kicad/pcbnew/class_pad.cpp

991 lines
25 KiB
C++

/***********************************************/
/* class_pad.cpp : D_PAD class implementation. */
/***********************************************/
#include "fctsys.h"
#include "PolyLine.h"
#include "common.h"
#include "confirm.h"
#include "kicad_string.h"
#include "pcbnew.h"
#include "trigo.h"
#include "pcbnew_id.h" // ID_TRACK_BUTT
#include "class_board_design_settings.h"
#include "richio.h"
// Due to a bug in previous versions ( m_LengthDie not initialized in D_PAD ctor)
// m_LengthDie is no more read from .brd files
// Uncomment this next line to read m_LengthDie from .brd files
#define READ_PAD_LENGTH_DIE
int D_PAD::m_PadSketchModePenSize = 0; // Pen size used to draw pads in sketch mode
D_PAD::D_PAD( MODULE* parent ) : BOARD_CONNECTED_ITEM( parent, TYPE_PAD )
{
m_NumPadName = 0;
m_Size.x = m_Size.y = 500; // give it a reasonable size
m_Orient = 0; // Pad rotation in 1/10 degrees
m_LengthDie = 0;
if( m_Parent && (m_Parent->Type() == TYPE_MODULE) )
{
m_Pos = ( (MODULE*) m_Parent )->GetPosition();
}
m_PadShape = PAD_CIRCLE; // Shape: PAD_CIRCLE,
// PAD_RECT PAD_OVAL
// PAD_TRAPEZOID
m_Attribut = PAD_STANDARD; // Type: NORMAL, PAD_SMD,
// PAD_CONN
m_DrillShape = PAD_CIRCLE; // Drill shape = circle
m_LocalClearance = 0;
m_LocalSolderMaskMargin = 0;
m_LocalSolderPasteMargin = 0;
m_LocalSolderPasteMarginRatio = 0.0;
m_layerMask = PAD_STANDARD_DEFAULT_LAYERS; // set layers mask to
// default for a standard pad
SetSubRatsnest( 0 ); // used in ratsnest
// calculations
ComputeShapeMaxRadius();
}
D_PAD::~D_PAD()
{
}
/* Calculate the radius of the circle containing the pad.
*/
int D_PAD::GetMaxRadius() const
{
int x, y;
int radius;
switch( m_PadShape & 0x7F )
{
case PAD_CIRCLE:
radius = m_Size.x / 2;
break;
case PAD_OVAL:
radius = MAX( m_Size.x, m_Size.y ) / 2;
break;
case PAD_RECT:
radius = 1 + (int) ( sqrt( (double) m_Size.y * m_Size.y
+ (double) m_Size.x * m_Size.x ) / 2 );
break;
case PAD_TRAPEZOID:
x = m_Size.x + ABS( m_DeltaSize.y ); // Remember: m_DeltaSize.y is the m_Size.x change
y = m_Size.y + ABS( m_DeltaSize.x ); // Remember: m_DeltaSize.x is the m_Size.y change
radius = 1 + (int) ( sqrt( (double) y * y + (double) x * x ) / 2 );
break;
default:
radius = 0; // quiet compiler
}
return radius;
}
/* Calculate the radius of the circle containing the pad.
*/
void D_PAD::ComputeShapeMaxRadius()
{
m_ShapeMaxRadius = GetMaxRadius();
}
/**
* Function GetBoundingBox
* returns the bounding box of this pad
* Mainly used to redraw the screen area occupied by the pad
*/
EDA_RECT D_PAD::GetBoundingBox() const
{
EDA_RECT area;
int radius = GetMaxRadius(); // Calculate the radius of the area, considered as a circle
area.SetOrigin( m_Pos );
area.Inflate( radius );
return area;
}
// Returns the position of the pad.
