1708 lines
48 KiB
C++
1708 lines
48 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
|
|
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
|
|
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com>
|
|
* Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <bezier_curves.h>
|
|
#include <base_units.h>
|
|
#include <convert_basic_shapes_to_polygon.h>
|
|
#include <eda_draw_frame.h>
|
|
#include <geometry/shape_simple.h>
|
|
#include <geometry/shape_segment.h>
|
|
#include <geometry/shape_circle.h>
|
|
#include <macros.h>
|
|
#include <math/util.h> // for KiROUND
|
|
#include <eda_shape.h>
|
|
#include <plotters/plotter.h>
|
|
|
|
|
|
EDA_SHAPE::EDA_SHAPE( SHAPE_T aType, int aLineWidth, FILL_T aFill ) :
|
|
m_endsSwapped( false ),
|
|
m_shape( aType ),
|
|
m_stroke( aLineWidth, PLOT_DASH_TYPE::DEFAULT, COLOR4D::UNSPECIFIED ),
|
|
m_fill( aFill ),
|
|
m_fillColor( COLOR4D::UNSPECIFIED ),
|
|
m_editState( 0 ),
|
|
m_annotationProxy( false )
|
|
{
|
|
}
|
|
|
|
|
|
EDA_SHAPE::~EDA_SHAPE()
|
|
{
|
|
}
|
|
|
|
|
|
wxString EDA_SHAPE::ShowShape() const
|
|
{
|
|
if( IsAnnotationProxy() )
|
|
return _( "Number Box" );
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::SEGMENT: return _( "Line" );
|
|
case SHAPE_T::RECT: return _( "Rect" );
|
|
case SHAPE_T::ARC: return _( "Arc" );
|
|
case SHAPE_T::CIRCLE: return _( "Circle" );
|
|
case SHAPE_T::BEZIER: return _( "Bezier Curve" );
|
|
case SHAPE_T::POLY: return _( "Polygon" );
|
|
default: return wxT( "??" );
|
|
}
|
|
}
|
|
|
|
|
|
wxString EDA_SHAPE::SHAPE_T_asString() const
|
|
{
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::SEGMENT: return "S_SEGMENT";
|
|
case SHAPE_T::RECT: return "S_RECT";
|
|
case SHAPE_T::ARC: return "S_ARC";
|
|
case SHAPE_T::CIRCLE: return "S_CIRCLE";
|
|
case SHAPE_T::POLY: return "S_POLYGON";
|
|
case SHAPE_T::BEZIER: return "S_CURVE";
|
|
case SHAPE_T::LAST: return "!S_LAST!"; // Synthetic value, but if we come across it then
|
|
// we're going to want to know.
|
|
}
|
|
|
|
return wxEmptyString; // Just to quiet GCC.
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::setPosition( const VECTOR2I& aPos )
|
|
{
|
|
move( aPos - getPosition() );
|
|
}
|
|
|
|
|
|
VECTOR2I EDA_SHAPE::getPosition() const
|
|
{
|
|
if( m_shape == SHAPE_T::ARC )
|
|
return getCenter();
|
|
else if( m_shape == SHAPE_T::POLY )
|
|
return m_poly.CVertex( 0 );
|
|
else
|
|
return m_start;
|
|
}
|
|
|
|
|
|
double EDA_SHAPE::GetLength() const
|
|
{
|
|
double length = 0.0;
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::BEZIER:
|
|
for( size_t ii = 1; ii < m_bezierPoints.size(); ++ii )
|
|
length += GetLineLength( m_bezierPoints[ ii - 1], m_bezierPoints[ii] );
|
|
|
|
return length;
|
|
|
|
case SHAPE_T::SEGMENT:
|
|
return GetLineLength( GetStart(), GetEnd() );
|
|
|
|
case SHAPE_T::POLY:
|
|
for( int ii = 0; ii < m_poly.COutline( 0 ).SegmentCount(); ii++ )
|
|
length += m_poly.COutline( 0 ).CSegment( ii ).Length();
|
|
|
|
return length;
|
|
|
|
case SHAPE_T::ARC:
|
|
return GetRadius() * GetArcAngle().AsRadians();
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
bool EDA_SHAPE::IsClosed() const
|
|
{
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::CIRCLE:
|
|
case SHAPE_T::RECT:
|
|
