kicad/pcbnew/router/pns_optimizer.cpp

762 lines
20 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013 CERN
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.or/licenses/>.
*/
#include <boost/foreach.hpp>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_rect.h>
#include "pns_line.h"
#include "pns_node.h"
#include "pns_optimizer.h"
#include "pns_utils.h"
/**
*
* Cost Estimator Methods
*
**/
int PNS_COST_ESTIMATOR::CornerCost( const SEG& a, const SEG& b )
{
DIRECTION_45 dir_a( a ), dir_b( b );
switch( dir_a.Angle( dir_b ) )
{
case DIRECTION_45::ANG_OBTUSE:
return 1;
case DIRECTION_45::ANG_STRAIGHT:
return 0;
case DIRECTION_45::ANG_ACUTE:
return 50;
case DIRECTION_45::ANG_RIGHT:
return 30;
case DIRECTION_45::ANG_HALF_FULL:
return 60;
default:
return 100;
}
}
int PNS_COST_ESTIMATOR::CornerCost( const SHAPE_LINE_CHAIN& aLine )
{
int total = 0;
for( int i = 0; i < aLine.SegmentCount() - 1; ++i )
total += CornerCost( aLine.CSegment( i ), aLine.CSegment( i + 1 ) );
return total;
}
int PNS_COST_ESTIMATOR::CornerCost( const PNS_LINE& aLine )
{
return CornerCost( aLine.GetCLine() );
}
void PNS_COST_ESTIMATOR::Add( PNS_LINE& aLine )
{
m_lengthCost += aLine.GetCLine().Length();
m_cornerCost += CornerCost( aLine );
}
void PNS_COST_ESTIMATOR::Remove( PNS_LINE& aLine )
{
m_lengthCost -= aLine.GetCLine().Length();
m_cornerCost -= CornerCost( aLine );
}
void PNS_COST_ESTIMATOR::Replace( PNS_LINE& aOldLine, PNS_LINE& aNewLine )
{
m_lengthCost -= aOldLine.GetCLine().Length();
m_cornerCost -= CornerCost( aOldLine );
m_lengthCost += aNewLine.GetCLine().Length();
m_cornerCost += CornerCost( aNewLine );
}
bool PNS_COST_ESTIMATOR::IsBetter( PNS_COST_ESTIMATOR& aOther,
double aLengthTollerance,
double aCornerTollerance ) const
{
if( aOther.m_cornerCost < m_cornerCost && aOther.m_lengthCost < m_lengthCost )
return true;
else if( aOther.m_cornerCost < m_cornerCost * aCornerTollerance && aOther.m_lengthCost <
m_lengthCost * aLengthTollerance )
return true;
return false;
}
/**
*
* Optimizer
*
**/
PNS_OPTIMIZER::PNS_OPTIMIZER( PNS_NODE* aWorld ) :
m_world( aWorld ), m_collisionKindMask( PNS_ITEM::ANY ), m_effortLevel( MERGE_SEGMENTS )
{
// m_cache = new SHAPE_INDEX_LIST<PNS_ITEM*>();
}
PNS_OPTIMIZER::~PNS_OPTIMIZER()
{
// delete m_cache;
}
struct PNS_OPTIMIZER::CacheVisitor
{
CacheVisitor( const PNS_ITEM* aOurItem, PNS_NODE* aNode, int aMask ) :
m_ourItem( aOurItem ),
m_collidingItem( NULL ),
m_node( aNode ),
m_mask( aMask )
{};
bool operator()( PNS_ITEM* aOtherItem )
{
if( !m_mask & aOtherItem->GetKind() )
return true;
int clearance = m_node->GetClearance( aOtherItem, m_ourItem );
if( !aOtherItem->Collide( m_ourItem, clearance ) )
return true;
m_collidingItem = aOtherItem;
return false;
}
const PNS_ITEM* m_ourItem;
PNS_ITEM* m_collidingItem;
PNS_NODE* m_node;
int m_mask;
};
void PNS_OPTIMIZER::cacheAdd( PNS_ITEM* aItem, bool aIsStatic = false )
{
if( m_cacheTags.find( aItem ) != m_cacheTags.end() )
return;
m_cache.Add( aItem );
m_cacheTags[aItem].hits = 1;
m_cacheTags[aItem].isStatic = aIsStatic;