const wxPoint D_PAD::ReturnShapePos()
{
if( m_Offset.x == 0 && m_Offset.y == 0 )
return m_Pos;
wxPoint shape_pos;
int dX, dY;
dX = m_Offset.x;
dY = m_Offset.y;
RotatePoint( &dX, &dY, m_Orient );
shape_pos.x = m_Pos.x + dX;
shape_pos.y = m_Pos.y + dY;
return shape_pos;
}
/* Return pad name as string in a wxString
*/
wxString D_PAD::ReturnStringPadName() const
{
wxString name;
ReturnStringPadName( name );
return name;
}
/* Return pad name as string in a buffer
*/
void D_PAD::ReturnStringPadName( wxString& text ) const
{
int ii;
text.Empty();
for( ii = 0; ii < 4; ii++ )
{
if( m_Padname[ii] == 0 )
break;
text.Append( m_Padname[ii] );
}
}
// Change pad name
void D_PAD::SetPadName( const wxString& name )
{
int ii, len;
len = name.Length();
if( len > 4 )
len = 4;
for( ii = 0; ii < len; ii++ )
m_Padname[ii] = name.GetChar( ii );
for( ii = len; ii < 4; ii++ )
m_Padname[ii] = 0;
}
/**
* Function SetNetname
* @param aNetname: the new netname
*/
void D_PAD::SetNetname( const wxString& aNetname )
{
m_Netname = aNetname;
m_ShortNetname = m_Netname.AfterLast( '/' );
}
void D_PAD::Copy( D_PAD* source )
{
if( source == NULL )
return;
m_Pos = source->m_Pos;
m_layerMask = source->m_layerMask;
m_NumPadName = source->m_NumPadName;
SetNet( source->GetNet() );
m_Drill = source->m_Drill;
m_DrillShape = source->m_DrillShape;
m_Offset = source->m_Offset;
m_Size = source->m_Size;
m_DeltaSize = source->m_DeltaSize;
m_Pos0 = source->m_Pos0;
m_ShapeMaxRadius = source->m_ShapeMaxRadius;
m_PadShape = source->m_PadShape;
m_Attribut = source->m_Attribut;
m_Orient = source->m_Orient;
m_LengthDie = source->m_LengthDie;
m_LocalClearance = source->m_LocalClearance;
m_LocalSolderMaskMargin = source->m_LocalSolderMaskMargin;
m_LocalSolderPasteMargin = source->m_LocalSolderPasteMargin;
m_LocalSolderPasteMarginRatio = source->m_LocalSolderPasteMarginRatio;
SetSubRatsnest( 0 );
SetSubNet( 0 );
m_Netname = source->m_Netname;
m_ShortNetname = source->m_ShortNetname;
}
/**
* Function GetClearance (virtual)
* returns the clearance in internal units. If \a aItem is not NULL then the
* returned clearance is the greater of this object's clearance and
* aItem's clearance. If \a aItem is NULL, then this object clearance is returned.
* @param aItem is another BOARD_CONNECTED_ITEM or NULL
* @return int - the clearance in internal units.
*/
int D_PAD::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const
{
// A pad can have specific clearance parameters that
// overrides its NETCLASS clearance value
int clearance = m_LocalClearance;
if( clearance == 0 )
{ // If local clearance is 0, use the parent footprint clearance value
if( GetParent() && ( (MODULE*) GetParent() )->m_LocalClearance )
clearance = ( (MODULE*) GetParent() )->m_LocalClearance;
}
if( clearance == 0 ) // If the parent footprint clearance value = 0, use NETCLASS value
return BOARD_CONNECTED_ITEM::GetClearance( aItem );
// We have a specific clearance.
// if aItem, return the biggest clearance
if( aItem )
{
int hisClearance = aItem->GetClearance();
return max( hisClearance, clearance );
}
// Return the specific clearance.
