, xf, yf, w );
break;
}
}
/* C++ doesn't have closures and neither continuation forms... this is
* for coupling the vrml_text_callback with the common parameters */
static void vrml_text_callback( int x0, int y0, int xf, int yf )
{
LAYER_NUM s_text_layer = model_vrml->s_text_layer;
int s_text_width = model_vrml->s_text_width;
double scale = model_vrml->scale;
export_vrml_line( *model_vrml, s_text_layer,
x0 * scale, y0 * scale,
xf * scale, yf * scale,
s_text_width * scale );
}
static void export_vrml_pcbtext( MODEL_VRML& aModel, TEXTE_PCB* text )
{
model_vrml->s_text_layer = text->GetLayer();
model_vrml->s_text_width = text->GetThickness();
wxSize size = text->GetSize();
if( text->IsMirrored() )
NEGATE( size.x );
EDA_COLOR_T color = BLACK; // not actually used, but needed by DrawGraphicText
if( text->IsMultilineAllowed() )
{
wxArrayString strings_list;
wxStringSplit( text->GetShownText(), strings_list, '\n' );
std::vector<wxPoint> positions;
positions.reserve( strings_list.Count() );
text->GetPositionsOfLinesOfMultilineText( positions, strings_list.Count() );
for( unsigned ii = 0; ii < strings_list.Count(); ii++ )
{
wxString& txt = strings_list.Item( ii );
DrawGraphicText( NULL, NULL, positions[ii], color,
txt, text->GetOrientation(), size,
text->GetHorizJustify(), text->GetVertJustify(),
text->GetThickness(), text->IsItalic(),
true,
vrml_text_callback );
}
}
else
{
DrawGraphicText( NULL, NULL, text->GetTextPosition(), color,
text->GetShownText(), text->GetOrientation(), size,
text->GetHorizJustify(), text->GetVertJustify(),
text->GetThickness(), text->IsItalic(),
true,
vrml_text_callback );
}
}
static void export_vrml_drawings( MODEL_VRML& aModel, BOARD* pcb )
{
// draw graphic items
for( EDA_ITEM* drawing = pcb->m_Drawings; drawing != 0; drawing = drawing->Next() )
{
LAYER_ID layer = ( (DRAWSEGMENT*) drawing )->GetLayer();
if( layer != F_Cu && layer != B_Cu && layer != B_SilkS && layer != F_SilkS )
continue;
switch( drawing->Type() )
{
case PCB_LINE_T:
export_vrml_drawsegment( aModel, (DRAWSEGMENT*) drawing );
break;
case PCB_TEXT_T:
export_vrml_pcbtext( aModel, (TEXTE_PCB*) drawing );
break;
default:
break;
}
}
}
// board edges and cutouts
static void export_vrml_board( MODEL_VRML& aModel, BOARD* pcb )
{
CPOLYGONS_LIST bufferPcbOutlines; // stores the board main outlines
CPOLYGONS_LIST allLayerHoles; // Contains through holes, calculated only once
allLayerHoles.reserve( 20000 );
// Build a polygon from edge cut items
wxString msg;
if( !pcb->GetBoardPolygonOutlines( bufferPcbOutlines, allLayerHoles, &msg ) )
{
msg << wxT( "\n\n" ) <<
_( "Unable to calculate the board outlines;\n"
"fall back to using the board boundary box." );
wxMessageBox( msg );
}
double scale = aModel.scale;
int i = 0;
int seg;
// deal with the solid outlines
int nvert = bufferPcbOutlines.GetCornersCount();
while( i < nvert )
{
seg = aModel.board.NewContour();
if( seg < 0 )
{
msg << wxT( "\n\n" ) <<
_( "VRML Export Failed:\nCould not add outline to contours." );
wxMessageBox( msg );
return;
}
while( i < nvert )
{
if( bufferPcbOutlines[i].end_contour )
break;
aModel.board.AddVertex( seg, bufferPcbOutlines[i].x * scale,
-(bufferPcbOutlines[i].y * scale ) );
++i;
}
aModel.board.EnsureWinding( seg, false );
++i;
}
// deal with the holes
nvert = allLayerHoles.GetCornersCount();
i = 0;
while( i < nvert )
{
seg = aModel.holes.NewContour();