return true;
|
|
|
|
case SHAPE_T::ARC:
|
|
case SHAPE_T::SEGMENT:
|
|
return false;
|
|
|
|
case SHAPE_T::POLY:
|
|
if( m_poly.IsEmpty() )
|
|
return false;
|
|
else
|
|
return m_poly.Outline( 0 ).IsClosed();
|
|
|
|
case SHAPE_T::BEZIER:
|
|
if( m_bezierPoints.size() < 3 )
|
|
return false;
|
|
else
|
|
return m_bezierPoints[0] == m_bezierPoints[ m_bezierPoints.size() - 1 ];
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void EDA_SHAPE::move( const VECTOR2I& aMoveVector )
|
|
{
|
|
switch ( m_shape )
|
|
{
|
|
case SHAPE_T::ARC:
|
|
case SHAPE_T::SEGMENT:
|
|
case SHAPE_T::RECT:
|
|
case SHAPE_T::CIRCLE:
|
|
m_start += aMoveVector;
|
|
m_end += aMoveVector;
|
|
m_arcCenter += aMoveVector;
|
|
break;
|
|
|
|
case SHAPE_T::POLY:
|
|
m_poly.Move( VECTOR2I( aMoveVector ) );
|
|
break;
|
|
|
|
case SHAPE_T::BEZIER:
|
|
m_start += aMoveVector;
|
|
m_end += aMoveVector;
|
|
m_bezierC1 += aMoveVector;
|
|
m_bezierC2 += aMoveVector;
|
|
|
|
for( VECTOR2I& pt : m_bezierPoints )
|
|
pt += aMoveVector;
|
|
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::scale( double aScale )
|
|
{
|
|
auto scalePt = [&]( VECTOR2I& pt )
|
|
{
|
|
pt.x = KiROUND( pt.x * aScale );
|
|
pt.y = KiROUND( pt.y * aScale );
|
|
};
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::ARC:
|
|
case SHAPE_T::SEGMENT:
|
|
case SHAPE_T::RECT:
|
|
scalePt( m_start );
|
|
scalePt( m_end );
|
|
scalePt( m_arcCenter );
|
|
break;
|
|
|
|
case SHAPE_T::CIRCLE: // ring or circle
|
|
scalePt( m_start );
|
|
m_end.x = m_start.x + KiROUND( GetRadius() * aScale );
|
|
m_end.y = m_start.y;
|
|
break;
|
|
|
|
case SHAPE_T::POLY: // polygon
|
|
{
|
|
std::vector<VECTOR2I> pts;
|
|
|
|
for( int ii = 0; ii < m_poly.OutlineCount(); ++ ii )
|
|
{
|
|
for( const VECTOR2I& pt : m_poly.Outline( ii ).CPoints() )
|
|
{
|
|
pts.emplace_back( pt );
|
|
scalePt( pts.back() );
|
|
}
|
|
}
|
|
|
|
SetPolyPoints( pts );
|
|
}
|
|
break;
|
|
|
|
case SHAPE_T::BEZIER:
|
|
scalePt( m_start );
|
|
scalePt( m_end );
|
|
scalePt( m_bezierC1 );
|
|
scalePt( m_bezierC2 );
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
|
|
{
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::SEGMENT:
|
|
case SHAPE_T::CIRCLE:
|
|
RotatePoint( m_start, aRotCentre, aAngle );
|
|
RotatePoint( m_end, aRotCentre, aAngle );
|
|
break;
|
|
|
|
case SHAPE_T::ARC:
|
|
RotatePoint( m_start, aRotCentre, aAngle );
|
|
RotatePoint( m_end, aRotCentre, aAngle );
|
|
RotatePoint( m_arcCenter, aRotCentre, aAngle );
|
|
break;
|
|
|
|
case SHAPE_T::RECT:
|
|
if( aAngle.IsCardinal() )
|
|
{
|
|
RotatePoint( m_start, aRotCentre, aAngle );
|
|
RotatePoint( m_end, aRotCentre, aAngle );
|
|
break;
|
|
}
|
|
|
|
// Convert non-cardinally-rotated rect to a diamond
|
|
m_shape = SHAPE_T::POLY;
|
|
m_poly.RemoveAllContours();
|
|
m_poly.NewOutline();
|
|
m_poly.Append( m_start );
|
|
m_poly.Append( m_end.x, m_start.y );
|
|
m_poly.Append( m_end );
|
|
m_poly.Append( m_start.x, m_end.y );
|
|
|
|
KI_FALLTHROUGH;
|
|
|
|
case SHAPE_T::POLY:
|
|
m_poly.Rotate( aAngle, aRotCentre );
|
|
break;
|
|
|
|
case SHAPE_T::BEZIER:
|
|
RotatePoint( m_start, aRotCentre, aAngle );
|
|
RotatePoint( m_end, aRotCentre, aAngle );
|
|
RotatePoint( m_bezierC1, aRotCentre, aAngle );
|
|
