kicad/pcbnew/router/pns_kicad_iface.cpp

1326 lines
34 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2016 CERN
* Copyright (C) 2016-2020 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <undo_redo_container.h>
#include <class_board.h>
#include <board_connected_item.h>
#include <class_text_mod.h>
#include <class_edge_mod.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <class_drawsegment.h>
#include <class_pcb_text.h>
#include <board_commit.h>
#include <layers_id_colors_and_visibility.h>
#include <geometry/convex_hull.h>
#include <confirm.h>
#include <view/view.h>
#include <view/view_item.h>
#include <view/view_group.h>
#include <gal/graphics_abstraction_layer.h>
#include <pcb_painter.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_arc.h>
#include <geometry/shape_simple.h>
#include <memory>
#include <advanced_config.h>
#include "tools/pcb_tool_base.h"
#include "pns_kicad_iface.h"
#include "pns_arc.h"
#include "pns_routing_settings.h"
#include "pns_item.h"
#include "pns_solid.h"
#include "pns_segment.h"
#include "pns_node.h"
#include "pns_topology.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
#include "router_preview_item.h"
typedef VECTOR2I::extended_type ecoord;
class PNS_PCBNEW_RULE_RESOLVER : public PNS::RULE_RESOLVER
{
public:
PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface );
virtual ~PNS_PCBNEW_RULE_RESOLVER();
virtual bool CollideHoles( const PNS::ITEM* aA, const PNS::ITEM* aB,
bool aNeedMTV, VECTOR2I* aMTV ) const override;
virtual int Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB ) const override;
virtual int Clearance( int aNetCode ) const override;
virtual int DpCoupledNet( int aNet ) override;
virtual int DpNetPolarity( int aNet ) override;
virtual bool DpNetPair( PNS::ITEM* aItem, int& aNetP, int& aNetN ) override;
virtual wxString NetName( int aNet ) override;
private:
struct CLEARANCE_ENT
{
int coupledNet;
int dpClearance;
int clearance;
};
int holeRadius( const PNS::ITEM* aItem ) const;
int localPadClearance( const PNS::ITEM* aItem ) const;
int matchDpSuffix( const wxString& aNetName, wxString& aComplementNet, wxString& aBaseDpName );
PNS::ROUTER_IFACE* m_routerIface;
BOARD* m_board;
std::vector<CLEARANCE_ENT> m_netClearanceCache;
std::unordered_map<const D_PAD*, int> m_localClearanceCache;
int m_defaultClearance;
};
PNS_PCBNEW_RULE_RESOLVER::PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface ) :
m_routerIface( aRouterIface ),
m_board( aBoard )
{
m_netClearanceCache.resize( m_board->GetNetCount() );
// Build clearance cache for net classes
for( unsigned int i = 0; i < m_board->GetNetCount(); i++ )
{
NETINFO_ITEM* ni = m_board->FindNet( i );
if( ni == NULL )
continue;
CLEARANCE_ENT ent;
ent.coupledNet = DpCoupledNet( i );
wxString netClassName = ni->GetClassName();
NETCLASSPTR nc = m_board->GetDesignSettings().GetNetClasses().Find( netClassName );
int clearance = nc->GetClearance();
ent.clearance = clearance;
ent.dpClearance = nc->GetDiffPairGap();
m_netClearanceCache[i] = ent;
wxLogTrace( "PNS", "Add net %u netclass %s clearance %d Diff Pair clearance %d",
i, netClassName.mb_str(), clearance, ent.dpClearance );
}
// Build clearance cache for pads
for( auto mod : m_board->Modules() )
{
auto moduleClearance = mod->GetLocalClearance();
for( auto pad : mod->Pads() )
{
int padClearance = pad->GetLocalClearance();
if( padClearance > 0 )
m_localClearanceCache[ pad ] = padClearance;
else if( moduleClearance > 0 )
m_localClearanceCache[ pad ] = moduleClearance;
}
}
auto defaultRule = m_board->GetDesignSettings().GetNetClasses().Find ("Default");
if( defaultRule )
{
m_defaultClearance = defaultRule->GetClearance();
}
else
{
m_defaultClearance = Millimeter2iu(0.254);
}
}
PNS_PCBNEW_RULE_RESOLVER::~PNS_PCBNEW_RULE_RESOLVER()
{
}
int PNS_PCBNEW_RULE_RESOLVER::holeRadius( const PNS::ITEM* aItem ) const
{
if( aItem->Kind() == PNS::ITEM::SOLID_T )
{
const D_PAD* pad = dynamic_cast<const D_PAD*>( aItem->Parent() );
if( pad && pad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
return pad->GetDrillSize().x / 2;
}
else if( aItem->Kind() == PNS::ITEM::VIA_T )
{
const ::VIA* via = dynamic_cast<const ::VIA*>( aItem->Parent() );
if( via )
return via->GetDrillValue() / 2;
}
return 0;
}
bool PNS_PCBNEW_RULE_RESOLVER::CollideHoles( const PNS::ITEM* aA, const PNS::ITEM* aB,
bool aNeedMTV, VECTOR2I* aMTV ) const
{
VECTOR2I pos_a = aA->Shape()->Centre();
VECTOR2I pos_b = aB->Shape()->Centre();
// Holes with identical locations are allowable
if( pos_a == pos_b )
return false;
int radius_a = holeRadius( aA );
int radius_b = holeRadius( aB );
// Do both objects have holes?