if( seg < 0 )
{
msg << wxT( "\n\n" ) <<
_( "VRML Export Failed:\nCould not add holes to contours." );
wxMessageBox( msg );
return;
}
while( i < nvert )
{
if( allLayerHoles[i].end_contour )
break;
aModel.holes.AddVertex( seg, allLayerHoles[i].x * scale,
-( allLayerHoles[i].y * scale ) );
++i;
}
aModel.holes.EnsureWinding( seg, true );
++i;
}
}
static void export_round_padstack( MODEL_VRML& aModel, BOARD* pcb,
double x, double y, double r,
LAYER_NUM bottom_layer, LAYER_NUM top_layer,
double hole )
{
LAYER_NUM layer = top_layer;
bool thru = true;
// if not a thru hole do not put a hole in the board
if( top_layer != F_Cu || bottom_layer != B_Cu )
thru = false;
if( thru && hole > 0 )
aModel.holes.AddCircle( x, -y, hole, true );
if( aModel.plainPCB )
return;
while( 1 )
{
if( layer == B_Cu )
{
aModel.bot_copper.AddCircle( x, -y, r );
if( hole > 0 && !thru )
aModel.bot_copper.AddCircle( x, -y, hole, true );
}
else if( layer == F_Cu )
{
aModel.top_copper.AddCircle( x, -y, r );
if( hole > 0 && !thru )
aModel.top_copper.AddCircle( x, -y, hole, true );
}
if( layer == bottom_layer )
break;
layer = bottom_layer;
}
}
static void export_vrml_via( MODEL_VRML& aModel, BOARD* pcb, const VIA* via )
{
double x, y, r, hole;
LAYER_ID top_layer, bottom_layer;
hole = via->GetDrillValue() * aModel.scale / 2.0;
r = via->GetWidth() * aModel.scale / 2.0;
x = via->GetStart().x * aModel.scale;
y = via->GetStart().y * aModel.scale;
via->LayerPair( &top_layer, &bottom_layer );
// do not render a buried via
if( top_layer != F_Cu && bottom_layer != B_Cu )
return;
// Export the via padstack
export_round_padstack( aModel, pcb, x, y, r, bottom_layer, top_layer, hole );
}
static void export_vrml_tracks( MODEL_VRML& aModel, BOARD* pcb )
{
for( TRACK* track = pcb->m_Track; track; track = track->Next() )
{
if( track->Type() == PCB_VIA_T )
{
export_vrml_via( aModel, pcb, (const VIA*) track );
}
else if( ( track->GetLayer() == B_Cu || track->GetLayer() == F_Cu )
&& !aModel.plainPCB )
export_vrml_line( aModel, track->GetLayer(),
track->GetStart().x * aModel.scale,
track->GetStart().y * aModel.scale,
track->GetEnd().x * aModel.scale,
track->GetEnd().y * aModel.scale,
track->GetWidth() * aModel.scale );
}
}
static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb )
{
double scale = aModel.scale;
double x, y;
for( int ii = 0; ii < aPcb->GetAreaCount(); ii++ )
{
ZONE_CONTAINER* zone = aPcb->GetArea( ii );
VRML_LAYER* vl;
if( !GetLayer( aModel, zone->GetLayer(), &vl ) )
continue;
if( !zone->IsFilled() )
{
zone->SetFillMode( 0 ); // use filled polygons
zone->BuildFilledSolidAreasPolygons( aPcb );
}
const CPOLYGONS_LIST& poly = zone->GetFilledPolysList();
int nvert = poly.GetCornersCount();
int i = 0;
while( i < nvert )
{
int seg = vl->NewContour();
if( seg < 0 )
break;
while( i < nvert )
{
x = poly.GetX(i) * scale;
y = -(poly.GetY(i) * scale);
if( poly.IsEndContour(i) )
break;
if( !vl->AddVertex( seg, x, y ) )
throw( std::runtime_error( vl->GetError() ) );
++i;
}
vl->EnsureWinding( seg, false );
++i;
}
}
}
static void export_vrml_text_module( TEXTE_MODULE* module )
{
if( module->IsVisible() )
{
wxSize size = module->GetSize();
if( module->IsMirrored() )
NEGATE( size.x ); // Text is mirrored
model_vrml->s_text_layer = module->GetLayer();
model_vrml->s_text_width = module->GetThickness();
DrawGraphicText( NULL, NULL, module->GetTextPosition(), BLACK,