return clearance;
}
// Mask margins handling:
/**
* Function GetSolderMaskMargin
* @return the margin for the solder mask layer
* usually > 0 (mask shape bigger than pad
* value is
* 1 - the local value
* 2 - if null, the parent footprint value
* 1 - if null, the global value
*/
int D_PAD::GetSolderMaskMargin()
{
int margin = m_LocalSolderMaskMargin;
MODULE * module = (MODULE*) GetParent();
if( module )
{
if( margin == 0 )
{
if( module->m_LocalSolderMaskMargin )
margin = module->m_LocalSolderMaskMargin;
}
if( margin == 0 )
{
BOARD * brd = GetBoard();
margin = brd->GetBoardDesignSettings()->m_SolderMaskMargin;
}
}
// ensure mask have a size always >= 0
if( margin < 0 )
{
int minsize = -MIN( m_Size.x, m_Size.y ) / 2;
if( margin < minsize )
minsize = minsize;
}
return margin;
}
/**
* Function GetSolderPasteMargin
* @return the margin for the solder mask layer
* usually < 0 (mask shape smaller than pad
* value is
* 1 - the local value
* 2 - if null, the parent footprint value
* 1 - if null, the global value
*/
wxSize D_PAD::GetSolderPasteMargin()
{
int margin = m_LocalSolderPasteMargin;
double mratio = m_LocalSolderPasteMarginRatio;
MODULE * module = (MODULE*) GetParent();
if( module )
{
if( margin == 0 )
margin = module->m_LocalSolderPasteMargin;
BOARD * brd = GetBoard();
if( margin == 0 )
margin = brd->GetBoardDesignSettings()->m_SolderPasteMargin;
if( mratio == 0.0 )
mratio = module->m_LocalSolderPasteMarginRatio;
if( mratio == 0.0 )
{
mratio = brd->GetBoardDesignSettings()->m_SolderPasteMarginRatio;
}
}
wxSize pad_margin;
pad_margin.x = margin + wxRound( m_Size.x * mratio );
pad_margin.y = margin + wxRound( m_Size.y * mratio );
// ensure mask have a size always >= 0
if( pad_margin.x < -m_Size.x / 2 )
pad_margin.x = -m_Size.x / 2;
if( pad_margin.y < -m_Size.y / 2 )
pad_margin.y = -m_Size.y / 2;
return pad_margin;
}
/* Read pad from file.
* The 1st line of descr ($PAD) is assumed to be already read
* Syntax:
* $PAD
* Sh "N1" C 550 550 0 0 1800
* Dr 310 0 0
* At STD N 00C0FFFF
* Do 3 "netname"
* Po 6000 -6000
* $EndPAD
*/
int D_PAD::ReadDescr( LINE_READER* aReader )
{
char* Line;
char BufLine[1024], BufCar[256];
char* PtLine;
int nn, ll, dx, dy;
while( aReader->ReadLine() )
{
Line = aReader->Line();
if( Line[0] == '$' )
return 0;
PtLine = Line + 3;
/* Decode the first code and read the corresponding data
*/
switch( Line[0] )
{
case 'S': // = Sh
/* Read pad name */
nn = 0;
while( (*PtLine != '"') && *PtLine )
PtLine++;
if( *PtLine )
PtLine++;
memset( m_Padname, 0, sizeof(m_Padname) );
while( (*PtLine != '"') && *PtLine )
{
if( nn < (int) sizeof(m_Padname) )
{
if( *PtLine > ' ' )
{
m_Padname[nn] = *PtLine; nn++;
}
}
PtLine++;
}
if( *PtLine == '"' )
PtLine++;
nn = sscanf( PtLine, " %s %d %d %d %d %d",
BufCar, &m_Size.x, &m_Size.y,
&m_DeltaSize.x, &m_DeltaSize.y,
&m_Orient );
ll = 0xFF & BufCar[0];
/* Read pad shape */
m_PadShape = PAD_CIRCLE;
switch( ll )
{
case 'C':
m_PadShape = PAD_CIRCLE; break;
case 'R':
m_PadShape = PAD_RECT; break;
case 'O':
m_PadShape = PAD_OVAL; break;
case 'T':
m_PadShape = PAD_TRAPEZOID; break;
}
ComputeShapeMaxRadius();
break;
case 'D':
BufCar[0] = 0;
nn = sscanf( PtLine, "%d %d %d %s %d %d", &m_Drill.x,
&m_Offset.x, &m_Offset.y, BufCar, &dx, &dy );
m_Drill.y = m_Drill.x;
m_DrillShape = PAD_CIRCLE;
if( nn >= 6 ) // Drill shape = OVAL ?