if( radius_a > 0 && radius_b > 0 )
{
int holeToHoleMin = m_board->GetDesignSettings().m_HoleToHoleMin;
ecoord min_dist = holeToHoleMin + radius_a + radius_b;
ecoord min_dist_sq = min_dist * min_dist;
const VECTOR2I delta = pos_b - pos_a;
ecoord dist_sq = delta.SquaredEuclideanNorm();
if( dist_sq == 0 || dist_sq < min_dist_sq )
{
if( aNeedMTV )
*aMTV = delta.Resize( min_dist - sqrt( dist_sq ) + 3 ); // fixme: apparent rounding error
return true;
}
}
return false;
}
int PNS_PCBNEW_RULE_RESOLVER::localPadClearance( const PNS::ITEM* aItem ) const
{
if( !aItem->Parent() || aItem->Parent()->Type() != PCB_PAD_T )
return 0;
const D_PAD* pad = static_cast<D_PAD*>( aItem->Parent() );
auto i = m_localClearanceCache.find( pad );
if( i == m_localClearanceCache.end() )
return 0;
return i->second;
}
int PNS_PCBNEW_RULE_RESOLVER::Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB ) const
{
int net_a = aA->Net();
int cl_a = Clearance( net_a );
int net_b = aB->Net();
int cl_b = Clearance( net_b );
// Pad clearance is 0 if the ITEM* is not a pad
int pad_a = localPadClearance( aA );
int pad_b = localPadClearance( aB );
if( pad_a > 0 )
cl_a = pad_a;
if( pad_b > 0 )
cl_b = pad_b;
return std::max( cl_a, cl_b );
}
int PNS_PCBNEW_RULE_RESOLVER::Clearance( int aNetCode ) const
{
if( aNetCode == -1 )
{
return 0;
}
else if( aNetCode == 0 )
{
return m_defaultClearance;
}
else if( aNetCode > 0 && aNetCode < (int) m_netClearanceCache.size() )
{
return m_netClearanceCache[aNetCode].clearance;
}
else
{
wxFAIL_MSG( "PNS_PCBNEW_RULE_RESOLVER::Clearance: net not found in clearance cache." );
return m_defaultClearance;
}
}
int PNS_PCBNEW_RULE_RESOLVER::matchDpSuffix( const wxString& aNetName, wxString& aComplementNet,
wxString& aBaseDpName )
{
int rv = 0;
if( aNetName.EndsWith( "+" ) )
{
aComplementNet = "-";
rv = 1;
}
else if( aNetName.EndsWith( "P" ) )
{
aComplementNet = "N";
rv = 1;
}
else if( aNetName.EndsWith( "-" ) )
{
aComplementNet = "+";
rv = -1;
}
else if( aNetName.EndsWith( "N" ) )
{
aComplementNet = "P";
rv = -1;
}
// Match P followed by 2 digits
else if( aNetName.Right( 2 ).IsNumber() && aNetName.Right( 3 ).Left( 1 ) == "P" )
{
aComplementNet = "N" + aNetName.Right( 2 );
rv = 1;
}
// Match P followed by 1 digit
else if( aNetName.Right( 1 ).IsNumber() && aNetName.Right( 2 ).Left( 1 ) == "P" )
{
aComplementNet = "N" + aNetName.Right( 1 );
rv = 1;
}
// Match N followed by 2 digits
else if( aNetName.Right( 2 ).IsNumber() && aNetName.Right( 3 ).Left( 1 ) == "N" )
{
aComplementNet = "P" + aNetName.Right( 2 );
rv = -1;
}
// Match N followed by 1 digit
else if( aNetName.Right( 1 ).IsNumber() && aNetName.Right( 2 ).Left( 1 ) == "N" )
{
aComplementNet = "P" + aNetName.Right( 1 );
rv = -1;
}
if( rv != 0 )
{
aBaseDpName = aNetName.Left( aNetName.Length() - aComplementNet.Length() );
aComplementNet = aBaseDpName + aComplementNet;
}
return rv;
}
int PNS_PCBNEW_RULE_RESOLVER::DpCoupledNet( int aNet )
{
wxString refName = m_board->FindNet( aNet )->GetNetname();
wxString dummy, coupledNetName;