module->GetShownText(), module->GetDrawRotation(), size,
module->GetHorizJustify(), module->GetVertJustify(),
module->GetThickness(), module->IsItalic(),
true,
vrml_text_callback );
}
}
static void export_vrml_edge_module( MODEL_VRML& aModel, EDGE_MODULE* aOutline,
double aOrientation )
{
LAYER_NUM layer = aOutline->GetLayer();
double x = aOutline->GetStart().x * aModel.scale;
double y = aOutline->GetStart().y * aModel.scale;
double xf = aOutline->GetEnd().x * aModel.scale;
double yf = aOutline->GetEnd().y * aModel.scale;
double w = aOutline->GetWidth() * aModel.scale;
switch( aOutline->GetShape() )
{
case S_SEGMENT:
export_vrml_line( aModel, layer, x, y, xf, yf, w );
break;
case S_ARC:
export_vrml_arc( aModel, layer, x, y, xf, yf, w, aOutline->GetAngle() / 10 );
break;
case S_CIRCLE:
export_vrml_circle( aModel, layer, x, y, xf, yf, w );
break;
case S_POLYGON:
{
VRML_LAYER* vl;
if( !GetLayer( aModel, layer, &vl ) )
break;
int nvert = aOutline->GetPolyPoints().size() - 1;
int i = 0;
if( nvert < 3 ) break;
int seg = vl->NewContour();
if( seg < 0 )
break;
while( i < nvert )
{
CPolyPt corner( aOutline->GetPolyPoints()[i] );
RotatePoint( &corner.x, &corner.y, aOrientation );
corner.x += aOutline->GetPosition().x;
corner.y += aOutline->GetPosition().y;
x = corner.x * aModel.scale;
y = - ( corner.y * aModel.scale );
if( !vl->AddVertex( seg, x, y ) )
throw( std::runtime_error( vl->GetError() ) );
++i;
}
vl->EnsureWinding( seg, false );
}
break;
default:
break;
}
}
static void export_vrml_padshape( MODEL_VRML& aModel, VRML_LAYER* aTinLayer, D_PAD* aPad )
{
// The (maybe offset) pad position
wxPoint pad_pos = aPad->ShapePos();
double pad_x = pad_pos.x * aModel.scale;
double pad_y = pad_pos.y * aModel.scale;
wxSize pad_delta = aPad->GetDelta();
double pad_dx = pad_delta.x * aModel.scale / 2.0;
double pad_dy = pad_delta.y * aModel.scale / 2.0;
double pad_w = aPad->GetSize().x * aModel.scale / 2.0;
double pad_h = aPad->GetSize().y * aModel.scale / 2.0;
switch( aPad->GetShape() )
{
case PAD_CIRCLE:
if( !aTinLayer->AddCircle( pad_x, -pad_y, pad_w, false ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
case PAD_OVAL:
if( !aTinLayer->AddSlot( pad_x, -pad_y, pad_w * 2.0, pad_h * 2.0,
aPad->GetOrientation()/10.0, false ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
case PAD_RECT:
// Just to be sure :D
pad_dx = 0;
pad_dy = 0;
case PAD_TRAPEZOID:
{
double coord[8] =
{
-pad_w + pad_dy, -pad_h - pad_dx,
-pad_w - pad_dy, pad_h + pad_dx,
+pad_w - pad_dy, -pad_h + pad_dx,
+pad_w + pad_dy, pad_h - pad_dx
};
for( int i = 0; i < 4; i++ )
{
RotatePoint( &coord[i * 2], &coord[i * 2 + 1], aPad->GetOrientation() );
coord[i * 2] += pad_x;
coord[i * 2 + 1] += pad_y;
}
int lines;
lines = aTinLayer->NewContour();
if( lines < 0 )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[0], -coord[1] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[4], -coord[5] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[6], -coord[7] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[2], -coord[3] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->EnsureWinding( lines, false ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
}
default:
break;
}
}
static void export_vrml_pad( MODEL_VRML& aModel, BOARD* pcb, D_PAD* aPad )
{
double hole_drill_w = (double) aPad->GetDrillSize().x * aModel.scale / 2.0;
