kicad/plugins/3d/vrml/v1/vrml1_faceset.cpp

714 lines
21 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016 Cirilo Bernardo <cirilo.bernardo@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <iostream>
#include "vrml1_base.h"
#include "vrml1_faceset.h"
#include "vrml1_coords.h"
#include "vrml1_material.h"
#include "plugins/3dapi/ifsg_all.h"
WRL1FACESET::WRL1FACESET( NAMEREGISTER* aDictionary ) : WRL1NODE( aDictionary )
{
m_Type = WRL1_INDEXEDFACESET;
return;
}
WRL1FACESET::WRL1FACESET( NAMEREGISTER* aDictionary, WRL1NODE* aParent ) :
WRL1NODE( aDictionary )
{
m_Type = WRL1_INDEXEDFACESET;
m_Parent = aParent;
if( NULL != m_Parent )
m_Parent->AddChildNode( this );
return;
}
WRL1FACESET::~WRL1FACESET()
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 2 )
std::cerr << " * [INFO] Destroying IndexedFaceSet with " << m_Children.size();
std::cerr << " children, " << m_Refs.size() << " references and ";
std::cerr << m_BackPointers.size() << " backpointers\n";
#endif
return;
}
bool WRL1FACESET::AddRefNode( WRL1NODE* aNode )
{
// this node may not own or reference any other node
#ifdef DEBUG_VRML1
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [BUG] AddRefNode is not applicable\n";
#endif
return false;
}
bool WRL1FACESET::AddChildNode( WRL1NODE* aNode )
{
// this node may not own or reference any other node
#ifdef DEBUG_VRML1
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [BUG] AddChildNode is not applicable\n";
#endif
return false;
}
bool WRL1FACESET::Read( WRLPROC& proc, WRL1BASE* aTopNode )
{
size_t line, column;
proc.GetFilePosData( line, column );
char tok = proc.Peek();
if( proc.eof() )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [INFO] bad file format; unexpected eof at line ";
std::cerr << line << ", column " << column << "\n";
#endif
return false;
}
if( '{' != tok )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << proc.GetError() << "\n";
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [INFO] bad file format; expecting '{' but got '" << tok;
std::cerr << "' at line " << line << ", column " << column << "\n";
#endif
return false;
}
proc.Pop();
std::string glob;
while( true )
{
if( proc.Peek() == '}' )
{
proc.Pop();
break;
}
if( !proc.ReadName( glob ) )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << proc.GetError() << "\n";
#endif
return false;
}
// expecting one of:
// coordIndex[]
// materialIndex[]
proc.GetFilePosData( line, column );
if( !glob.compare( "coordIndex" ) )
{
if( !proc.ReadMFInt( coordIndex ) )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [INFO] invalid coordIndex at line " << line << ", column ";
std::cerr << column << "\n";
std::cerr << " * [INFO] file: '" << proc.GetFileName() << "'\n";
std::cerr << " * [INFO] message: '" << proc.GetError() << "'\n";
#endif
return false;
}
}
else if( !glob.compare( "materialIndex" ) )
{
if( !proc.ReadMFInt( matIndex ) )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [INFO] invalid materialIndex at line " << line << ", column ";
std::cerr << column << "\n";
std::cerr << " * [INFO] file: '" << proc.GetFileName() << "'\n";
std::cerr << " * [INFO] message: '" << proc.GetError() << "'\n";
#endif
return false;
}
}
else if( !glob.compare( "normalIndex" ) )
{
if( !proc.ReadMFInt( normIndex ) )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [INFO] invalid normalIndex at line " << line << ", column ";
std::cerr << column << "\n";
std::cerr << " * [INFO] file: '" << proc.GetFileName() << "'\n";
std::cerr << " * [INFO] message: '" << proc.GetError() << "'\n";
#endif
return false;
}
}
else if( !glob.compare( "textureCoordIndex" ) )
{
if( !proc.ReadMFInt( texIndex ) )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [INFO] invalid textureCoordIndex at line " << line << ", column ";
std::cerr << column << "\n";
std::cerr << " * [INFO] file: '" << proc.GetFileName() << "'\n";
std::cerr << " * [INFO] message: '" << proc.GetError() << "'\n";
#endif
return false;
}
}
else
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [INFO] bad IndexedFaceSet at line " << line << ", column ";
std::cerr << column << "\n";
std::cerr << " * [INFO] file: '" << proc.GetFileName() << "'\n";
#endif
return false;
}
} // while( true ) -- reading contents of IndexedFaceSet{}
return true;
}
SGNODE* WRL1FACESET::TranslateToSG( SGNODE* aParent, WRL1STATUS* sp )
{
// note: m_sgNode is unused because we cannot manage everything
// with a single reused transform due to the fact that VRML1
// may use a MatrixTransformation entity which is impossible to
// decompose into Rotate,Scale,Transform via an anlytic expression.