if( matchDpSuffix( refName, coupledNetName, dummy ) )
{
NETINFO_ITEM* net = m_board->FindNet( coupledNetName );
if( !net )
return -1;
return net->GetNet();
}
return -1;
}
wxString PNS_PCBNEW_RULE_RESOLVER::NetName( int aNet )
{
return m_board->FindNet( aNet )->GetNetname();
}
int PNS_PCBNEW_RULE_RESOLVER::DpNetPolarity( int aNet )
{
wxString refName = m_board->FindNet( aNet )->GetNetname();
wxString dummy1, dummy2;
return matchDpSuffix( refName, dummy1, dummy2 );
}
bool PNS_PCBNEW_RULE_RESOLVER::DpNetPair( PNS::ITEM* aItem, int& aNetP, int& aNetN )
{
if( !aItem || !aItem->Parent() || !aItem->Parent()->GetNet() )
return false;
wxString netNameP = aItem->Parent()->GetNet()->GetNetname();
wxString netNameN, netNameCoupled, netNameBase;
int r = matchDpSuffix( netNameP, netNameCoupled, netNameBase );
if( r == 0 )
return false;
else if( r == 1 )
{
netNameN = netNameCoupled;
}
else
{
netNameN = netNameP;
netNameP = netNameCoupled;
}
// wxLogTrace( "PNS","p %s n %s base %s\n", (const char *)netNameP.c_str(), (const char *)netNameN.c_str(), (const char *)netNameBase.c_str() );
NETINFO_ITEM* netInfoP = m_board->FindNet( netNameP );
NETINFO_ITEM* netInfoN = m_board->FindNet( netNameN );
//wxLogTrace( "PNS","ip %p in %p\n", netInfoP, netInfoN);
if( !netInfoP || !netInfoN )
return false;
aNetP = netInfoP->GetNet();
aNetN = netInfoN->GetNet();
return true;
}
class PNS_PCBNEW_DEBUG_DECORATOR: public PNS::DEBUG_DECORATOR
{
public:
PNS_PCBNEW_DEBUG_DECORATOR( KIGFX::VIEW* aView = NULL ): PNS::DEBUG_DECORATOR(),
m_view( NULL ), m_items( NULL )
{
SetView( aView );
}
~PNS_PCBNEW_DEBUG_DECORATOR()
{
Clear();
delete m_items;
}
void SetView( KIGFX::VIEW* aView )
{
Clear();
delete m_items;
m_items = NULL;
m_view = aView;
if( m_view == NULL )
return;
m_items = new KIGFX::VIEW_GROUP( m_view );
m_items->SetLayer( LAYER_SELECT_OVERLAY ) ;
m_view->Add( m_items );
}
void AddPoint( VECTOR2I aP, int aColor, const std::string aName = "") override
{
SHAPE_LINE_CHAIN l;
l.Append( aP - VECTOR2I( -50000, -50000 ) );
l.Append( aP + VECTOR2I( -50000, -50000 ) );
AddLine( l, aColor, 10000 );
l.Clear();
l.Append( aP - VECTOR2I( 50000, -50000 ) );
l.Append( aP + VECTOR2I( 50000, -50000 ) );
AddLine( l, aColor, 10000 );
}
void AddBox( BOX2I aB, int aColor, const std::string aName = "" ) override
{
SHAPE_LINE_CHAIN l;
VECTOR2I o = aB.GetOrigin();
VECTOR2I s = aB.GetSize();
l.Append( o );
l.Append( o.x + s.x, o.y );
l.Append( o.x + s.x, o.y + s.y );
l.Append( o.x, o.y + s.y );
l.Append( o );
AddLine( l, aColor, 10000 );
}
void AddSegment( SEG aS, int aColor, const std::string aName = "") override
{
SHAPE_LINE_CHAIN l;
l.Append( aS.A );
l.Append( aS.B );
AddLine( l, aColor, 10000 );
}
void AddDirections( VECTOR2D aP, int aMask, int aColor, const std::string aName = "") override
{
BOX2I b( aP - VECTOR2I( 10000, 10000 ), VECTOR2I( 20000, 20000 ) );
AddBox( b, aColor );
for( int i = 0; i < 8; i++ )
{
if( ( 1 << i ) & aMask )
{
VECTOR2I v = DIRECTION_45( ( DIRECTION_45::Directions ) i ).ToVector() * 100000;
AddSegment( SEG( aP, aP + v ), aColor );
}
}
}