double hole_drill_h = (double) aPad->GetDrillSize().y * aModel.scale / 2.0;
double hole_drill = std::min( hole_drill_w, hole_drill_h );
double hole_x = aPad->GetPosition().x * aModel.scale;
double hole_y = aPad->GetPosition().y * aModel.scale;
// Export the hole on the edge layer
if( hole_drill > 0 )
{
bool pth = false;
if( ( aPad->GetAttribute() != PAD_HOLE_NOT_PLATED )
&& !aModel.plainPCB )
pth = true;
if( aPad->GetDrillShape() == PAD_DRILL_OBLONG )
{
// Oblong hole (slot)
aModel.holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0, hole_drill_h * 2.0,
aPad->GetOrientation()/10.0, true, pth );
if( pth )
aModel.plated_holes.AddSlot( hole_x, -hole_y,
hole_drill_w * 2.0, hole_drill_h * 2.0,
aPad->GetOrientation()/10.0, true, false );
}
else
{
// Drill a round hole
aModel.holes.AddCircle( hole_x, -hole_y, hole_drill, true, pth );
if( pth )
aModel.plated_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false );
}
}
if( aModel.plainPCB )
return;
// The pad proper, on the selected layers
LSET layer_mask = aPad->GetLayerSet();
if( layer_mask[B_Cu] )
{
export_vrml_padshape( aModel, &aModel.bot_tin, aPad );
}
if( layer_mask[F_Cu] )
{
export_vrml_padshape( aModel, &aModel.top_tin, aPad );
}
}
// From axis/rot to quaternion
static void build_quat( double x, double y, double z, double a, double q[4] )
{
double sina = sin( a / 2 );
q[0] = x * sina;
q[1] = y * sina;
q[2] = z * sina;
q[3] = cos( a / 2 );
}
// From quaternion to axis/rot
static void from_quat( double q[4], double rot[4] )
{
rot[3] = acos( q[3] ) * 2;
for( int i = 0; i < 3; i++ )
{
rot[i] = q[i] / sin( rot[3] / 2 );
}
}
// Quaternion composition
static void compose_quat( double q1[4], double q2[4], double qr[4] )
{
double tmp[4];
tmp[0] = q2[3] * q1[0] + q2[0] * q1[3] + q2[1] * q1[2] - q2[2] * q1[1];
tmp[1] = q2[3] * q1[1] + q2[1] * q1[3] + q2[2] * q1[0] - q2[0] * q1[2];
tmp[2] = q2[3] * q1[2] + q2[2] * q1[3] + q2[0] * q1[1] - q2[1] * q1[0];
tmp[3] = q2[3] * q1[3] - q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2];
qr[0] = tmp[0];
qr[1] = tmp[1];
qr[2] = tmp[2];
qr[3] = tmp[3];
}
static void export_vrml_module( MODEL_VRML& aModel, BOARD* aPcb, MODULE* aModule,
std::ofstream& aOutputFile, double aVRMLModelsToBiu,
bool aExport3DFiles, bool aUseRelativePaths,
const wxString& a3D_Subdir )
{
if( !aModel.plainPCB )
{
// Reference and value
if( aModule->Reference().IsVisible() )
export_vrml_text_module( &aModule->Reference() );
if( aModule->Value().IsVisible() )
export_vrml_text_module( &aModule->Value() );
// Export module edges
for( EDA_ITEM* item = aModule->GraphicalItems(); item; item = item->Next() )
{
switch( item->Type() )
{
case PCB_MODULE_TEXT_T:
export_vrml_text_module( static_cast<TEXTE_MODULE*>( item ) );
break;
case PCB_MODULE_EDGE_T:
export_vrml_edge_module( aModel, static_cast<EDGE_MODULE*>( item ),
aModule->GetOrientation() );
break;
default:
break;
}
}
}
// Export pads
for( D_PAD* pad = aModule->Pads(); pad; pad = pad->Next() )
export_vrml_pad( aModel, aPcb, pad );
bool isFlipped = aModule->GetLayer() == B_Cu;
// Export the object VRML model(s)
for( S3D_MASTER* vrmlm = aModule->Models(); vrmlm; vrmlm = vrmlm->Next() )
{
if( !vrmlm->Is3DType( S3D_MASTER::FILE3D_VRML ) )
continue;
wxFileName modelFileName = vrmlm->GetShape3DFullFilename();
wxFileName destFileName( a3D_Subdir, modelFileName.GetName(), modelFileName.GetExt() );
// Only copy VRML files.
