kicad/bitmap2component/bitmap2component.cpp

612 lines
19 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 1992-2019 jean-pierre.charras
* Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <algorithm> // std::max
#include <cerrno>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
#include <kiid.h>
#include <layer_ids.h>
#include <locale_io.h>
#include <potracelib.h>
#include <fmt/format.h>
#include "bitmap2component.h"
/* free a potrace bitmap */
static void bm_free( potrace_bitmap_t* bm )
{
if( bm != nullptr )
{
free( bm->map );
}
free( bm );
}
static void BezierToPolyline( std::vector <potrace_dpoint_t>& aCornersBuffer,
potrace_dpoint_t p1,
potrace_dpoint_t p2,
potrace_dpoint_t p3,
potrace_dpoint_t p4 );
BITMAPCONV_INFO::BITMAPCONV_INFO( std::string& aData ):
m_Data( aData )
{
m_Format = POSTSCRIPT_FMT;
m_PixmapWidth = 0;
m_PixmapHeight = 0;
m_ScaleX = 1.0;
m_ScaleY = 1.0;
m_Paths = nullptr;
m_CmpName = "LOGO";
}
int BITMAPCONV_INFO::ConvertBitmap( potrace_bitmap_t* aPotrace_bitmap, OUTPUT_FMT_ID aFormat,
int aDpi_X, int aDpi_Y, BMP2CMP_MOD_LAYER aModLayer )
{
potrace_param_t* param;
potrace_state_t* st;
// set tracing parameters, starting from defaults
param = potrace_param_default();
if( !param )
{
m_errors += fmt::format( "Error allocating parameters: {}\n", strerror( errno ) );
return 1;
}
// For parameters: see http://potrace.sourceforge.net/potracelib.pdf
param->turdsize = 0; // area (in pixels) of largest path to be ignored.
// Potrace default is 2
param->opttolerance = 0.2; // curve optimization tolerance. Potrace default is 0.2
/* convert the bitmap to curves */
st = potrace_trace( param, aPotrace_bitmap );
if( !st || st->status != POTRACE_STATUS_OK )
{
if( st )
{
potrace_state_free( st );
}
potrace_param_free( param );
m_errors += fmt::format( "Error tracing bitmap: {}\n", strerror( errno ) );
return 1;
}
m_PixmapWidth = aPotrace_bitmap->w;
m_PixmapHeight = aPotrace_bitmap->h; // the bitmap size in pixels
m_Paths = st->plist;
switch( aFormat )
{
case KICAD_WKS_LOGO:
m_Format = KICAD_WKS_LOGO;
m_ScaleX = PL_IU_PER_MM * 25.4 / aDpi_X; // the conversion scale from PPI to micron
m_ScaleY = PL_IU_PER_MM * 25.4 / aDpi_Y; // Y axis is top to bottom
createOutputData();
break;
case POSTSCRIPT_FMT:
m_Format = POSTSCRIPT_FMT;
m_ScaleX = 1.0; // the conversion scale
m_ScaleY = m_ScaleX;
// output vector data, e.g. as a rudimentary EPS file (mainly for tests)
createOutputData();
break;
case EESCHEMA_FMT:
m_Format = EESCHEMA_FMT;
m_ScaleX = SCH_IU_PER_MM * 25.4 / aDpi_X; // the conversion scale from PPI to eeschema iu
m_ScaleY = -SCH_IU_PER_MM * 25.4 / aDpi_Y; // Y axis is bottom to Top for components in libs
createOutputData();
break;
case PCBNEW_KICAD_MOD:
m_Format = PCBNEW_KICAD_MOD;
m_ScaleX = PCB_IU_PER_MM * 25.4 / aDpi_X; // the conversion scale from PPI to IU
m_ScaleY = PCB_IU_PER_MM * 25.4 / aDpi_Y; // Y axis is top to bottom in Footprint Editor
createOutputData( aModLayer );
break;
default:
break;
}
bm_free( aPotrace_bitmap );
potrace_state_free( st );
potrace_param_free( param );
return 0;
}
const char* BITMAPCONV_INFO::getBoardLayerName( BMP2CMP_MOD_LAYER aChoice )
{
const char* layerName = "F.SilkS";
switch( aChoice )
{
case MOD_LYR_FSOLDERMASK:
layerName = "F.Mask";
break;
case MOD_LYR_FAB:
layerName = "F.Fab";
break;
case MOD_LYR_DRAWINGS:
layerName = "Dwgs.User";
break;
case MOD_LYR_COMMENTS:
layerName = "Cmts.User";
break;
case MOD_LYR_ECO1:
layerName = "Eco1.User";