void AddLine( const SHAPE_LINE_CHAIN& aLine, int aType, int aWidth, const std::string aName = "" ) override
{
if( !m_view )
return;
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( NULL, m_view );
pitem->Line( aLine, aWidth, aType );
m_items->Add( pitem ); // Should not be needed, as m_items has been passed as a parent group in alloc;
m_view->Update( m_items );
}
void Clear() override
{
if( m_view && m_items )
{
m_items->FreeItems();
m_view->Update( m_items );
}
}
private:
KIGFX::VIEW* m_view;
KIGFX::VIEW_GROUP* m_items;
};
PNS::DEBUG_DECORATOR* PNS_KICAD_IFACE_BASE::GetDebugDecorator()
{
return m_debugDecorator;
}
PNS_KICAD_IFACE_BASE::PNS_KICAD_IFACE_BASE()
{
m_ruleResolver = nullptr;
m_board = nullptr;
m_world = nullptr;
m_debugDecorator = nullptr;
}
PNS_KICAD_IFACE::PNS_KICAD_IFACE()
{
m_tool = nullptr;
m_view = nullptr;
m_previewItems = nullptr;
m_dispOptions = nullptr;
}
PNS_KICAD_IFACE_BASE::~PNS_KICAD_IFACE_BASE()
{
}
PNS_KICAD_IFACE::~PNS_KICAD_IFACE()
{
delete m_ruleResolver;
delete m_debugDecorator;
if( m_previewItems )
{
m_previewItems->FreeItems();
delete m_previewItems;
}
}
std::unique_ptr<PNS::SOLID> PNS_KICAD_IFACE_BASE::syncPad( D_PAD* aPad )
{
LAYER_RANGE layers( 0, MAX_CU_LAYERS - 1 );
// ignore non-copper pads except for those with holes
if( ( aPad->GetLayerSet() & LSET::AllCuMask()).none() &&
aPad->GetAttribute() != PAD_ATTRIB_HOLE_NOT_PLATED )
return NULL;
switch( aPad->GetAttribute() )
{
case PAD_ATTRIB_STANDARD:
break;
case PAD_ATTRIB_HOLE_NOT_PLATED:
case PAD_ATTRIB_CONN:
case PAD_ATTRIB_SMD:
{
LSET lmsk = aPad->GetLayerSet();
bool is_copper = false;
for( int i = 0; i < MAX_CU_LAYERS; i++ )
{
if( lmsk[i] )
{
is_copper = true;
if( aPad->GetAttribute() != PAD_ATTRIB_HOLE_NOT_PLATED )
layers = LAYER_RANGE( i );
break;
}
}
/// Keep the NPTH pads because we will use the drill as alternate shape
if( !is_copper && aPad->GetAttribute() != PAD_ATTRIB_HOLE_NOT_PLATED )
return NULL;
}
break;
default:
wxLogTrace( "PNS", "unsupported pad type 0x%x", aPad->GetAttribute() );
return NULL;
}
std::unique_ptr< PNS::SOLID > solid( new PNS::SOLID );
if( aPad->GetAttribute() == PAD_ATTRIB_STANDARD ||
aPad->GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED )
solid->SetAlternateShape( aPad->GetEffectiveHoleShape()->Clone() );
if( aPad->GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED )
solid->SetRoutable( false );
solid->SetLayers( layers );
solid->SetNet( aPad->GetNetCode() );
solid->SetParent( aPad );
solid->SetPadToDie( aPad->GetPadToDieLength() );
wxPoint wx_c = aPad->ShapePos();
wxSize wx_sz = aPad->GetSize();
wxPoint offset = aPad->GetOffset();
VECTOR2I c( wx_c.x, wx_c.y );
RotatePoint( &offset, aPad->GetOrientation() );
solid->SetPos( VECTOR2I( c.x - offset.x, c.y - offset.y ) );
solid->SetOffset( VECTOR2I( offset.x, offset.y ) );
auto shapes = std::dynamic_pointer_cast<SHAPE_COMPOUND>( aPad->GetEffectiveShape() );
if( shapes && shapes->Size() == 1 )
{
solid->SetShape( shapes->Shapes()[0]->Clone() );
}
else
{
// JEY TODO:
// TOM TODO: move to SHAPE_COMPOUND...