}
void PNS_OPTIMIZER::removeCachedSegments( PNS_LINE* aLine, int aStartVertex, int aEndVertex )
{
std::vector<PNS_SEGMENT*>* segs = aLine->GetLinkedSegments();
if( !segs )
return;
if( aEndVertex < 0 )
aEndVertex += aLine->GetCLine().PointCount();
for( int i = aStartVertex; i < aEndVertex - 1; i++ )
{
PNS_SEGMENT* s = (*segs)[i];
m_cacheTags.erase( s );
m_cache.Remove( s );
} // *cacheRemove( (*segs)[i] );
}
void PNS_OPTIMIZER::CacheRemove( PNS_ITEM* aItem )
{
if( aItem->GetKind() == PNS_ITEM::LINE )
removeCachedSegments( static_cast<PNS_LINE*> (aItem) );
}
void PNS_OPTIMIZER::CacheStaticItem( PNS_ITEM* aItem )
{
cacheAdd( aItem, true );
}
void PNS_OPTIMIZER::ClearCache( bool aStaticOnly )
{
if( !aStaticOnly )
{
m_cacheTags.clear();
m_cache.Clear();
return;
}
for( CachedItemTags::iterator i = m_cacheTags.begin(); i!= m_cacheTags.end(); ++i )
{
if( i->second.isStatic )
{
m_cache.Remove( i->first );
m_cacheTags.erase( i->first );
}
}
}
bool PNS_OPTIMIZER::checkColliding( PNS_ITEM* aItem, bool aUpdateCache )
{
CacheVisitor v( aItem, m_world, m_collisionKindMask );
return m_world->CheckColliding( aItem );
// something is wrong with the cache, need to investigate.
m_cache.Query( aItem->GetShape(), m_world->GetMaxClearance(), v, false );
if( !v.m_collidingItem )
{
PNS_NODE::OptObstacle obs = m_world->CheckColliding( aItem );
if( obs )
{
if( aUpdateCache )
cacheAdd( obs->item );
return true;
}
}
else
{
m_cacheTags[v.m_collidingItem].hits++;
return true;
}
return false;
}
bool PNS_OPTIMIZER::checkColliding( PNS_LINE* aLine, const SHAPE_LINE_CHAIN& aOptPath )
{
PNS_LINE tmp( *aLine, aOptPath );
return checkColliding( &tmp );
}
bool PNS_OPTIMIZER::mergeObtuse( PNS_LINE* aLine )
{
SHAPE_LINE_CHAIN& line = aLine->GetLine();
int step = line.PointCount() - 3;
int iter = 0;
int segs_pre = line.SegmentCount();
if( step < 0 )
return false;
SHAPE_LINE_CHAIN current_path( line );
while( 1 )
{
iter++;
int n_segs = current_path.SegmentCount();
int max_step = n_segs - 2;
if( step > max_step )
step = max_step;
if( step < 2 )
{
line = current_path;
return current_path.SegmentCount() < segs_pre;
}
bool found_anything = false;
int n = 0;
while( n < n_segs - step )
{
const SEG s1 = current_path.CSegment( n );
const SEG s2 = current_path.CSegment( n + step );
SEG s1opt, s2opt;
if( DIRECTION_45( s1 ).IsObtuse( DIRECTION_45( s2 ) ) )
{
VECTOR2I ip = *s1.IntersectLines( s2 );
if( s1.Distance( ip ) <= 1 || s2.Distance( ip ) <= 1 )
{
s1opt = SEG( s1.A, ip );
s2opt = SEG( ip, s2.B );
}
else
{
s1opt = SEG( s1.A, ip );
s2opt = SEG( ip, s2.B );
}
if( DIRECTION_45( s1opt ).IsObtuse( DIRECTION_45( s2opt ) ) )
{
SHAPE_LINE_CHAIN opt_path;
opt_path.Append( s1opt.A );
opt_path.Append( s1opt.B );
opt_path.Append( s2opt.B );
PNS_LINE opt_track( *aLine, opt_path );
if( !checkColliding( &opt_track ) )
{
current_path.Replace( s1.Index() + 1, s2.Index(), ip );
// removeCachedSegments(aLine, s1.Index(), s2.Index());
n_segs = current_path.SegmentCount();
found_anything = true;
break;
}
}
}
n++;
}