break;
case MOD_LYR_ECO2:
layerName = "Eco2.User";
break;
case MOD_LYR_FSILKS:
break;
}
return layerName;
}
void BITMAPCONV_INFO::outputDataHeader( const char * aBrdLayerName )
{
double Ypos = ( m_PixmapHeight / 2 * m_ScaleY ); // fields Y position in mm
double fieldSize; // fields text size in mm
std::string strbuf;
switch( m_Format )
{
case POSTSCRIPT_FMT:
/* output vector data, e.g. as a rudimentary EPS file */
m_Data += "%!PS-Adobe-3.0 EPSF-3.0\n";
strbuf = fmt::format( "%%BoundingBox: 0 0 {} {}\n", m_PixmapWidth, m_PixmapHeight );
m_Data += strbuf;
m_Data += "gsave\n";
break;
case PCBNEW_KICAD_MOD:
// fields text size = 1.5 mm
// fields text thickness = 1.5 / 5 = 0.3mm
strbuf = fmt::format( "(footprint \"{}\" (version 20221018) (generator bitmap2component)\n"
" (layer \"F.Cu\")\n",
m_CmpName.c_str() );
m_Data += strbuf;
strbuf = fmt::format(
" (attr board_only exclude_from_pos_files exclude_from_bom)\n" );
m_Data += strbuf;
strbuf = fmt::format(
" (fp_text reference \"G***\" (at 0 0) (layer \"{}\")\n"
" (effects (font (size 1.5 1.5) (thickness 0.3)))\n"
" (uuid {})\n )\n",
aBrdLayerName, KIID().AsString().ToStdString().c_str() );
m_Data += strbuf;
strbuf = fmt::format(
" (fp_text value \"{}\" (at 0.75 0) (layer \"{}\") hide\n"
" (effects (font (size 1.5 1.5) (thickness 0.3)))\n"
" (uuid {})\n )\n",
m_CmpName.c_str(), aBrdLayerName, KIID().AsString().ToStdString().c_str() );
m_Data += strbuf;
break;
case KICAD_WKS_LOGO:
m_Data += "(kicad_wks (version 20220228) (generator bitmap2component)\n";
m_Data += " (setup (textsize 1.5 1.5)(linewidth 0.15)(textlinewidth 0.15)\n";
m_Data += " (left_margin 10)(right_margin 10)(top_margin 10)(bottom_margin 10))\n";
m_Data += " (polygon (name \"\") (pos 0 0) (linewidth 0.01)\n";
break;
case EESCHEMA_FMT:
fieldSize = 1.27; // fields text size in mm (= 50 mils)
Ypos /= SCH_IU_PER_MM;
Ypos += fieldSize / 2;
// snprintf( strbuf, sizeof(strbuf), "# pixmap size w = %d, h = %d\n#\n", m_PixmapWidth, m_PixmapHeight );
strbuf = fmt::format(
"(kicad_symbol_lib (version 20220914) (generator bitmap2component)\n"
" (symbol \"{}\" (pin_names (offset 1.016)) (in_bom yes) (on_board yes)\n",
m_CmpName.c_str() );
m_Data += strbuf;
strbuf = fmt::format(
" (property \"Reference\" \"#G\" (at 0 {:g} 0)\n"
" (effects (font (size {:g} {:g})) hide)\n )\n",
-Ypos, fieldSize, fieldSize );
m_Data += strbuf;
strbuf = fmt::format(
" (property \"Value\" \"{}\" (at 0 {:g} 0)\n"
" (effects (font (size {:g} {:g})) hide)\n )\n",
m_CmpName.c_str(), Ypos, fieldSize, fieldSize );
m_Data += strbuf;
strbuf = fmt::format(
" (property \"Footprint\" \"\" (at 0 0 0)\n"
" (effects (font (size {:g} {:g})) hide)\n )\n",
fieldSize, fieldSize );
m_Data += strbuf;
strbuf = fmt::format(
" (property \"Datasheet\" \"\" (at 0 0 0)\n"
" (effects (font (size {:g} {:g})) hide)\n )\n",
fieldSize, fieldSize );
m_Data += strbuf;
strbuf = fmt::format( " (symbol \"{}_0_0\"\n", m_CmpName.c_str() );
m_Data += strbuf;
break;
}
}
void BITMAPCONV_INFO::outputDataEnd()
{
switch( m_Format )
{
case POSTSCRIPT_FMT:
m_Data += "grestore\n";
m_Data += "%%EOF\n";
break;
case PCBNEW_KICAD_MOD:
m_Data += ")\n";
break;
case KICAD_WKS_LOGO:
m_Data += " )\n)\n";
break;
case EESCHEMA_FMT:
m_Data += " )\n"; // end symbol_0_0
m_Data += " )\n"; // end symbol
m_Data += ")\n"; // end lib
break;
}
}
void BITMAPCONV_INFO::outputOnePolygon( SHAPE_LINE_CHAIN& aPolygon, const char* aBrdLayerName )
{
// write one polygon to output file.