const std::shared_ptr<SHAPE_POLY_SET>& outline = aPad->GetEffectivePolygon();
SHAPE_SIMPLE* shape = new SHAPE_SIMPLE();
for( auto iter = outline->CIterate( 0 ); iter; iter++ )
shape->Append( *iter );
solid->SetShape( shape );
}
return solid;
}
std::unique_ptr<PNS::SEGMENT> PNS_KICAD_IFACE_BASE::syncTrack( TRACK* aTrack )
{
std::unique_ptr< PNS::SEGMENT > segment(
new PNS::SEGMENT( SEG( aTrack->GetStart(), aTrack->GetEnd() ), aTrack->GetNetCode() )
);
segment->SetWidth( aTrack->GetWidth() );
segment->SetLayers( LAYER_RANGE( aTrack->GetLayer() ) );
segment->SetParent( aTrack );
if( aTrack->IsLocked() )
segment->Mark( PNS::MK_LOCKED );
return segment;
}
std::unique_ptr<PNS::ARC> PNS_KICAD_IFACE_BASE::syncArc( ARC* aArc )
{
std::unique_ptr< PNS::ARC > arc(
new PNS::ARC( SHAPE_ARC( aArc->GetStart(), aArc->GetMid(), aArc->GetEnd(),
aArc->GetWidth() ), aArc->GetNetCode() )
);
arc->SetLayers( LAYER_RANGE( aArc->GetLayer() ) );
arc->SetParent( aArc );
if( aArc->IsLocked() )
arc->Mark( PNS::MK_LOCKED );
return arc;
}
std::unique_ptr<PNS::VIA> PNS_KICAD_IFACE_BASE::syncVia( VIA* aVia )
{
std::vector<std::unique_ptr<PNS::VIA>> retval;
PCB_LAYER_ID top, bottom;
aVia->LayerPair( &top, &bottom );
std::unique_ptr<PNS::VIA> via( new PNS::VIA(
aVia->GetPosition(),
LAYER_RANGE( aVia->TopLayer(), aVia->BottomLayer() ),
aVia->GetWidth(),
aVia->GetDrillValue(),
aVia->GetNetCode(),
aVia->GetViaType() )
);
via->SetParent( aVia );
if( aVia->IsLocked() )
via->Mark( PNS::MK_LOCKED );
return std::move( via );
}
bool PNS_KICAD_IFACE_BASE::syncZone( PNS::NODE* aWorld, ZONE_CONTAINER* aZone )
{
SHAPE_POLY_SET poly;
// TODO handle no-via restriction
if( !aZone->GetIsKeepout() || !aZone->GetDoNotAllowTracks() )
return false;
LSET layers = aZone->GetLayerSet();
for( int layer = F_Cu; layer <= B_Cu; layer++ )
{
if( ! layers[ layer ] )
continue;
aZone->BuildSmoothedPoly( poly, ToLAYER_ID( layer ) );
poly.CacheTriangulation();
if( !poly.IsTriangulationUpToDate() )
{
KIDIALOG dlg( nullptr, wxString::Format( _( "Malformed keep-out zone at (%d, %d)" ),
aZone->GetPosition().x, aZone->GetPosition().y ), KIDIALOG::KD_WARNING );
dlg.ShowDetailedText(
wxString::Format( _( "%s\nThis zone cannot be handled by the track layout tool.\n"
"Please verify it is not a self-intersecting polygon." ),
aZone->GetSelectMenuText( EDA_UNITS::MILLIMETRES ) ) );
dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
dlg.ShowModal();
return false;
}
for( int outline = 0; outline < poly.OutlineCount(); outline++ )
{
auto tri = poly.TriangulatedPolygon( outline );
for( size_t i = 0; i < tri->GetTriangleCount(); i++)
{
VECTOR2I a, b, c;
tri->GetTriangle( i, a, b, c );
auto triShape = new SHAPE_SIMPLE;
triShape->Append( a );
triShape->Append( b );
triShape->Append( c );
std::unique_ptr< PNS::SOLID > solid( new PNS::SOLID );
solid->SetLayer( layer );
solid->SetNet( -1 );
solid->SetParent( aZone );
solid->SetShape( triShape );
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
}
}
}
return true;
}
bool PNS_KICAD_IFACE_BASE::syncTextItem( PNS::NODE* aWorld, EDA_TEXT* aText, PCB_LAYER_ID aLayer )
{
if( !IsCopperLayer( aLayer ) )
return false;
int textWidth = aText->GetEffectiveTextPenWidth();
std::vector<wxPoint> textShape;
aText->TransformTextShapeToSegmentList( textShape );
if( textShape.size() < 2 )
return false;
for( size_t jj = 0; jj < textShape.size(); jj += 2 )
{
VECTOR2I start( textShape[jj] );
VECTOR2I end( textShape[jj+1] );
std::unique_ptr< PNS::SOLID > solid( new PNS::SOLID );
solid->SetLayer( aLayer );
solid->SetNet( -1 );
solid->SetParent( nullptr );
solid->SetShape( new SHAPE_SEGMENT( start, end, textWidth ) );
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
}
return true;
/* A coarser (but faster) method:
*
SHAPE_POLY_SET outline;
SHAPE_SIMPLE* shape = new SHAPE_SIMPLE();
aText->TransformBoundingBoxWithClearanceToPolygon( &outline, 0 );
for( auto iter = outline.CIterate( 0 ); iter; iter++ )
shape->Append( *iter );
solid->SetShape( shape );
solid->SetLayer( aLayer );
solid->SetNet( -1 );
solid->SetParent( nullptr );
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
return true;
*/
}
bool PNS_KICAD_IFACE_BASE::syncGraphicalItem( PNS::NODE* aWorld, DRAWSEGMENT* aItem )
{
if( aItem->GetLayer() != Edge_Cuts && !IsCopperLayer( aItem->GetLayer() ) )
return false;
// TODO: where do we handle filled polygons on copper layers?