RotatePoint( m_bezierC2, aRotCentre, aAngle );
|
|
|
|
for( VECTOR2I& pt : m_bezierPoints )
|
|
RotatePoint( pt, aRotCentre, aAngle);
|
|
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
|
|
{
|
|
switch ( m_shape )
|
|
{
|
|
case SHAPE_T::SEGMENT:
|
|
case SHAPE_T::RECT:
|
|
if( aFlipLeftRight )
|
|
{
|
|
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
|
|
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
|
|
}
|
|
else
|
|
{
|
|
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
|
|
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
|
|
}
|
|
|
|
std::swap( m_start, m_end );
|
|
break;
|
|
|
|
case SHAPE_T::CIRCLE:
|
|
if( aFlipLeftRight )
|
|
{
|
|
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
|
|
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
|
|
}
|
|
else
|
|
{
|
|
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
|
|
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
|
|
}
|
|
break;
|
|
|
|
case SHAPE_T::ARC:
|
|
if( aFlipLeftRight )
|
|
{
|
|
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
|
|
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
|
|
m_arcCenter.x = aCentre.x - ( m_arcCenter.x - aCentre.x );
|
|
}
|
|
else
|
|
{
|
|
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
|
|
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
|
|
m_arcCenter.y = aCentre.y - ( m_arcCenter.y - aCentre.y );
|
|
}
|
|
|
|
std::swap( m_start, m_end );
|
|
break;
|
|
|
|
case SHAPE_T::POLY:
|
|
m_poly.Mirror( aFlipLeftRight, !aFlipLeftRight, aCentre );
|
|
break;
|
|
|
|
case SHAPE_T::BEZIER:
|
|
if( aFlipLeftRight )
|
|
{
|
|
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
|
|
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
|
|
m_bezierC1.x = aCentre.x - ( m_bezierC1.x - aCentre.x );
|
|
m_bezierC2.x = aCentre.x - ( m_bezierC2.x - aCentre.x );
|
|
}
|
|
else
|
|
{
|
|
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
|
|
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
|
|
m_bezierC1.y = aCentre.y - ( m_bezierC1.y - aCentre.y );
|
|
m_bezierC2.y = aCentre.y - ( m_bezierC2.y - aCentre.y );
|
|
}
|
|
|
|
// Rebuild the poly points shape
|
|
{
|
|
std::vector<VECTOR2I> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
|
|
BEZIER_POLY converter( ctrlPoints );
|
|
converter.GetPoly( m_bezierPoints, m_stroke.GetWidth() );
|
|
}
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::RebuildBezierToSegmentsPointsList( int aMinSegLen )
|
|
{
|
|
// Has meaning only for SHAPE_T::BEZIER
|
|
if( m_shape != SHAPE_T::BEZIER )
|
|
{
|
|
m_bezierPoints.clear();
|
|
return;
|
|
}
|
|
|
|
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
|
|
m_bezierPoints = buildBezierToSegmentsPointsList( aMinSegLen );
|
|
}
|
|
|
|
|
|
const std::vector<VECTOR2I> EDA_SHAPE::buildBezierToSegmentsPointsList( int aMinSegLen ) const
|
|
{
|
|
std::vector<VECTOR2I> bezierPoints;
|
|
|
|
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
|
|
std::vector<VECTOR2I> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
|
|
BEZIER_POLY converter( ctrlPoints );
|
|
converter.GetPoly( bezierPoints, aMinSegLen );
|
|
|
|
return bezierPoints;
|
|
}
|
|
|
|
|
|
VECTOR2I EDA_SHAPE::getCenter() const
|
|
{
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::ARC:
|
|
return m_arcCenter;
|
|
|
|
case SHAPE_T::CIRCLE:
|
|
return m_start;
|
|
|
|
case SHAPE_T::SEGMENT:
|
|
// Midpoint of the line
|
|
return ( m_start + m_end ) / 2;
|
|
|
|
case SHAPE_T::POLY:
|
|
case SHAPE_T::RECT:
|
|
case SHAPE_T::BEZIER:
|
|
return getBoundingBox().Centre();
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
return VECTOR2I();
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::SetCenter( const VECTOR2I& aCenter )
|
|
{
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::ARC:
|
|
m_arcCenter = aCenter;
|
|
break;
|
|
|
|
case SHAPE_T::CIRCLE:
|
|
m_start = aCenter;
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
}
|
|
}
|
|
|
|
|
|
VECTOR2I EDA_SHAPE::GetArcMid() const
|
|
{
|
|
// If none of the input data have changed since we loaded the arc,
|
|
// keep the original mid point data to minimize churn
|
|
if( m_arcMidData.start == m_start && m_arcMidData.end == m_end
|
|
&& m_arcMidData.center == m_arcCenter )
|
|
return m_arcMidData.mid;
|
|
|
|
VECTOR2I mid = m_start;
|
|
RotatePoint( mid, m_arcCenter, -GetArcAngle() / 2.0 );
|
|
return mid;
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::CalcArcAngles( EDA_ANGLE& aStartAngle, EDA_ANGLE& aEndAngle ) const
|
|
{
|
|
VECTOR2D startRadial( GetStart() - getCenter() );
|
|
VECTOR2D endRadial( GetEnd() - getCenter() );
|
|
|
|
aStartAngle = EDA_ANGLE( startRadial );
|
|
aEndAngle = EDA_ANGLE( endRadial );
|
|
|
|
if( aEndAngle == aStartAngle )
|
|
aEndAngle = aStartAngle + ANGLE_360; // ring, not null
|
|
|
|
if( aStartAngle > aEndAngle )
|
|
{
|
|
if( aEndAngle < ANGLE_0 )
|
|
aEndAngle.Normalize();
|
|
else
|
|
aStartAngle = aStartAngle.Normalize() - ANGLE_360;
|
|
}
|
|
}
|
|
|
|
|
|
int EDA_SHAPE::GetRadius() const
|
|
{
|
|
double radius = 0.0;
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::ARC:
|
|
radius = GetLineLength( m_arcCenter, m_start );
|
|
break;
|
|
|
|
case SHAPE_T::CIRCLE:
|
|
radius = GetLineLength( m_start, m_end );
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
}
|
|
|
|
// don't allow degenerate circles/arcs
|
|
return std::max( 1, KiROUND( radius ) );
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::SetCachedArcData( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd, const VECTOR2I& aCenter )
|
|
{
|
|
m_arcMidData.start = aStart;
|
|
m_arcMidData.end = aEnd;
|
|
m_arcMidData.center = aCenter;
|
|
m_arcMidData.mid = aMid;
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::SetArcGeometry( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd )
|
|
{
|
|
m_arcMidData = {};
|
|
m_start = aStart;
|
|
m_end = aEnd;
|
|
m_arcCenter = CalcArcCenter( aStart, aMid, aEnd );
|
|
VECTOR2I new_mid = GetArcMid();
|
|
|
|
m_endsSwapped = false;
|
|
|
|
// Watch the ordering here. GetArcMid above needs to be called prior to initializing the
|
|
// m_arcMidData structure in order to ensure we get the calculated variant, not the cached
|
|
SetCachedArcData( aStart, aMid, aEnd, m_arcCenter );
|
|
|
|
/*
|
|
* If the input winding doesn't match our internal winding, the calculated midpoint will end
|
|
* up on the other side of the arc. In this case, we need to flip the start/end points and
|
|
* flag this change for the system.