// coordinates are expected in target unit.
int ii, jj;
VECTOR2I currpoint;
std::string strbuf;
int offsetX = (int)( m_PixmapWidth / 2 * m_ScaleX );
int offsetY = (int)( m_PixmapHeight / 2 * m_ScaleY );
const VECTOR2I startpoint = aPolygon.CPoint( 0 );
switch( m_Format )
{
case POSTSCRIPT_FMT:
offsetY = (int)( m_PixmapHeight * m_ScaleY );
strbuf = fmt::format( "newpath\n{} {} moveto\n", startpoint.x, offsetY - startpoint.y );
m_Data += strbuf;
jj = 0;
for( ii = 1; ii < aPolygon.PointCount(); ii++ )
{
currpoint = aPolygon.CPoint( ii );
strbuf = fmt::format( " {} {} lineto", currpoint.x, offsetY - currpoint.y );
m_Data += strbuf;
if( jj++ > 6 )
{
jj = 0;
m_Data += "\n";
}
}
m_Data += "\nclosepath fill\n";
break;
case PCBNEW_KICAD_MOD:
{
double width = 0.0; // outline thickness in mm: no thickness
m_Data += " (fp_poly\n (pts\n";
jj = 0;
for( ii = 0; ii < aPolygon.PointCount(); ii++ )
{
currpoint = aPolygon.CPoint( ii );
strbuf = fmt::format( " (xy {} {})\n",
( currpoint.x - offsetX ) / PCB_IU_PER_MM,
( currpoint.y - offsetY ) / PCB_IU_PER_MM );
m_Data += strbuf;
}
// No need to close polygon
m_Data += " )\n\n";
strbuf = fmt::format(
" (stroke (width {:f}) (type solid)) (fill solid) (layer \"{}\") (uuid {}))\n",
width, aBrdLayerName, KIID().AsString().ToStdString().c_str() );
m_Data += strbuf;
}
break;
case KICAD_WKS_LOGO:
m_Data += " (pts";
// Internal units = micron, file unit = mm
jj = 1;
for( ii = 0; ii < aPolygon.PointCount(); ii++ )
{
currpoint = aPolygon.CPoint( ii );
strbuf = fmt::format( " (xy {:.3f} {:.3f})",
( currpoint.x - offsetX ) / PL_IU_PER_MM,
( currpoint.y - offsetY ) / PL_IU_PER_MM );
m_Data += strbuf;
if( jj++ > 4 )
{
jj = 0;
m_Data += "\n ";
}
}
// Close polygon
strbuf = fmt::format( " (xy {:.3f} {:.3f}) )\n",
( startpoint.x - offsetX ) / PL_IU_PER_MM,
( startpoint.y - offsetY ) / PL_IU_PER_MM );
m_Data += strbuf;
break;
case EESCHEMA_FMT:
// The polygon outline thickness is fixed here to 0.01 ( 0.0 is the default thickness)
#define SCH_LINE_THICKNESS_MM 0.01
//snprintf( strbuf, sizeof(strbuf), "P %d 0 0 %d", (int) aPolygon.PointCount() + 1, EE_LINE_THICKNESS );
m_Data += " (polyline\n (pts\n";
for( ii = 0; ii < aPolygon.PointCount(); ii++ )
{
currpoint = aPolygon.CPoint( ii );
strbuf = fmt::format( " (xy {:f} {:f})\n",
( currpoint.x - offsetX ) / SCH_IU_PER_MM,
( currpoint.y - offsetY ) / SCH_IU_PER_MM );
m_Data += strbuf;
}
// Close polygon
strbuf = fmt::format( " (xy {:f} {:f})\n",
( startpoint.x - offsetX ) / SCH_IU_PER_MM,
( startpoint.y - offsetY ) / SCH_IU_PER_MM );
m_Data += strbuf;
m_Data += " )\n"; // end pts
strbuf = fmt::format(
" (stroke (width {:g}) (type default))\n (fill (type outline))\n",
SCH_LINE_THICKNESS_MM );
m_Data += strbuf;
m_Data += " )\n"; // end polyline
break;
}
}
void BITMAPCONV_INFO::createOutputData( BMP2CMP_MOD_LAYER aModLayer )
{
std::vector <potrace_dpoint_t> cornersBuffer;
// polyset_areas is a set of polygon to draw
SHAPE_POLY_SET polyset_areas;
// polyset_holes is the set of holes inside polyset_areas outlines
SHAPE_POLY_SET polyset_holes;
potrace_dpoint_t( *c )[3];
LOCALE_IO toggle; // Temporary switch the locale to standard C to r/w floats
// The layer name has meaning only for .kicad_mod files.