{
if( BufCar[0] == 'O' )
{
m_Drill.x = dx; m_Drill.y = dy;
m_DrillShape = PAD_OVAL;
}
}
break;
case 'A':
nn = sscanf( PtLine, "%s %s %X", BufLine, BufCar,
&m_layerMask );
/* BufCar is not used now update attributes */
m_Attribut = PAD_STANDARD;
if( strncmp( BufLine, "SMD", 3 ) == 0 )
m_Attribut = PAD_SMD;
if( strncmp( BufLine, "CONN", 4 ) == 0 )
m_Attribut = PAD_CONN;
if( strncmp( BufLine, "HOLE", 4 ) == 0 )
m_Attribut = PAD_HOLE_NOT_PLATED;
break;
case 'N': /* Read Netname */
int netcode;
nn = sscanf( PtLine, "%d", &netcode );
SetNet( netcode );
/* read Netname */
ReadDelimitedText( BufLine, PtLine, sizeof(BufLine) );
SetNetname( FROM_UTF8( StrPurge( BufLine ) ) );
break;
case 'P':
nn = sscanf( PtLine, "%d %d", &m_Pos0.x, &m_Pos0.y );
m_Pos = m_Pos0;
break;
case 'L':
#ifdef READ_PAD_LENGTH_DIE
int lengthdie;
nn = sscanf( PtLine, "%d", &lengthdie );
m_LengthDie = lengthdie;
#endif
break;
case '.': /* Read specific data */
if( strnicmp( Line, ".SolderMask ", 12 ) == 0 )
m_LocalSolderMaskMargin = atoi( Line + 12 );
else if( strnicmp( Line, ".SolderPaste ", 13 ) == 0 )
m_LocalSolderPasteMargin = atoi( Line + 13 );
else if( strnicmp( Line, ".SolderPasteRatio ", 18 ) == 0 )
m_LocalSolderPasteMarginRatio = atoi( Line + 18 );
else if( strnicmp( Line, ".LocalClearance ", 16 ) == 0 )
m_LocalClearance = atoi( Line + 16 );
break;
default:
DisplayError( NULL, wxT( "Err Pad: Id inconnu" ) );
return 1;
}
}
return 2; /* error : EOF */
}
bool D_PAD::Save( FILE* aFile ) const
{
int cshape;
const char* texttype;
// check the return values for first and last fprints() in this function
if( fprintf( aFile, "$PAD\n" ) != sizeof("$PAD\n") - 1 )
return false;
switch( m_PadShape )
{
case PAD_CIRCLE:
cshape = 'C'; break;
case PAD_RECT:
cshape = 'R'; break;
case PAD_OVAL:
cshape = 'O'; break;
case PAD_TRAPEZOID:
cshape = 'T'; break;
default:
cshape = 'C';
DisplayError( NULL, _( "Unknown pad shape" ) );
break;
}
fprintf( aFile, "Sh \"%.4s\" %c %d %d %d %d %d\n",
m_Padname, cshape, m_Size.x, m_Size.y,
m_DeltaSize.x, m_DeltaSize.y, m_Orient );
fprintf( aFile, "Dr %d %d %d", m_Drill.x, m_Offset.x, m_Offset.y );
if( m_DrillShape == PAD_OVAL )
{
fprintf( aFile, " %c %d %d", 'O', m_Drill.x, m_Drill.y );
}
fprintf( aFile, "\n" );
switch( m_Attribut )
{
case PAD_STANDARD:
texttype = "STD"; break;
case PAD_SMD:
texttype = "SMD"; break;
case PAD_CONN:
texttype = "CONN"; break;
case PAD_HOLE_NOT_PLATED:
texttype = "HOLE"; break;
default:
texttype = "STD";