if( !found_anything )
{
if( step <= 2 )
{
line = current_path;
return line.SegmentCount() < segs_pre;
}
step--;
}
}
return line.SegmentCount() < segs_pre;
}
bool PNS_OPTIMIZER::mergeFull( PNS_LINE* aLine )
{
SHAPE_LINE_CHAIN& line = aLine->GetLine();
int step = line.SegmentCount() - 1;
int segs_pre = line.SegmentCount();
line.Simplify();
if( step < 0 )
return false;
SHAPE_LINE_CHAIN current_path( line );
while( 1 )
{
int n_segs = current_path.SegmentCount();
int max_step = n_segs - 2;
if( step > max_step )
step = max_step;
if( step < 1 )
break;
bool found_anything = mergeStep( aLine, current_path, step );
if( !found_anything )
step--;
}
aLine->SetShape( current_path );
return current_path.SegmentCount() < segs_pre;
}
bool PNS_OPTIMIZER::Optimize( PNS_LINE* aLine, PNS_LINE* aResult, int aStartVertex, int aEndVertex )
{
if( !aResult )
aResult = aLine;
else
*aResult = *aLine;
m_keepPostures = false;
bool rv = false;
if( m_effortLevel & MERGE_SEGMENTS )
rv |= mergeFull( aResult );
if( m_effortLevel & MERGE_OBTUSE )
rv |= mergeObtuse( aResult );
if( m_effortLevel & SMART_PADS )
rv |= runSmartPads( aResult );
return rv;
}
bool PNS_OPTIMIZER::mergeStep( PNS_LINE* aLine, SHAPE_LINE_CHAIN& aCurrentPath, int step )
{
int n = 0;
int n_segs = aCurrentPath.SegmentCount();
int cost_orig = PNS_COST_ESTIMATOR::CornerCost( aCurrentPath );
if( aLine->GetCLine().SegmentCount() < 4 )
return false;
DIRECTION_45 orig_start( aLine->GetCLine().CSegment( 0 ) );
DIRECTION_45 orig_end( aLine->GetCLine().CSegment( -1 ) );
while( n < n_segs - step )
{
const SEG s1 = aCurrentPath.CSegment( n );
const SEG s2 = aCurrentPath.CSegment( n + step );
SHAPE_LINE_CHAIN path[2], * picked = NULL;
int cost[2];
for( int i = 0; i < 2; i++ )
{
bool postureMatch = true;
SHAPE_LINE_CHAIN bypass = DIRECTION_45().BuildInitialTrace( s1.A, s2.B, i );
cost[i] = INT_MAX;
if( n == 0 && orig_start != DIRECTION_45( bypass.CSegment( 0 ) ) )
postureMatch = false;
else if( n == n_segs - step && orig_end != DIRECTION_45( bypass.CSegment( -1 ) ) )
postureMatch = false;
if( (postureMatch || !m_keepPostures) && !checkColliding( aLine, bypass ) )
{
path[i] = aCurrentPath;
path[i].Replace( s1.Index(), s2.Index(), bypass );
path[i].Simplify();
cost[i] = PNS_COST_ESTIMATOR::CornerCost( path[i] );
}
}
if( cost[0] < cost_orig && cost[0] < cost[1] )
picked = &path[0];
else if( cost[1] < cost_orig )
picked = &path[1];
if( picked )
{
n_segs = aCurrentPath.SegmentCount();
aCurrentPath = *picked;
return true;
}
n++;
}
return false;
}
PNS_OPTIMIZER::BreakoutList PNS_OPTIMIZER::circleBreakouts( int aWidth,
const SHAPE* aShape, bool aPermitDiagonal ) const
{
BreakoutList breakouts;
for( int angle = 0; angle < 360; angle += 45 )
{
const SHAPE_CIRCLE* cir = static_cast<const SHAPE_CIRCLE*>( aShape );
SHAPE_LINE_CHAIN l;
VECTOR2I p0 = cir->GetCenter();
VECTOR2I v0( cir->GetRadius() * M_SQRT2, 0 );
l.Append( p0 );
l.Append( p0 + v0.Rotate( angle * M_PI / 180.0 ) );
breakouts.push_back( l );
}
return breakouts;
}
PNS_OPTIMIZER::BreakoutList PNS_OPTIMIZER::rectBreakouts( int aWidth,
