kicad/common/gal/opengl/cached_container.cpp

526 lines
14 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file cached_container.cpp
* @brief Class to store instances of VERTEX with caching. It allows storing VERTEX objects and
* associates them with VERTEX_ITEMs. This leads to a possibility of caching vertices data in the
* GPU memory and a fast reuse of that data.
*/
#include <gal/opengl/cached_container.h>
#include <gal/opengl/vertex_manager.h>
#include <gal/opengl/vertex_item.h>
#include <gal/opengl/shader.h>
#include <wx/log.h>
#include <list>
#ifdef __WXDEBUG__
#include <profile.h>
#endif /* __WXDEBUG__ */
using namespace KiGfx;
CACHED_CONTAINER::CACHED_CONTAINER( unsigned int aSize ) :
VERTEX_CONTAINER( aSize )
{
// In the beginning there is only free space
m_freeChunks.insert( Chunk( aSize, 0 ) );
}
void CACHED_CONTAINER::SetItem( VERTEX_ITEM* aItem )
{
if( aItem == NULL )
{
wxASSERT( m_item != NULL );
// Finishing the item
if( m_itemSize < m_chunkSize )
{
// There is some not used but reserved memory left, so we should return it to the pool
int itemOffset = m_item->GetOffset();
// Add the not used memory back to the pool
m_freeChunks.insert( Chunk( m_chunkSize - m_itemSize, itemOffset + m_itemSize ) );
m_freeSpace += ( m_chunkSize - m_itemSize );
// mergeFreeChunks();
}
m_item = NULL;
}
else
{
m_item = aItem;
m_itemSize = m_item->GetSize();
m_chunkSize = m_itemSize;
if( m_itemSize == 0 )
m_items.insert( m_item ); // The item was not stored before
else
m_chunkOffset = m_item->GetOffset();
}
}
VERTEX* CACHED_CONTAINER::Allocate( unsigned int aSize )
{
wxASSERT( m_item != NULL );
if( m_failed )
return NULL;
if( m_itemSize + aSize > m_chunkSize )
{
// There is not enough space in the currently reserved chunk, so we have to resize it
// Reserve a bigger memory chunk for the current item and
// make it multiple of 3 to store triangles
m_chunkSize = ( 2 * m_itemSize ) + aSize + ( 3 - aSize % 3 );
// Save the current size before reallocating
m_chunkOffset = reallocate( m_chunkSize );
if( m_chunkOffset > m_currentSize )
{
m_failed = true;
return NULL;
}
}
VERTEX* reserved = &m_vertices[m_chunkOffset + m_itemSize];
m_itemSize += aSize;
m_item->setSize( m_itemSize );
// The content has to be updated
m_dirty = true;
#if CACHED_CONTAINER_TEST > 1
test();
#endif
return reserved;
}
void CACHED_CONTAINER::Erase()
{
wxASSERT( m_item != NULL );
freeItem( m_item );
// Dynamic memory freeing, there is no point in holding
// a large amount of memory when there is no use for it
if( m_freeSpace > ( m_currentSize / 2 ) && m_currentSize > m_initialSize )
{
resizeContainer( m_currentSize / 2 );
}
}
void CACHED_CONTAINER::Clear()
{
// Change size to the default one
m_vertices = static_cast<VERTEX*>( realloc( m_vertices,
m_initialSize * sizeof( VERTEX ) ) );
// Reset state variables
m_freeSpace = m_initialSize;
m_currentSize = m_initialSize;
m_failed = false;
// Set the size of all the stored VERTEX_ITEMs to 0, so it is clear that they are not held
// in the container anymore
Items::iterator it;
for( it = m_items.begin(); it != m_items.end(); ++it )
{
( *it )->setSize( 0 );
}
m_items.clear();
// Now there is only free space left
m_freeChunks.clear();
m_freeChunks.insert( Chunk( m_freeSpace, 0 ) );
}
VERTEX* CACHED_CONTAINER::GetVertices( const VERTEX_ITEM* aItem ) const
{
int offset = aItem->GetOffset();
return &m_vertices[offset];
}
unsigned int CACHED_CONTAINER::reallocate( unsigned int aSize )
{
#if CACHED_CONTAINER_TEST > 2
wxLogDebug( wxT( "Resize 0x%08x to %d" ), (int) m_item, aSize );
showFreeChunks();
showReservedChunks();
#endif
// Is there enough space to store vertices?
if( m_freeSpace < aSize )
{
bool result;
// Would it be enough to double the current space?