DisplayError( NULL, wxT( "Invalid Pad attribute" ) );
break;
}
fprintf( aFile, "At %s N %8.8X\n", texttype, m_layerMask );
fprintf( aFile, "Ne %d %s\n", GetNet(), EscapedUTF8( m_Netname ).c_str() );
fprintf( aFile, "Po %d %d\n", m_Pos0.x, m_Pos0.y );
if( m_LengthDie != 0 )
fprintf( aFile, "Le %d\n", m_LengthDie );
if( m_LocalSolderMaskMargin != 0 )
fprintf( aFile, ".SolderMask %d\n", m_LocalSolderMaskMargin );
if( m_LocalSolderPasteMargin != 0 )
fprintf( aFile, ".SolderPaste %d\n", m_LocalSolderPasteMargin );
if( m_LocalSolderPasteMarginRatio != 0 )
fprintf( aFile, ".SolderPasteRatio %g\n", m_LocalSolderPasteMarginRatio );
if( m_LocalClearance != 0 )
fprintf( aFile, ".LocalClearance %d\n", m_LocalClearance );
if( fprintf( aFile, "$EndPAD\n" ) != sizeof("$EndPAD\n") - 1 )
return false;
return true;
}
void D_PAD::DisplayInfo( EDA_DRAW_FRAME* frame )
{
MODULE* module;
wxString Line;
BOARD* board;
frame->EraseMsgBox();
module = (MODULE*) m_Parent;
if( module )
{
wxString msg = module->GetReference();
frame->AppendMsgPanel( _( "Module" ), msg, DARKCYAN );
ReturnStringPadName( Line );
frame->AppendMsgPanel( _( "RefP" ), Line, BROWN );
}
frame->AppendMsgPanel( _( "Net" ), m_Netname, DARKCYAN );
/* For test and debug only: display m_physical_connexion and
* m_logical_connexion */
#if 1 // Used only to debug connectivity calculations
Line.Printf( wxT( "%d-%d-%d " ), GetSubRatsnest(), GetSubNet(), m_ZoneSubnet );
frame->AppendMsgPanel( wxT( "L-P-Z" ), Line, DARKGREEN );
#endif
board = GetBoard();
wxString layerInfo;
if( (m_layerMask & ALL_CU_LAYERS) == 0 ) // pad is not on any copper layers
{
switch( m_layerMask & ~ALL_CU_LAYERS )
{
case ADHESIVE_LAYER_BACK:
layerInfo = board->GetLayerName( ADHESIVE_N_BACK );
break;
case ADHESIVE_LAYER_FRONT:
layerInfo = board->GetLayerName( ADHESIVE_N_FRONT );
break;
case SOLDERPASTE_LAYER_BACK:
layerInfo = board->GetLayerName( SOLDERPASTE_N_BACK );
break;
case SOLDERPASTE_LAYER_FRONT:
layerInfo = board->GetLayerName( SOLDERPASTE_N_FRONT );
break;
case SILKSCREEN_LAYER_BACK:
layerInfo = board->GetLayerName( SILKSCREEN_N_BACK );
break;
case SILKSCREEN_LAYER_FRONT:
layerInfo = board->GetLayerName( SILKSCREEN_N_FRONT );
break;
case SOLDERMASK_LAYER_BACK:
layerInfo = board->GetLayerName( SOLDERMASK_N_BACK );
break;
case SOLDERMASK_LAYER_FRONT:
layerInfo = board->GetLayerName( SOLDERMASK_N_FRONT );
break;
case DRAW_LAYER:
layerInfo = board->GetLayerName( DRAW_N );
break;
case COMMENT_LAYER:
layerInfo = board->GetLayerName( COMMENT_N );
break;