const SHAPE* aShape, bool aPermitDiagonal ) const
{
const SHAPE_RECT* rect = static_cast<const SHAPE_RECT*>(aShape);
VECTOR2I s = rect->GetSize(), c = rect->GetPosition() + VECTOR2I( s.x / 2, s.y / 2 );
BreakoutList breakouts;
VECTOR2I d_offset;
d_offset.x = ( s.x > s.y ) ? ( s.x - s.y ) / 2 : 0;
d_offset.y = ( s.x < s.y ) ? ( s.y - s.x ) / 2 : 0;
VECTOR2I d_vert = VECTOR2I( 0, s.y / 2 + aWidth );
VECTOR2I d_horiz = VECTOR2I( s.x / 2 + aWidth, 0 );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c + d_horiz ) );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c - d_horiz ) );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c + d_vert ) );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c - d_vert ) );
if( aPermitDiagonal )
{
int l = aWidth + std::min( s.x, s.y ) / 2;
VECTOR2I d_diag;
if( s.x >= s.y )
{
breakouts.push_back( SHAPE_LINE_CHAIN( c, c + d_offset,
c + d_offset + VECTOR2I( l, l ) ) );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c + d_offset,
c + d_offset - VECTOR2I( -l, l ) ) );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c - d_offset,
c - d_offset + VECTOR2I( -l, l ) ) );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c - d_offset,
c - d_offset - VECTOR2I( l, l ) ) );
}
else
{
// fixme: this could be done more efficiently
breakouts.push_back( SHAPE_LINE_CHAIN( c, c + d_offset,
c + d_offset + VECTOR2I( l, l ) ) );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c - d_offset,
c - d_offset - VECTOR2I( -l, l ) ) );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c + d_offset,
c + d_offset + VECTOR2I( -l, l ) ) );
breakouts.push_back( SHAPE_LINE_CHAIN( c, c - d_offset,
c - d_offset - VECTOR2I( l, l ) ) );
}
}
return breakouts;
}
PNS_OPTIMIZER::BreakoutList PNS_OPTIMIZER::computeBreakouts( int aWidth,
const PNS_ITEM* aItem, bool aPermitDiagonal ) const
{
switch( aItem->GetKind() )
{
case PNS_ITEM::VIA:
{
const PNS_VIA* via = static_cast<const PNS_VIA*>( aItem );
return circleBreakouts( aWidth, via->GetShape(), aPermitDiagonal );
}
case PNS_ITEM::SOLID:
{
const SHAPE* shape = aItem->GetShape();
switch( shape->Type() )
{
case SH_RECT:
return rectBreakouts( aWidth, shape, aPermitDiagonal );
case SH_CIRCLE:
return circleBreakouts( aWidth, shape, aPermitDiagonal );
default:
break;
}
}
default:
break;
}
return BreakoutList();
}
PNS_ITEM* PNS_OPTIMIZER::findPadOrVia( int aLayer, int aNet, const VECTOR2I& aP ) const
{
PNS_NODE::OptJoint jt = m_world->FindJoint( aP, aLayer, aNet );
if( !jt )
return NULL;
BOOST_FOREACH( PNS_ITEM* item, jt->GetLinkList() )
{
if( item->GetKind() == PNS_ITEM::VIA || item->GetKind() == PNS_ITEM::SOLID )
return item;
}
return NULL;
}
int PNS_OPTIMIZER::smartPadsSingle( PNS_LINE* aLine, PNS_ITEM* aPad, bool aEnd, int aEndVertex )
{
int min_cost = INT_MAX; // PNS_COST_ESTIMATOR::CornerCost( line );
int min_len = INT_MAX;
DIRECTION_45 dir;
const int ForbiddenAngles = DIRECTION_45::ANG_ACUTE | DIRECTION_45::ANG_RIGHT |
DIRECTION_45::ANG_HALF_FULL | DIRECTION_45::ANG_UNDEFINED;