if( aItem->GetShape() == S_POLYGON && aItem->IsPolygonFilled() )
return false;
for( SHAPE* shape : aItem->MakeEffectiveShapes() )
{
std::unique_ptr< PNS::SOLID > solid( new PNS::SOLID );
if( aItem->GetLayer() == Edge_Cuts )
solid->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) );
else
solid->SetLayer( aItem->GetLayer() );
solid->SetNet( -1 );
solid->SetParent( nullptr );
solid->SetShape( shape );
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
}
return true;
}
void PNS_KICAD_IFACE_BASE::SetBoard( BOARD* aBoard )
{
m_board = aBoard;
wxLogTrace( "PNS", "m_board = %p", m_board );
}
bool PNS_KICAD_IFACE::IsAnyLayerVisible( const LAYER_RANGE& aLayer )
{
if( !m_view )
return false;
for( int i = aLayer.Start(); i <= aLayer.End(); i++ )
if( m_view->IsLayerVisible( i ) )
return true;
return false;
}
bool PNS_KICAD_IFACE::IsOnLayer( const PNS::ITEM* aItem, int aLayer )
{
/// Default is all layers
if( aLayer < 0 )
return true;
if( !aItem->Parent() )
return aItem->Layers().Overlaps( aLayer );
switch( aItem->Parent()->Type() )
{
case PCB_VIA_T:
{
const VIA* via = static_cast<const VIA*>( aItem->Parent() );
return via->IsPadOnLayer( static_cast<PCB_LAYER_ID>( aLayer ) );
}
case PCB_PAD_T:
{
const D_PAD* pad = static_cast<const D_PAD*>( aItem->Parent() );
return pad->IsPadOnLayer( static_cast<PCB_LAYER_ID>( aLayer ) );
}
default:
break;
}
return aItem->Layers().Overlaps( aLayer );
}
bool PNS_KICAD_IFACE::IsItemVisible( const PNS::ITEM* aItem )
{
// by default, all items are visible (new ones created by the router have parent == NULL as they have not been
// committed yet to the BOARD)
if( !m_view || !aItem->Parent() )
return true;
auto item = aItem->Parent();
bool isOnVisibleLayer = true;
if( m_view->GetPainter()->GetSettings()->GetHighContrast() )
{
int layers[KIGFX::VIEW::VIEW_MAX_LAYERS];
int layers_count;
auto activeLayers = m_view->GetPainter()->GetSettings()->GetActiveLayers();
isOnVisibleLayer = false;
item->ViewGetLayers( layers, layers_count );
for( int i = 0; i < layers_count; ++i )
{
// Item is on at least one of the active layers
if( activeLayers.count( layers[i] ) > 0 )
{
isOnVisibleLayer = true;
break;
}
}
}
if( m_view->IsVisible( item ) && isOnVisibleLayer
&& item->ViewGetLOD( item->GetLayer(), m_view ) < m_view->GetScale() )
return true;
// Items hidden in the router are not hidden on the board
if( m_hiddenItems.find( item ) != m_hiddenItems.end() )
return true;
return false;
}
void PNS_KICAD_IFACE_BASE::SyncWorld( PNS::NODE *aWorld )
{
int worstPadClearance = 0;
m_world = aWorld;
if( !m_board )
{
wxLogTrace( "PNS", "No board attached, aborting sync." );
return;
}
for( auto gitem : m_board->Drawings() )
{
if ( gitem->Type() == PCB_LINE_T )
{
syncGraphicalItem( aWorld, static_cast<DRAWSEGMENT*>( gitem ) );
}
else if( gitem->Type() == PCB_TEXT_T )
{
syncTextItem( aWorld, static_cast<TEXTE_PCB*>( gitem ), gitem->GetLayer() );
}
}
for( auto zone : m_board->Zones() )
{
syncZone( aWorld, zone );
}
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
if( auto solid = syncPad( pad ) )
aWorld->Add( std::move( solid ) );
worstPadClearance = std::max( worstPadClearance, pad->GetLocalClearance() );
}
syncTextItem( aWorld, &module->Reference(), module->Reference().GetLayer() );
syncTextItem( aWorld, &module->Value(), module->Value().GetLayer() );