if( modelFileName.FileExists() && modelFileName.GetExt() == wxT( "wrl" ) )
{
if( aExport3DFiles )
{
wxDateTime srcModTime = modelFileName.GetModificationTime();
wxDateTime destModTime = srcModTime;
destModTime.SetToCurrent();
if( destFileName.FileExists() )
destModTime = destFileName.GetModificationTime();
// Only copy the file if it doesn't exist or has been modified. This eliminates
// the redundant file copies.
if( srcModTime != destModTime )
{
wxLogDebug( wxT( "Copying 3D model %s to %s." ),
GetChars( modelFileName.GetFullPath() ),
GetChars( destFileName.GetFullPath() ) );
if( !wxCopyFile( modelFileName.GetFullPath(), destFileName.GetFullPath() ) )
continue;
}
}
/* Calculate 3D shape rotation:
* this is the rotation parameters, with an additional 180 deg rotation
* for footprints that are flipped
* When flipped, axis rotation is the horizontal axis (X axis)
*/
double rotx = -vrmlm->m_MatRotation.x;
double roty = -vrmlm->m_MatRotation.y;
double rotz = -vrmlm->m_MatRotation.z;
if( isFlipped )
{
rotx += 180.0;
NEGATE( roty );
NEGATE( rotz );
}
// Do some quaternion munching
double q1[4], q2[4], rot[4];
build_quat( 1, 0, 0, DEG2RAD( rotx ), q1 );
build_quat( 0, 1, 0, DEG2RAD( roty ), q2 );
compose_quat( q1, q2, q1 );
build_quat( 0, 0, 1, DEG2RAD( rotz ), q2 );
compose_quat( q1, q2, q1 );
// Note here aModule->GetOrientation() is in 0.1 degrees,
// so module rotation has to be converted to radians
build_quat( 0, 0, 1, DECIDEG2RAD( aModule->GetOrientation() ), q2 );
compose_quat( q1, q2, q1 );
from_quat( q1, rot );
aOutputFile << "Transform {\n";
// A null rotation would fail the acos!
if( rot[3] != 0.0 )
{
aOutputFile << " rotation " << std::setprecision( 3 );
aOutputFile << rot[0] << " " << rot[1] << " " << rot[2] << " " << rot[3] << "\n";
}
// adjust 3D shape local offset position
// they are given in inch, so they are converted in board IU.
double offsetx = vrmlm->m_MatPosition.x * IU_PER_MILS * 1000.0;
double offsety = vrmlm->m_MatPosition.y * IU_PER_MILS * 1000.0;
double offsetz = vrmlm->m_MatPosition.z * IU_PER_MILS * 1000.0;
if( isFlipped )
NEGATE( offsetz );
else // In normal mode, Y axis is reversed in Pcbnew.