typedef std::pair<int, SHAPE_LINE_CHAIN> RtVariant;
std::vector<RtVariant> variants;
BreakoutList breakouts = computeBreakouts( aLine->GetWidth(), aPad, true );
SHAPE_LINE_CHAIN line = ( aEnd ? aLine->GetCLine().Reverse() : aLine->GetCLine() );
// bool startDiagonal = DIRECTION_45( line.CSegment(0) ).IsDiagonal();
int p_end = std::min( aEndVertex, std::min( 3, line.PointCount() - 1 ) );
for( int p = 1; p <= p_end; p++ )
{
BOOST_FOREACH( SHAPE_LINE_CHAIN & l, breakouts ) {
// PNSDisplayDebugLine (l, 0);
for( int diag = 0; diag < 2; diag++ )
{
SHAPE_LINE_CHAIN v;
SHAPE_LINE_CHAIN connect = dir.BuildInitialTrace( l.CPoint( -1 ),
line.CPoint( p ), diag == 0 );
DIRECTION_45 dir_bkout( l.CSegment( -1 ) );
// DIRECTION_45 dir_head ( line.CSegment(p + 1));
int ang1 = dir_bkout.Angle( DIRECTION_45( connect.CSegment( 0 ) ) );
int ang2 = 0;
// int ang2 = dir_head.Angle ( DIRECTION_45(connect.CSegment(-1) ));
if( (ang1 | ang2) & ForbiddenAngles )
continue;
if( l.Length() > line.Length() )
continue;
v = l;
v.Append( connect );
for( int i = p + 1; i < line.PointCount(); i++ )
v.Append( line.CPoint( i ) );
PNS_LINE tmp( *aLine, v );
// tmp.GetLine().Simplify();
int cc = tmp.CountCorners( ForbiddenAngles );
if( cc == 0 )
{
RtVariant vp;
vp.first = p;
vp.second = aEnd ? v.Reverse() : v;
vp.second.Simplify();
variants.push_back( vp );
}
}
}
}
SHAPE_LINE_CHAIN l_best;
bool found = false;
int p_best = -1;
BOOST_FOREACH( RtVariant& vp, variants )
{
PNS_LINE tmp( *aLine, vp.second );
int cost = PNS_COST_ESTIMATOR::CornerCost( vp.second );
int len = vp.second.Length();
if( !checkColliding( &tmp ) )
{
/* if(aEnd)
* PNSDisplayDebugLine (l_best, 6);
* else
* PNSDisplayDebugLine (l_best, 5);*/
if( cost < min_cost || ( cost == min_cost && len < min_len ) )
{
l_best = vp.second;
p_best = vp.first;
found = true;
// if(cost == min_cost)
if( cost == min_cost )
min_len = std::min( len, min_len );
min_cost = std::min( cost, min_cost );
}
}
}
if( found )
{
// printf("end: %d, p-best: %d, p-end: %d, p-total: %d\n", aEnd, p_best, p_end, l_best.PointCount());
// if(!aEnd)
// PNSDisplayDebugLine (l_best, 5);
// else
aLine->SetShape( l_best );
return p_best;
}
return -1;
}
bool PNS_OPTIMIZER::runSmartPads( PNS_LINE* aLine )
{
SHAPE_LINE_CHAIN& line = aLine->GetLine();
if( line.PointCount() < 3 )
return false;
VECTOR2I p_start = line.CPoint( 0 ), p_end = line.CPoint( -1 );
PNS_ITEM* startPad = findPadOrVia( aLine->GetLayer(), aLine->GetNet(), p_start );
PNS_ITEM* endPad = findPadOrVia( aLine->GetLayer(), aLine->GetNet(), p_end );
int vtx = -1;
if( startPad )
vtx = smartPadsSingle( aLine, startPad, false, 3 );
if( endPad )
smartPadsSingle( aLine, endPad, true,
vtx < 0 ? line.PointCount() - 1 : line.PointCount() - 1 - vtx );
aLine->GetLine().Simplify();
return true;
}
bool PNS_OPTIMIZER::Optimize( PNS_LINE* aLine, int aEffortLevel, PNS_NODE* aWorld )
{
PNS_OPTIMIZER opt( aWorld ? aWorld : aLine->GetWorld() );
opt.SetEffortLevel( aEffortLevel );
opt.SetCollisionMask( -1 );
return opt.Optimize( aLine );
}