for( MODULE_ZONE_CONTAINER* zone : module->Zones() )
syncZone( aWorld, zone );
if( module->IsNetTie() )
continue;
for( auto mgitem : module->GraphicalItems() )
{
if( mgitem->Type() == PCB_MODULE_EDGE_T )
{
syncGraphicalItem( aWorld, static_cast<DRAWSEGMENT*>( mgitem ) );
}
else if( mgitem->Type() == PCB_MODULE_TEXT_T )
{
syncTextItem( aWorld, static_cast<TEXTE_MODULE*>( mgitem ), mgitem->GetLayer() );
}
}
}
for( auto t : m_board->Tracks() )
{
KICAD_T type = t->Type();
if( type == PCB_TRACE_T )
{
if( auto segment = syncTrack( t ) )
aWorld->Add( std::move( segment ) );
}
else if( type == PCB_ARC_T )
{
if( auto arc = syncArc( static_cast<ARC*>( t ) ) )
aWorld->Add( std::move( arc ) );
}
else if( type == PCB_VIA_T )
{
if( auto via = syncVia( static_cast<VIA*>( t ) ) )
aWorld->Add( std::move( via ) );
}
}
int worstRuleClearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
delete m_ruleResolver;
m_ruleResolver = new PNS_PCBNEW_RULE_RESOLVER( m_board, this );
aWorld->SetRuleResolver( m_ruleResolver );
aWorld->SetMaxClearance( 4 * std::max(worstPadClearance, worstRuleClearance ) );
}
void PNS_KICAD_IFACE::EraseView()
{
for( auto item : m_hiddenItems )
m_view->SetVisible( item, true );
m_hiddenItems.clear();
if( m_previewItems )
{
m_previewItems->FreeItems();
m_view->Update( m_previewItems );
}
if( m_debugDecorator )
m_debugDecorator->Clear();
}
void PNS_KICAD_IFACE_BASE::SetDebugDecorator( PNS::DEBUG_DECORATOR *aDec )
{
m_debugDecorator = aDec;
}
void PNS_KICAD_IFACE::DisplayItem( const PNS::ITEM* aItem, int aColor, int aClearance, bool aEdit )
{
wxLogTrace( "PNS", "DisplayItem %p", aItem );
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view );
if( aColor >= 0 )
pitem->SetColor( KIGFX::COLOR4D( aColor ) );
if( aClearance >= 0 )
{
pitem->SetClearance( aClearance );
switch( m_dispOptions->m_ShowTrackClearanceMode )
{
case PCB_DISPLAY_OPTIONS::DO_NOT_SHOW_CLEARANCE:
pitem->ShowTrackClearance( false );
pitem->ShowViaClearance( false );
break;
case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_ALWAYS:
case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_NEW_AND_EDITED_TRACKS_AND_VIA_AREAS:
pitem->ShowTrackClearance( true );
pitem->ShowViaClearance( true );
break;
case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_NEW_TRACKS_AND_VIA_AREAS:
pitem->ShowTrackClearance( !aEdit );
pitem->ShowViaClearance( !aEdit );
break;
case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_NEW_TRACKS:
pitem->ShowTrackClearance( !aEdit );
pitem->ShowViaClearance( false );
break;
}
}
m_previewItems->Add( pitem );
m_view->Update( m_previewItems );
}
void PNS_KICAD_IFACE::HideItem( PNS::ITEM* aItem )
{
BOARD_CONNECTED_ITEM* parent = aItem->Parent();
if( parent )
{
if( m_view->IsVisible( parent ) )
m_hiddenItems.insert( parent );
m_view->SetVisible( parent, false );
m_view->Update( parent, KIGFX::APPEARANCE );
}
}
void PNS_KICAD_IFACE_BASE::RemoveItem( PNS::ITEM* aItem )
{
}
void PNS_KICAD_IFACE::RemoveItem( PNS::ITEM* aItem )
{
BOARD_CONNECTED_ITEM* parent = aItem->Parent();
if ( aItem->OfKind(PNS::ITEM::SOLID_T) )
{
auto pad = static_cast<D_PAD*>( parent );
auto pos = static_cast<PNS::SOLID*>( aItem )->Pos();
m_moduleOffsets[ pad ].p_old = pos;
return;
}
if( parent )
{
m_commit->Remove( parent );