// For these files the header creates 2 invisible texts: value and ref
// (needed but not useful) on silk screen layer
outputDataHeader( getBoardLayerName( MOD_LYR_FSILKS ) );
bool main_outline = true;
/* draw each as a polygon with no hole.
* Bezier curves are approximated by a polyline
*/
potrace_path_t* paths = m_Paths; // the list of paths
if(!m_Paths)
{
m_errors += "No shape in black and white image to convert: no outline created\n";
}
while( paths != nullptr )
{
int cnt = paths->curve.n;
int* tag = paths->curve.tag;
c = paths->curve.c;
potrace_dpoint_t startpoint = c[cnt - 1][2];
for( int i = 0; i < cnt; i++ )
{
switch( tag[i] )
{
case POTRACE_CORNER:
cornersBuffer.push_back( c[i][1] );
cornersBuffer.push_back( c[i][2] );
startpoint = c[i][2];
break;
case POTRACE_CURVETO:
BezierToPolyline( cornersBuffer, startpoint, c[i][0], c[i][1], c[i][2] );
startpoint = c[i][2];
break;
}
}
// Store current path
if( main_outline )
{
main_outline = false;
// build the current main polygon
polyset_areas.NewOutline();
for( unsigned int i = 0; i < cornersBuffer.size(); i++ )
{
polyset_areas.Append( int( cornersBuffer[i].x * m_ScaleX ),
int( cornersBuffer[i].y * m_ScaleY ) );
}
}
else
{
// Add current hole in polyset_holes
polyset_holes.NewOutline();
for( unsigned int i = 0; i < cornersBuffer.size(); i++ )
{
polyset_holes.Append( int( cornersBuffer[i].x * m_ScaleX ),
int( cornersBuffer[i].y * m_ScaleY ) );
}
}
cornersBuffer.clear();
// at the end of a group of a positive path and its negative children, fill.
if( paths->next == nullptr || paths->next->sign == '+' )
{
polyset_areas.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
polyset_holes.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
polyset_areas.BooleanSubtract( polyset_holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
// Ensure there are no self intersecting polygons
if( polyset_areas.NormalizeAreaOutlines() )
{
// Convert polygon with holes to a unique polygon
polyset_areas.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
// Output current resulting polygon(s)
for( int ii = 0; ii < polyset_areas.OutlineCount(); ii++ )
{
SHAPE_LINE_CHAIN& poly = polyset_areas.Outline( ii );
outputOnePolygon( poly, getBoardLayerName( aModLayer ));
}
polyset_areas.RemoveAllContours();
polyset_holes.RemoveAllContours();
main_outline = true;
}
}
paths = paths->next;
}
outputDataEnd();
}
// a helper function to calculate a square value
inline double square( double x )
{
return x * x;
}
// a helper function to calculate a cube value
inline double cube( double x )
{
return x * x * x;
}
/* render a Bezier curve. */
void BezierToPolyline( std::vector <potrace_dpoint_t>& aCornersBuffer,
potrace_dpoint_t p1,
potrace_dpoint_t p2,
potrace_dpoint_t p3,
potrace_dpoint_t p4 )
{
double dd0, dd1, dd, delta, e2, epsilon, t;
// p1 = starting point
/* we approximate the curve by small line segments. The interval
* size, epsilon, is determined on the fly so that the distance
* between the true curve and its approximation does not exceed the
* desired accuracy delta. */
delta = 0.25; /* desired accuracy, in pixels */
/* let dd = maximal value of 2nd derivative over curve - this must
* occur at an endpoint. */
dd0 = square( p1.x - 2 * p2.x + p3.x ) + square( p1.y - 2 * p2.y + p3.y );
dd1 = square( p2.x - 2 * p3.x + p4.x ) + square( p2.y - 2 * p3.y + p4.y );
dd = 6 * sqrt( std::max( dd0, dd1 ) );
e2 = 8 * delta <= dd ? 8 * delta / dd : 1;
epsilon = sqrt( e2 ); /* necessary interval size */
for( t = epsilon; t<1; t += epsilon )
{
potrace_dpoint_t intermediate_point;
intermediate_point.x = p1.x * cube( 1 - t ) +
3* p2.x* square( 1 - t ) * t +
3 * p3.x * (1 - t) * square( t ) +
p4.x* cube( t );
intermediate_point.y = p1.y * cube( 1 - t ) +
3* p2.y* square( 1 - t ) * t +
3 * p3.y * (1 - t) * square( t ) + p4.y* cube( t );
aCornersBuffer.push_back( intermediate_point );
}
aCornersBuffer.push_back( p4 );
}