case ECO1_LAYER:
layerInfo = board->GetLayerName( ECO1_N );
break;
case ECO2_LAYER:
layerInfo = board->GetLayerName( ECO2_N );
break;
case EDGE_LAYER:
layerInfo = board->GetLayerName( EDGE_N );
break;
default:
layerInfo = _( "Non-copper" );
break;
}
}
else
{
#define INTERIOR_COPPER (ALL_CU_LAYERS & ~(LAYER_BACK | LAYER_FRONT))
static const wxChar* andInternal = _( " & int" );
if( (m_layerMask & (LAYER_BACK | LAYER_FRONT)) == LAYER_BACK )
{
layerInfo = board->GetLayerName( LAYER_N_BACK );
if( m_layerMask & INTERIOR_COPPER )
layerInfo += andInternal;
}
else if( (m_layerMask & (LAYER_BACK | LAYER_FRONT)) == (LAYER_BACK | LAYER_FRONT) )
{
layerInfo = board->GetLayerName( LAYER_N_BACK ) + wxT(", ") +
board->GetLayerName( LAYER_N_FRONT );
if( m_layerMask & INTERIOR_COPPER )
layerInfo += andInternal;
}
else if( (m_layerMask & (LAYER_BACK | LAYER_FRONT)) == LAYER_FRONT )
{
layerInfo = board->GetLayerName( LAYER_N_FRONT );
if( m_layerMask & INTERIOR_COPPER )
layerInfo += andInternal;
}
else // necessarily true: if( m_layerMask & INTERIOR_COPPER )
{
layerInfo = _( "internal" );
}
}
frame->AppendMsgPanel( _( "Layer" ), layerInfo, DARKGREEN );
frame->AppendMsgPanel( ShowPadShape(), ShowPadAttr(), DARKGREEN );
valeur_param( m_Size.x, Line );
frame->AppendMsgPanel( _( "H Size" ), Line, RED );
valeur_param( m_Size.y, Line );
frame->AppendMsgPanel( _( "V Size" ), Line, RED );
valeur_param( (unsigned) m_Drill.x, Line );
if( m_DrillShape == PAD_CIRCLE )
{
frame->AppendMsgPanel( _( "Drill" ), Line, RED );
}
else
{
valeur_param( (unsigned) m_Drill.x, Line );
wxString msg;
valeur_param( (unsigned) m_Drill.y, msg );
Line += wxT( " / " ) + msg;
frame->AppendMsgPanel( _( "Drill X / Y" ), Line, RED );
}
int module_orient = module ? module->m_Orient : 0;
if( module_orient )
Line.Printf( wxT( "%3.1f(+%3.1f)" ),
(float) ( m_Orient - module_orient ) / 10,
(float) module_orient / 10 );
else
Line.Printf( wxT( "%3.1f" ), (float) m_Orient / 10 );
frame->AppendMsgPanel( _( "Orient" ), Line, LIGHTBLUE );
valeur_param( m_Pos.x, Line );
frame->AppendMsgPanel( _( "X Pos" ), Line, LIGHTBLUE );
valeur_param( m_Pos.y, Line );
frame->AppendMsgPanel( _( "Y pos" ), Line, LIGHTBLUE );
if( m_LengthDie )
{
valeur_param( m_LengthDie, Line );
frame->AppendMsgPanel( _( "Length on die" ), Line, CYAN );
}
}
// see class_pad.h
bool D_PAD::IsOnLayer( int aLayer ) const
{
return (1 << aLayer) & m_layerMask;
}
/**
* Function HitTest
* tests if the given wxPoint is within the bounds of this object.