}
}
void PNS_KICAD_IFACE_BASE::AddItem( PNS::ITEM* aItem )
{
}
void PNS_KICAD_IFACE::AddItem( PNS::ITEM* aItem )
{
BOARD_CONNECTED_ITEM* newBI = NULL;
switch( aItem->Kind() )
{
case PNS::ITEM::ARC_T:
{
auto arc = static_cast<PNS::ARC*>( aItem );
ARC* new_arc = new ARC( m_board, static_cast<const SHAPE_ARC*>( arc->Shape() ) );
new_arc->SetWidth( arc->Width() );
new_arc->SetLayer( ToLAYER_ID( arc->Layers().Start() ) );
new_arc->SetNetCode( std::max<int>( 0, arc->Net() ) );
newBI = new_arc;
break;
}
case PNS::ITEM::SEGMENT_T:
{
PNS::SEGMENT* seg = static_cast<PNS::SEGMENT*>( aItem );
TRACK* track = new TRACK( m_board );
const SEG& s = seg->Seg();
track->SetStart( wxPoint( s.A.x, s.A.y ) );
track->SetEnd( wxPoint( s.B.x, s.B.y ) );
track->SetWidth( seg->Width() );
track->SetLayer( ToLAYER_ID( seg->Layers().Start() ) );
track->SetNetCode( seg->Net() > 0 ? seg->Net() : 0 );
newBI = track;
break;
}
case PNS::ITEM::VIA_T:
{
VIA* via_board = new VIA( m_board );
PNS::VIA* via = static_cast<PNS::VIA*>( aItem );
via_board->SetPosition( wxPoint( via->Pos().x, via->Pos().y ) );
via_board->SetWidth( via->Diameter() );
via_board->SetDrill( via->Drill() );
via_board->SetNetCode( via->Net() > 0 ? via->Net() : 0 );
via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair()
via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ),
ToLAYER_ID( via->Layers().End() ) );
newBI = via_board;
break;
}
case PNS::ITEM::SOLID_T:
{
auto pad = static_cast<D_PAD*>( aItem->Parent() );
auto pos = static_cast<PNS::SOLID*>( aItem )->Pos();
m_moduleOffsets[ pad ].p_new = pos;
return;
}
default:
break;
}
if( newBI )
{
//newBI->SetLocalRatsnestVisible( m_dispOptions->m_ShowGlobalRatsnest );
aItem->SetParent( newBI );
newBI->ClearFlags();
m_commit->Add( newBI );
}
}
void PNS_KICAD_IFACE::Commit()
{
std::set<MODULE*> processedMods;
EraseView();
for( auto mo : m_moduleOffsets )
{
auto offset = mo.second.p_new - mo.second.p_old;
auto mod = mo.first->GetParent();
VECTOR2I p_orig = mod->GetPosition();
VECTOR2I p_new = p_orig + offset;
if( processedMods.find( mod ) != processedMods.end() )
continue;
processedMods.insert( mod );
m_commit->Modify( mod );
mod->SetPosition( wxPoint( p_new.x, p_new.y ));
}
m_moduleOffsets.clear();
m_commit->Push( _( "Interactive Router" ) );
m_commit = std::make_unique<BOARD_COMMIT>( m_tool );
}
void PNS_KICAD_IFACE::SetView( KIGFX::VIEW* aView )
{
wxLogTrace( "PNS", "SetView %p", aView );
if( m_previewItems )
{
m_previewItems->FreeItems();
delete m_previewItems;
}
m_view = aView;
m_previewItems = new KIGFX::VIEW_GROUP( m_view );
m_previewItems->SetLayer( LAYER_SELECT_OVERLAY ) ;
if(m_view)
m_view->Add( m_previewItems );
delete m_debugDecorator;
auto dec = new PNS_PCBNEW_DEBUG_DECORATOR();
m_debugDecorator = dec;
if( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics )
dec->SetView( m_view );
}
void PNS_KICAD_IFACE::UpdateNet( int aNetCode )
{
wxLogTrace( "PNS", "Update-net %d", aNetCode );
}
PNS::RULE_RESOLVER* PNS_KICAD_IFACE_BASE::GetRuleResolver()
{
return m_ruleResolver;
}
void PNS_KICAD_IFACE::SetHostTool( PCB_TOOL_BASE* aTool )
{
m_tool = aTool;
m_commit = std::make_unique<BOARD_COMMIT>( m_tool );
}
void PNS_KICAD_IFACE::SetDisplayOptions( const PCB_DISPLAY_OPTIONS* aDispOptions )
{
m_dispOptions = aDispOptions;
}