|
|
*/
|
|
VECTOR2D dist( new_mid - aMid );
|
|
VECTOR2D dist2( new_mid - m_arcCenter );
|
|
|
|
if( dist.SquaredEuclideanNorm() > dist2.SquaredEuclideanNorm() )
|
|
{
|
|
std::swap( m_start, m_end );
|
|
m_endsSwapped = true;
|
|
}
|
|
}
|
|
|
|
|
|
EDA_ANGLE EDA_SHAPE::GetArcAngle() const
|
|
{
|
|
EDA_ANGLE startAngle;
|
|
EDA_ANGLE endAngle;
|
|
|
|
CalcArcAngles( startAngle, endAngle );
|
|
|
|
return endAngle - startAngle;
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::SetArcAngleAndEnd( const EDA_ANGLE& aAngle, bool aCheckNegativeAngle )
|
|
{
|
|
EDA_ANGLE angle( aAngle );
|
|
|
|
m_end = m_start;
|
|
RotatePoint( m_end, m_arcCenter, -angle.Normalize720() );
|
|
|
|
if( aCheckNegativeAngle && aAngle < ANGLE_0 )
|
|
{
|
|
std::swap( m_start, m_end );
|
|
m_endsSwapped = true;
|
|
}
|
|
}
|
|
|
|
|
|
wxString EDA_SHAPE::GetFriendlyName() const
|
|
{
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::CIRCLE: return _( "Circle" );
|
|
case SHAPE_T::ARC: return _( "Arc" );
|
|
case SHAPE_T::BEZIER: return _( "Curve" );
|
|
case SHAPE_T::POLY: return _( "Polygon" );
|
|
case SHAPE_T::RECT: return IsAnnotationProxy() ? _( "Pad Number Box" ) : _( "Rectangle" );
|
|
case SHAPE_T::SEGMENT: return _( "Segment" );
|
|
default: return _( "Unrecognized" );
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::ShapeGetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
|
|
{
|
|
ORIGIN_TRANSFORMS originTransforms = aFrame->GetOriginTransforms();
|
|
wxString msg;
|
|
|
|
wxString shape = _( "Shape" );
|
|
aList.emplace_back( shape, GetFriendlyName() );
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::CIRCLE:
|
|
aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( GetRadius() ) );
|
|
break;
|
|
|
|
case SHAPE_T::ARC:
|
|
msg = EDA_UNIT_UTILS::UI::MessageTextFromValue( GetArcAngle() );
|
|
aList.emplace_back( _( "Angle" ), msg );
|
|
|
|
aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( GetRadius() ) );
|
|
break;
|
|
|
|
case SHAPE_T::BEZIER:
|
|
aList.emplace_back( _( "Length" ), aFrame->MessageTextFromValue( GetLength() ) );
|
|
break;
|
|
|
|
case SHAPE_T::POLY:
|
|
msg.Printf( "%d", GetPolyShape().Outline(0).PointCount() );
|
|
aList.emplace_back( _( "Points" ), msg );
|
|
break;
|
|
|
|
case SHAPE_T::RECT:
|
|
aList.emplace_back( _( "Width" ),
|
|
aFrame->MessageTextFromValue( std::abs( GetEnd().x - GetStart().x ) ) );
|
|
|
|
aList.emplace_back( _( "Height" ),
|
|
aFrame->MessageTextFromValue( std::abs( GetEnd().y - GetStart().y ) ) );
|
|
break;
|
|
|
|
case SHAPE_T::SEGMENT:
|
|
{
|
|
aList.emplace_back( _( "Length" ),
|
|
aFrame->MessageTextFromValue( GetLineLength( GetStart(), GetEnd() ) ));
|
|
|
|
// angle counter-clockwise from 3'o-clock
|