if( !m_Parent )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: no parent node\n";
#endif
return NULL;
}
else
{
if( NULL == sp )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: no base data given\n";
#endif
return NULL;
}
}
m_current = *sp;
if( NULL == m_current.coord || NULL == m_current.mat )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
if( NULL == m_current.coord )
std::cerr << " * [INFO] bad model: no vertex set\n";
if( NULL == m_current.mat )
std::cerr << " * [INFO] bad model: no material set\n";
#endif
return NULL;
}
WRLVEC3F* pcoords;
size_t coordsize;
m_current.coord->GetCoords( pcoords, coordsize );
size_t vsize = coordIndex.size();
if( coordsize < 3 || vsize < 3 )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: coordsize, indexsize = " << coordsize;
std::cerr << ", " << vsize << "\n";
#endif
return NULL;
}
// 1. create the vertex/normals/colors lists
std::vector< SGPOINT > vlist;
std::vector< SGVECTOR > nlist;
std::vector< SGCOLOR > colorlist;
SGNODE* sgcolor = NULL;
switch( m_current.matbind )
{
case BIND_PER_FACE:
case BIND_PER_VERTEX:
break;
case BIND_PER_FACE_INDEXED:
if( matIndex.empty() )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: per face indexed but no indices\n";
#endif
return NULL;
}
break;
case BIND_PER_VERTEX_INDEXED:
if( matIndex.size() < 3 )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: per vertex indexed but indexsize = ";
std::cerr << matIndex.size() << "\n";
#endif
return NULL;
}
break;
default:
// use the first appearance definition
sgcolor = m_current.mat->GetAppearance( 0 );
break;
}
// create the index list and make sure we have >3 points
size_t idx;
int i1 = coordIndex[0];
int i2 = coordIndex[1];
int i3 = coordIndex[2];
// check that all indices are valid
for( idx = 0; idx < vsize; ++idx )
{
if( coordIndex[idx] < 0 )
continue;
if( coordIndex[idx] >= (int)coordsize )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: index out of bounds (index = ";
std::cerr << coordIndex[idx] << ", npts = " << coordsize << ")\n";
#endif
m_current.mat->Reclaim( sgcolor );
return NULL;
}
}
// if the indices are defective just give up
if( i1 < 0 || i2 < 0 || i3 < 0
|| i1 == i2 || i1 == i3 || i2 == i3 )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: defective indices: " << i1;
std::cerr << ", " << i2 << ", " << i3 << "\n";
#endif
m_current.mat->Reclaim( sgcolor );
return NULL;
}
std::vector< SGPOINT > lCPts; // coordinate points for SG node
std::vector< int > lCIdx; // coordinate index list for SG node (must be triads)
std::vector< SGVECTOR > lCNorm; // per-vertex normals
std::vector< int > faces; // tracks the number of polygons for the entire set
std::vector< SGCOLOR > lColors; // colors points (if any) for SG node
int nfaces = 0; // number of triangles for each face in the list
if( BIND_OVERALL == m_current.matbind || BIND_DEFAULT == m_current.matbind )
{
// no color list
// assuming convex polygons, create triangles for the SG node
for( idx = 3; idx <= vsize; )
{
switch( m_current.order )
{
case ORD_CCW:
lCIdx.push_back( i1 );
lCIdx.push_back( i2 );
lCIdx.push_back( i3 );
break;
case ORD_CLOCKWISE:
lCIdx.push_back( i1 );
lCIdx.push_back( i3 );
lCIdx.push_back( i2 );
break;
default:
lCIdx.push_back( i1 );
lCIdx.push_back( i2 );
lCIdx.push_back( i3 );
lCIdx.push_back( i1 );
lCIdx.push_back( i3 );
lCIdx.push_back( i2 );
break;
}
++nfaces;
i2 = i3;
if( idx == vsize )
break;
i3 = coordIndex[idx++];
while( ( i1 < 0 || i2 < 0 || i3 < 0 ) && ( idx < vsize ) )
{
if( i3 < 0 )
{
faces.push_back( nfaces );
nfaces = 0;
}
i1 = i2;
i2 = i3;
i3 = coordIndex[idx++];
// any invalid polygons shall void the entire faceset; this is a requirement
// to ensure correct handling of the normals
if( ( i1 < 0 && i2 < 0 ) || ( i1 < 0 && i3 < 0 ) || ( i2 < 0 && i3 < 0 ) )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: defective indices: " << i1;
std::cerr << ", " << i2 << ", " << i3 << "\n";
#endif
m_current.mat->Reclaim( sgcolor );
return NULL;
}
}
if( i1 < 0 || i2 < 0 || i3 < 0 )
break;
}
}
else
{
// the entity requires a color list
int cIndex;
SGCOLOR pc1, pc2, pc3;
switch( m_current.matbind )
{
case BIND_PER_VERTEX:
cIndex = 3;
m_current.mat->GetColor( &pc1, 0 );
m_current.mat->GetColor( &pc2, 1 );
m_current.mat->GetColor( &pc3, 2 );
break;
case BIND_PER_VERTEX_INDEXED:
cIndex = 3;
if( matIndex.size() < vsize )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
std::cerr << " * [INFO] bad file; colorIndex.size() < coordIndex.size()\n";
#endif
return NULL;
}
m_current.mat->GetColor( &pc1, matIndex[0] );
m_current.mat->GetColor( &pc2, matIndex[1] );
m_current.mat->GetColor( &pc3, matIndex[2] );
break;
case BIND_PER_FACE:
cIndex = 1;
m_current.mat->GetColor( &pc1, 0 );
pc2.SetColor( pc1 );
pc3.SetColor( pc1 );
break;
default:
// BIND_PER_FACE_INDEXED
cIndex = 1;
m_current.mat->GetColor( &pc1, matIndex[0] );
pc2.SetColor( pc1 );
pc3.SetColor( pc1 );
break;
}
// assuming convex polygons, create triangles for the SG node
int cMaxIdx = (int) matIndex.size();
bool colorPerVertex = false;
if( BIND_PER_VERTEX == m_current.matbind
|| BIND_PER_VERTEX_INDEXED == m_current.matbind )
colorPerVertex = true;
bool noidx = false;
if( matIndex.empty() )
noidx = true;
for( idx = 3; idx <= vsize; )
{
switch( m_current.order )
{
case ORD_CCW:
lCIdx.push_back( i1 );
lCIdx.push_back( i2 );
lCIdx.push_back( i3 );
lColors.push_back( pc1 );
lColors.push_back( pc2 );
lColors.push_back( pc3 );
break;
case ORD_CLOCKWISE:
lCIdx.push_back( i1 );
lCIdx.push_back( i3 );
lCIdx.push_back( i2 );
lColors.push_back( pc1 );
lColors.push_back( pc3 );
lColors.push_back( pc2 );
break;
default:
lCIdx.push_back( i1 );
lCIdx.push_back( i2 );
lCIdx.push_back( i3 );
lCIdx.push_back( i1 );
lCIdx.push_back( i3 );
lCIdx.push_back( i2 );
lColors.push_back( pc1 );
lColors.push_back( pc2 );
lColors.push_back( pc3 );
lColors.push_back( pc1 );
lColors.push_back( pc3 );
lColors.push_back( pc2 );
break;
}
++nfaces;
i2 = i3;
if( idx == vsize )
break;
i3 = coordIndex[idx++];
if( colorPerVertex && i1 >= 0 && i2 >= 0 && i3 >= 0 )
{
pc1.SetColor( pc2 );