* @param refPos A wxPoint to test
* @return bool - true if a hit, else false
*/
bool D_PAD::HitTest( const wxPoint& refPos )
{
int dx, dy;
double dist;
wxPoint shape_pos = ReturnShapePos();
wxPoint delta = refPos - shape_pos;
/* Quick test: a test point must be inside the circle. */
if( ( abs( delta.x ) > m_ShapeMaxRadius ) || ( abs( delta.y ) > m_ShapeMaxRadius ) )
return false;
dx = m_Size.x >> 1; // dx also is the radius for rounded pads
dy = m_Size.y >> 1;
switch( m_PadShape & 0x7F )
{
case PAD_CIRCLE:
dist = hypot( delta.x, delta.y );
if( wxRound( dist ) <= dx )
return true;
break;
case PAD_TRAPEZOID:
{
wxPoint poly[4];
BuildPadPolygon( poly, wxSize(0,0), 0 );
RotatePoint( &delta, -m_Orient );
return TestPointInsidePolygon( poly, 4, delta );
}
default:
RotatePoint( &delta, -m_Orient );
if( (abs( delta.x ) <= dx ) && (abs( delta.y ) <= dy) )
return true;
break;
}
return false;
}
int D_PAD::Compare( const D_PAD* padref, const D_PAD* padcmp )
{
int diff;
if( (diff = padref->m_PadShape - padcmp->m_PadShape) )
return diff;
if( (diff = padref->m_Size.x - padcmp->m_Size.x) )
return diff;
if( (diff = padref->m_Size.y - padcmp->m_Size.y) )
return diff;
if( (diff = padref->m_Offset.x - padcmp->m_Offset.x) )
return diff;
if( (diff = padref->m_Offset.y - padcmp->m_Offset.y) )
return diff;
if( (diff = padref->m_DeltaSize.x - padcmp->m_DeltaSize.x) )
return diff;
if( (diff = padref->m_DeltaSize.y - padcmp->m_DeltaSize.y) )
return diff;
// @todo check if export_gencad still works:
// specctra_export needs this, but maybe export_gencad does not. added on
// Jan 24 2008 by Dick.
if( ( diff = padref->m_layerMask - padcmp->m_layerMask ) )
return diff;
return 0;
}
wxString D_PAD::ShowPadShape() const
{
switch( m_PadShape )
{
case PAD_CIRCLE:
return _( "Circle" );
case PAD_OVAL:
return _( "Oval" );
case PAD_RECT:
return _( "Rect" );
case PAD_TRAPEZOID:
return _( "Trap" );
default:
return wxT( "??Unknown??" );
}
}
wxString D_PAD::ShowPadAttr() const
{
switch( m_Attribut & 0x0F )
{
case PAD_STANDARD:
return _( "Std" );
case PAD_SMD:
return _( "Smd" );
case PAD_CONN:
return _( "Conn" );
case PAD_HOLE_NOT_PLATED:
return _( "Not Plated" );
default:
return wxT( "??Unkown??" );
}
}
wxString D_PAD::GetSelectMenuText() const
{
wxString text;
BOARD * board = GetBoard();
text << _( "Pad" ) << wxT( " \"" ) << ReturnStringPadName() << wxT( "\" (" );
if ( (m_layerMask & ALL_CU_LAYERS) == ALL_CU_LAYERS )
text << _("all copper layers");
else if( (m_layerMask & LAYER_BACK ) == LAYER_BACK )
text << board->GetLayerName(LAYER_N_BACK);
else if( (m_layerMask & LAYER_FRONT) == LAYER_FRONT )
text << board->GetLayerName(LAYER_N_FRONT);
else
text << _( "???" );
text << _( ") of " ) << ( (MODULE*) GetParent() )->GetReference();
return text;
}
#if defined(DEBUG)
/**
* Function Show
* is used to output the object tree, currently for debugging only.
* @param nestLevel An aid to prettier tree indenting, and is the level
* of nesting of this object within the overall tree.
* @param os The ostream& to output to.
*/
void D_PAD::Show( int nestLevel, std::ostream& os )
{
char padname[5] = { m_Padname[0], m_Padname[1], m_Padname[2], m_Padname[3], 0 };
char layerMask[16];
sprintf( layerMask, "0x%08X", m_layerMask );
// for now, make it look like XML:
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() <<
" shape=\"" << ShowPadShape() << '"' <<
" attr=\"" << ShowPadAttr( ) << '"' <<
" num=\"" << padname << '"' <<
" net=\"" << m_Netname.mb_str() << '"' <<
" netcode=\"" << GetNet() << '"' <<
" layerMask=\"" << layerMask << '"' << m_Pos << "/>\n";
// NestedSpace( nestLevel+1, os ) << m_Text.mb_str() << '\n';
// NestedSpace( nestLevel, os ) << "</" << GetClass().Lower().mb_str()
// << ">\n";
}
#endif