if( aSize < m_freeSpace + m_currentSize )
{
// Yes: exponential growing
result = resizeContainer( m_currentSize * 2 );
}
else
{
// No: grow to the nearest bigger power of 2
result = resizeContainer( getPowerOf2( m_currentSize * 2 + aSize ) );
}
if( !result )
return UINT_MAX;
}
// Look for the free space of at least given size
FreeChunkMap::iterator newChunk = m_freeChunks.lower_bound( aSize );
if( newChunk == m_freeChunks.end() )
{
// In the case when there is enough space to store the vertices,
// but the free space is not continous we should defragment the container
if( !defragment() )
return UINT_MAX;
// Update the current offset
m_chunkOffset = m_item->GetOffset();
// We can take the first free chunk, as there is only one after defragmentation
// and we can be sure that it provides enough space to store the object
newChunk = m_freeChunks.begin();
}
// Parameters of the allocated cuhnk
unsigned int chunkSize = newChunk->first;
unsigned int chunkOffset = newChunk->second;
wxASSERT( chunkSize >= aSize );
wxASSERT( chunkOffset < m_currentSize );
// Check if the item was previously stored in the container
if( m_itemSize > 0 )
{
#if CACHED_CONTAINER_TEST > 3
wxLogDebug( wxT( "Moving 0x%08x from 0x%08x to 0x%08x" ),
(int) m_item, oldChunkOffset, chunkOffset );
#endif
// The item was reallocated, so we have to copy all the old data to the new place
memcpy( &m_vertices[chunkOffset], &m_vertices[m_chunkOffset],
m_itemSize * VertexSize );
// Free the space previously used by the chunk
m_freeChunks.insert( Chunk( m_itemSize, m_chunkOffset ) );
m_freeSpace += m_itemSize;
}
// Remove the allocated chunk from the free space pool
m_freeChunks.erase( newChunk );
// If there is some space left, return it to the pool - add an entry for it
if( chunkSize > aSize )
{
m_freeChunks.insert( Chunk( chunkSize - aSize, chunkOffset + aSize ) );
}
m_freeSpace -= aSize;
// mergeFreeChunks();
m_item->setOffset( chunkOffset );
#if CACHED_CONTAINER_TEST > 2
showFreeChunks();
showReservedChunks();
#endif
return chunkOffset;
}
bool CACHED_CONTAINER::defragment( VERTEX* aTarget )
{
#if CACHED_CONTAINER_TEST > 0
wxLogDebug( wxT( "Defragmenting" ) );
#endif
#ifdef __WXDEBUG__
prof_counter totalTime;
prof_start( &totalTime, false );
#endif /* __WXDEBUG__ */
if( aTarget == NULL )
{
// No target was specified, so we have to reallocate our own space
aTarget = static_cast<VERTEX*>( malloc( m_currentSize * sizeof( VERTEX ) ) );
if( aTarget == NULL )
{
wxLogError( wxT( "Run out of memory" ) );
return false;
}
}
int newOffset = 0;
Items::iterator it, it_end;
for( it = m_items.begin(), it_end = m_items.end(); it != it_end; ++it )
{
VERTEX_ITEM* item = *it;
int itemOffset = item->GetOffset();
int itemSize = item->GetSize();
// Move an item to the new container
memcpy( &aTarget[newOffset], &m_vertices[itemOffset], itemSize * VertexSize );
// Update new offset
item->setOffset( newOffset );
// Move to the next free space
newOffset += itemSize;
}
free( m_vertices );
m_vertices = aTarget;
// Now there is only one big chunk of free memory
m_freeChunks.clear();
m_freeChunks.insert( Chunk( m_freeSpace, m_currentSize - m_freeSpace ) );
#ifdef __WXDEBUG__
prof_end( &totalTime );
wxLogDebug( wxT( "Defragmented the container storing %d vertices / %.1f ms" ),
m_currentSize - m_freeSpace, (double) totalTime.value / 1000.0 );
#endif /* __WXDEBUG__ */
return true;
}
void CACHED_CONTAINER::mergeFreeChunks()
{
if( m_freeChunks.size() <= 1 ) // There are no chunks that can be merged
return;
#ifdef __WXDEBUG__
prof_counter totalTime;
prof_start( &totalTime, false );
#endif /* __WXDEBUG__ */
// Reversed free chunks map - this one stores chunk size with its offset as the key
std::list<Chunk> freeChunks;
FreeChunkMap::const_iterator it, it_end;
for( it = m_freeChunks.begin(), it_end = m_freeChunks.end(); it != it_end; ++it )
{
freeChunks.push_back( std::make_pair( it->second, it->first ) );
}
m_freeChunks.clear();
freeChunks.sort();