pc2.SetColor( pc3 );
if( noidx || cIndex >= cMaxIdx )
m_current.mat->GetColor( &pc3, cIndex++ );
else
m_current.mat->GetColor( &pc3, matIndex[cIndex++] );
}
while( ( i1 < 0 || i2 < 0 || i3 < 0 ) && ( idx < vsize ) )
{
if( i3 < 0 )
{
faces.push_back( nfaces );
nfaces = 0;
if( !colorPerVertex )
{
if( noidx || cIndex >= cMaxIdx )
m_current.mat->GetColor( &pc1, cIndex++ );
else
m_current.mat->GetColor( &pc1, matIndex[cIndex++] );
pc2.SetColor( pc1 );
pc3.SetColor( pc1 );
}
}
i1 = i2;
i2 = i3;
i3 = coordIndex[idx++];
if( colorPerVertex )
{
pc1.SetColor( pc2 );
pc2.SetColor( pc3 );
if( noidx || cIndex >= cMaxIdx )
m_current.mat->GetColor( &pc3, cIndex++ );
else
m_current.mat->GetColor( &pc3, matIndex[cIndex++] );
}
// any invalid polygons shall void the entire faceset; this is a requirement
// to ensure correct handling of the normals
if( ( i1 < 0 && i2 < 0 ) || ( i1 < 0 && i3 < 0 ) || ( i2 < 0 && i3 < 0 ) )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: defective indices: " << i1;
std::cerr << ", " << i2 << ", " << i3 << "\n";
#endif
return NULL;
}
}
if( i1 < 0 || i2 < 0 || i3 < 0 )
break;
}
}
if( lCIdx.empty() )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: no points in final index list\n";
#endif
m_current.mat->Reclaim( sgcolor );
return NULL;
}
// create a vertex list for per-face per-vertex normals
do {
std::vector< int >::iterator sI = lCIdx.begin();
std::vector< int >::iterator eI = lCIdx.end();
while( sI != eI )
{
glm::vec4 pt = glm::vec4( pcoords[*sI].x, pcoords[*sI].y, pcoords[*sI].z, 1.0 );
pt = m_current.txmatrix * pt;
lCPts.push_back( SGPOINT( pt.x, pt.y, pt.z ) );
++sI;
}
switch( m_current.order )
{
case ORD_CCW:
for( size_t i = 0; i < lCPts.size(); i += 3 )
{
SGVECTOR sv = S3D::CalcTriNorm( lCPts[i], lCPts[i+1], lCPts[i+2] );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
}
break;
case ORD_CLOCKWISE:
for( size_t i = 0; i < lCPts.size(); i += 3 )
{
SGVECTOR sv = S3D::CalcTriNorm( lCPts[i], lCPts[i+2], lCPts[i+1] );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
}
break;
default:
for( size_t i = 0; i < lCPts.size(); i += 6 )
{
SGVECTOR sv = S3D::CalcTriNorm( lCPts[i], lCPts[i+1], lCPts[i+2] );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
sv = S3D::CalcTriNorm( lCPts[i], lCPts[i+2], lCPts[i+1] );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
}
break;
}
} while( 0 );
// create the hierarchy:
// Shape
// + (option) Appearance
// + FaceSet
IFSG_SHAPE shapeNode( aParent );
if( sgcolor )
{
if( NULL == S3D::GetSGNodeParent( sgcolor ) )
shapeNode.AddChildNode( sgcolor );
else
shapeNode.AddRefNode( sgcolor );
}
IFSG_FACESET fsNode( shapeNode );
IFSG_COORDS cpNode( fsNode );
cpNode.SetCoordsList( lCPts.size(), &lCPts[0] );
IFSG_COORDINDEX ciNode( fsNode );
for( int i = 0; i < (int)lCPts.size(); ++i )
ciNode.AddIndex( i );
IFSG_NORMALS nmNode( fsNode );
nmNode.SetNormalList( lCNorm.size(), &lCNorm[0] );
if( !lColors.empty() )
{
IFSG_COLORS nmColor( fsNode );
nmColor.SetColorList( lColors.size(), &lColors[0] );
}
return fsNode.GetRawPtr();
}