NEGATE( offsety );
RotatePoint( &offsetx, &offsety, aModule->GetOrientation() );
aOutputFile << " translation " << std::setprecision( aModel.precision );
aOutputFile << ( ( offsetx + aModule->GetPosition().x ) *
aModel.scale + aModel.tx ) << " ";
aOutputFile << ( -(offsety + aModule->GetPosition().y) *
aModel.scale - aModel.ty ) << " ";
aOutputFile << ( (offsetz * aModel.scale ) +
aModel.GetLayerZ( aModule->GetLayer() ) ) << "\n";
aOutputFile << " scale ";
aOutputFile << ( vrmlm->m_MatScale.x * aVRMLModelsToBiu ) << " ";
aOutputFile << ( vrmlm->m_MatScale.y * aVRMLModelsToBiu ) << " ";
aOutputFile << ( vrmlm->m_MatScale.z * aVRMLModelsToBiu ) << "\n";
aOutputFile << " children [\n Inline {\n url \"";
if( aUseRelativePaths )
{
wxFileName tmp = destFileName;
tmp.SetExt( wxT( "" ) );
tmp.SetName( wxT( "" ) );
tmp.RemoveLastDir();
destFileName.MakeRelativeTo( tmp.GetPath() );
}
wxString fn = destFileName.GetFullPath();
fn.Replace( wxT( "\\" ), wxT( "/" ) );
aOutputFile << TO_UTF8( fn ) << "\"\n } ]\n";
aOutputFile << " }\n";
}
}
}
bool PCB_EDIT_FRAME::ExportVRML_File( const wxString& aFullFileName, double aMMtoWRMLunit,
bool aExport3DFiles, bool aUseRelativePaths,
bool aUsePlainPCB, const wxString& a3D_Subdir )
{
wxString msg;
BOARD* pcb = GetBoard();
bool ok = true;
MODEL_VRML model3d;
model3d.plainPCB = aUsePlainPCB;
model_vrml = &model3d;
std::ofstream output_file;
try
{
output_file.exceptions( std::ofstream::failbit );
output_file.open( TO_UTF8( aFullFileName ), std::ios_base::out );
// Switch the locale to standard C (needed to print floating point numbers like 1.3)
SetLocaleTo_C_standard();
// Begin with the usual VRML boilerplate
wxString fn = aFullFileName;
fn.Replace( wxT( "\\" ), wxT( "/" ) );
output_file << "#VRML V2.0 utf8\n";
output_file << "WorldInfo {\n";
output_file << " title \"" << TO_UTF8( fn ) << " - Generated by Pcbnew\"\n";
output_file << "}\n";
// Set the VRML world scale factor
model3d.SetScale( aMMtoWRMLunit );
output_file << "Transform {\n";
// compute the offset to center the board on (0, 0, 0)
// XXX - NOTE: we should allow the user a GUI option to specify the offset
EDA_RECT bbbox = pcb->ComputeBoundingBox();
model3d.SetOffset( -model3d.scale * bbbox.Centre().x, model3d.scale * bbbox.Centre().y );
output_file << " children [\n";
// Preliminary computation: the z value for each layer
compute_layer_Zs( model3d, pcb );
// board edges and cutouts
export_vrml_board( model3d, pcb );
// Drawing and text on the board
if( !aUsePlainPCB )
export_vrml_drawings( model3d, pcb );
// Export vias and trackage
export_vrml_tracks( model3d, pcb );
// Export zone fills
if( !aUsePlainPCB )
export_vrml_zones( model3d, pcb);
/* scaling factor to convert 3D models to board units (decimils)
* Usually we use Wings3D to create thems.
* One can consider the 3D units is 0.1 inch (2.54 mm)
* So the scaling factor from 0.1 inch to board units
* is 2.54 * aMMtoWRMLunit
*/
double wrml_3D_models_scaling_factor = 2.54 * aMMtoWRMLunit;
// Export footprints
for( MODULE* module = pcb->m_Modules; module != 0; module = module->Next() )
export_vrml_module( model3d, pcb, module, output_file, wrml_3D_models_scaling_factor,
aExport3DFiles, aUseRelativePaths, a3D_Subdir );
// write out the board and all layers
write_layers( model3d, output_file, pcb );
// Close the outer 'transform' node
output_file << "]\n}\n";
}
catch( const std::exception& e )
{
wxString msg;
msg << _( "IDF Export Failed:\n" ) << FROM_UTF8( e.what() );
wxMessageBox( msg );
ok = false;
}
// End of work
output_file.exceptions( std::ios_base::goodbit );
output_file.close();
SetLocaleTo_Default(); // revert to the current locale
return ok;
}