std::list<Chunk>::const_iterator itf, itf_end;
unsigned int offset = freeChunks.front().first;
unsigned int size = freeChunks.front().second;
freeChunks.pop_front();
for( itf = freeChunks.begin(), itf_end = freeChunks.end(); itf != itf_end; ++itf )
{
if( itf->first == offset + size )
{
// These chunks can be merged, so just increase the current chunk size and go on
size += itf->second;
}
else
{
// These chunks cannot be merged
// So store the previous one
m_freeChunks.insert( std::make_pair( size, offset ) );
// and let's check the next chunk
offset = itf->first;
size = itf->second;
}
}
// Add the last one
m_freeChunks.insert( std::make_pair( size, offset ) );
#ifdef __WXDEBUG__
prof_end( &totalTime );
wxLogDebug( wxT( "Merged free chunks / %.1f ms" ), (double) totalTime.value / 1000.0 );
#endif /* __WXDEBUG__ */
test();
}
bool CACHED_CONTAINER::resizeContainer( unsigned int aNewSize )
{
#if CACHED_CONTAINER_TEST > 0
wxLogDebug( wxT( "Resizing container from %d to %d" ), m_currentSize, aNewSize );
#endif
VERTEX* newContainer;
if( aNewSize < m_currentSize )
{
// Shrinking container
// Sanity check, no shrinking if we cannot fit all the data
if( reservedSpace() > aNewSize )
return false;
newContainer = static_cast<VERTEX*>( malloc( aNewSize * sizeof( VERTEX ) ) );
if( newContainer == NULL )
{
wxLogError( wxT( "Run out of memory" ) );
return false;
}
// Defragment directly to the new, smaller container
defragment( newContainer );
// We have to correct freeChunks after defragmentation
m_freeChunks.clear();
m_freeChunks.insert( Chunk( aNewSize - reservedSpace(), reservedSpace() ) );
}
else
{
// Enlarging container
newContainer = static_cast<VERTEX*>( realloc( m_vertices, aNewSize * sizeof( VERTEX ) ) );
if( newContainer == NULL )
{
wxLogError( wxT( "Run out of memory" ) );
return false;
}
// Add an entry for the new memory chunk at the end of the container
m_freeChunks.insert( Chunk( aNewSize - m_currentSize, m_currentSize ) );
}
m_vertices = newContainer;
m_freeSpace += ( aNewSize - m_currentSize );
m_currentSize = aNewSize;
return true;
}
void CACHED_CONTAINER::freeItem( VERTEX_ITEM* aItem )
{
int size = aItem->GetSize();
int offset = aItem->GetOffset();
// Insert a free memory chunk entry in the place where item was stored
m_freeChunks.insert( Chunk( size, offset ) );
m_freeSpace += size;
m_items.erase( aItem );
// Indicate that the item is not stored in the container anymore
aItem->setSize( 0 );
}
unsigned int CACHED_CONTAINER::getPowerOf2( unsigned int aNumber ) const
{
unsigned int power = 1;
while( power < aNumber && power != 0 )
power <<= 1;
return power;
}
#ifdef CACHED_CONTAINER_TEST
void CACHED_CONTAINER::showFreeChunks()
{
FreeChunkMap::iterator it;
wxLogDebug( wxT( "Free chunks:" ) );
for( it = m_freeChunks.begin(); it != m_freeChunks.end(); ++it )
{
unsigned int offset = getChunkOffset( *it );
unsigned int size = getChunkSize( *it );
wxLogDebug( wxT( "[0x%08x-0x%08x] (size %d)" ),
offset, offset + size - 1, size );
}
}
void CACHED_CONTAINER::showReservedChunks()
{
Items::iterator it;
wxLogDebug( wxT( "Reserved chunks:" ) );
for( it = m_items.begin(); it != m_items.end(); ++it )
{
VERTEX_ITEM* item = *it;
unsigned int offset = item->GetOffset();
unsigned int size = item->GetSize();
wxLogDebug( wxT( "[0x%08x-0x%08x] @ 0x%08x (size %d)" ),
offset, offset + size - 1, (int) item, size );
}
}
void CACHED_CONTAINER::test()
{
// Free space check
unsigned int freeSpace = 0;
FreeChunkMap::iterator itf;
for( itf = m_freeChunks.begin(); itf != m_freeChunks.end(); ++itf )
freeSpace += getChunkSize( *itf );
wxASSERT( freeSpace == m_freeSpace );
// Reserved space check
/*unsigned int reservedSpace = 0;
Items::iterator itr;
for( itr = m_items.begin(); itr != m_items.end(); ++itr )
reservedSpace += ( *itr )->GetSize();
reservedSpace += m_itemSize; // Add the current chunk size
wxASSERT( ( freeSpace + reservedSpace ) == m_currentSize );*/
// Overlapping check TBD
}
#endif /* CACHED_CONTAINER_TEST */