|
EDA_ANGLE angle( atan2( (double)( GetStart().y - GetEnd().y ),
|
|
(double)( GetEnd().x - GetStart().x ) ), RADIANS_T );
|
|
aList.emplace_back( _( "Angle" ), EDA_UNIT_UTILS::UI::MessageTextFromValue( angle ) );
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
m_stroke.GetMsgPanelInfo( aFrame, aList );
|
|
}
|
|
|
|
|
|
const BOX2I EDA_SHAPE::getBoundingBox() const
|
|
{
|
|
BOX2I bbox;
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::RECT:
|
|
for( VECTOR2I& pt : GetRectCorners() )
|
|
bbox.Merge( pt );
|
|
|
|
break;
|
|
|
|
case SHAPE_T::SEGMENT:
|
|
bbox.SetOrigin( GetStart() );
|
|
bbox.SetEnd( GetEnd() );
|
|
break;
|
|
|
|
case SHAPE_T::CIRCLE:
|
|
bbox.SetOrigin( GetStart() );
|
|
bbox.Inflate( GetRadius() );
|
|
break;
|
|
|
|
case SHAPE_T::ARC:
|
|
computeArcBBox( bbox );
|
|
break;
|
|
|
|
case SHAPE_T::POLY:
|
|
if( m_poly.IsEmpty() )
|
|
break;
|
|
|
|
for( auto iter = m_poly.CIterate(); iter; iter++ )
|
|
{
|
|
VECTOR2I pt( iter->x, iter->y );
|
|
|
|
RotatePoint( pt, getParentOrientation() );
|
|
pt += getParentPosition();
|
|
|
|
bbox.Merge( pt );
|
|
}
|
|
|
|
break;
|
|
|
|
case SHAPE_T::BEZIER:
|
|
bbox.SetOrigin( GetStart() );
|
|
bbox.Merge( GetBezierC1() );
|
|
bbox.Merge( GetBezierC2() );
|
|
bbox.Merge( GetEnd() );
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
break;
|
|
}
|
|
|
|
bbox.Inflate( std::max( 0, GetWidth() ) / 2 );
|
|
bbox.Normalize();
|
|
|
|
return bbox;
|
|
}
|
|
|
|
|
|
bool EDA_SHAPE::hitTest( const VECTOR2I& aPosition, int aAccuracy ) const
|
|
{
|
|
int maxdist = aAccuracy;
|
|
|
|
if( GetWidth() > 0 )
|
|
maxdist += GetWidth() / 2;
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::CIRCLE:
|
|
{
|
|
int radius = GetRadius();
|
|
|
|
VECTOR2I::extended_type dist = KiROUND<double, VECTOR2I::extended_type>(
|
|
EuclideanNorm( aPosition - getCenter() ) );
|
|
|
|
if( IsFilled() )
|
|
return dist <= radius + maxdist; // Filled circle hit-test
|
|
else
|
|
return abs( radius - dist ) <= maxdist; // Ring hit-test
|
|
}
|
|
|
|
case SHAPE_T::ARC:
|
|
{
|
|
if( EuclideanNorm( aPosition - m_start ) <= maxdist )
|
|
return true;
|
|
|
|
if( EuclideanNorm( aPosition - m_end ) <= maxdist )
|
|
return true;
|
|
|
|
VECTOR2I relPos = aPosition - getCenter();
|
|
int radius = GetRadius();
|
|
|
|
VECTOR2I::extended_type dist =
|
|
KiROUND<double, VECTOR2I::extended_type>( EuclideanNorm( relPos ) );
|
|
|
|
if( IsFilled() )
|
|
{
|
|
// Check distance from arc center
|
|
if( dist > radius + maxdist )
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
// Check distance from arc circumference
|
|
if( abs( radius - dist ) > maxdist )
|
|
return false;
|
|
}
|
|
|
|
// Finally, check to see if it's within arc's swept angle.
|
|
EDA_ANGLE startAngle;
|
|
EDA_ANGLE endAngle;
|
|
CalcArcAngles( startAngle, endAngle );
|
|
|
|
EDA_ANGLE relPosAngle( relPos );
|
|
|
|
startAngle.Normalize();
|
|
endAngle.Normalize();
|
|
relPosAngle.Normalize();
|
|
|
|
if( endAngle > startAngle )
|
|
return relPosAngle >= startAngle && relPosAngle <= endAngle;
|
|
else
|
|
return relPosAngle >= startAngle || relPosAngle <= endAngle;
|
|
}
|
|
|
|
case SHAPE_T::BEZIER:
|
|
const_cast<EDA_SHAPE*>( this )->RebuildBezierToSegmentsPointsList( GetWidth() );
|
|
|
|
for( unsigned int i= 1; i < m_bezierPoints.size(); i++)
|
|
{
|
|
if( TestSegmentHit( aPosition, m_bezierPoints[ i - 1], m_bezierPoints[i], maxdist ) )
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
|
|
case SHAPE_T::SEGMENT:
|
|
return TestSegmentHit( aPosition, GetStart(), GetEnd(), maxdist );
|
|
|
|
case SHAPE_T::RECT:
|
|
if( IsAnnotationProxy() || IsFilled() ) // Filled rect hit-test
|
|
{
|
|
SHAPE_POLY_SET poly;
|
|
poly.NewOutline();
|
|
|
|
for( const VECTOR2I& pt : GetRectCorners() )
|
|
poly.Append( pt );
|
|
|
|
return poly.Collide( aPosition, maxdist );
|
|
}
|
|
else // Open rect hit-test
|
|
{
|
|
std::vector<VECTOR2I> pts = GetRectCorners();
|
|
|
|
return TestSegmentHit( aPosition, pts[0], pts[1], maxdist )
|
|
|| TestSegmentHit( aPosition, pts[1], pts[2], maxdist )
|
|
|| TestSegmentHit( aPosition, pts[2], pts[3], maxdist )
|
|
|| TestSegmentHit( aPosition, pts[3], pts[0], maxdist );
|
|
}
|
|
|
|
case SHAPE_T::POLY:
|
|
if( IsFilled() )
|
|
return m_poly.Collide( aPosition, maxdist );
|
|
else
|
|
return m_poly.CollideEdge( aPosition, nullptr, maxdist );
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool EDA_SHAPE::hitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
|
|
{
|
|
BOX2I arect = aRect;
|
|
arect.Normalize();
|
|
arect.Inflate( aAccuracy );
|
|
|
|
BOX2I bbox = getBoundingBox();
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::CIRCLE:
|
|
// Test if area intersects or contains the circle:
|
|
if( aContained )
|
|
{
|
|
return arect.Contains( bbox );
|
|
}
|
|
else
|
|
{
|
|
// If the rectangle does not intersect the bounding box, this is a much quicker test
|
|
if( !arect.Intersects( bbox ) )
|
|
return false;
|
|
else
|
|
return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
|
|
}
|
|
|
|
case SHAPE_T::ARC:
|
|
// Test for full containment of this arc in the rect
|
|
if( aContained )
|
|
{
|
|
return arect.Contains( bbox );
|
|
}
|
|
// Test if the rect crosses the arc
|
|
else
|
|
{
|
|
if( !arect.Intersects( bbox ) )
|
|
return false;
|
|
|
|
if( IsFilled() )
|
|
{
|
|
return ( arect.Intersects( getCenter(), GetStart() )
|
|
|| arect.Intersects( getCenter(), GetEnd() )
|
|
|| arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() ) );
|
|
}
|
|
else
|
|
{
|
|
return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
|
|
}
|
|
}
|
|
|
|
case SHAPE_T::RECT:
|
|
if( aContained )
|
|
{
|
|
return arect.Contains( bbox );
|
|
}
|
|
else
|
|
{
|
|
std::vector<VECTOR2I> pts = GetRectCorners();
|
|
|
|
// Account for the width of the lines
|
|
arect.Inflate( GetWidth() / 2 );
|
|
return ( arect.Intersects( pts[0], pts[1] )
|
|
|| arect.Intersects( pts[1], pts[2] )
|
|
|| arect.Intersects( pts[2], pts[3] )
|
|
|| arect.Intersects( pts[3], pts[0] ) );
|
|
}
|
|
|
|
case SHAPE_T::SEGMENT:
|
|
if( aContained )
|
|
{
|
|
return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() );
|
|
}
|
|
else
|
|
{
|
|
// Account for the width of the line
|
|
arect.Inflate( GetWidth() / 2 );
|
|
return arect.Intersects( GetStart(), GetEnd() );
|
|
}
|
|
|
|
case SHAPE_T::POLY:
|
|
if( aContained )
|
|
{
|
|
return arect.Contains( bbox );
|
|
}
|
|
else
|
|
{
|
|
// Fast test: if aRect is outside the polygon bounding box,
|
|
// rectangles cannot intersect
|
|
if( !arect.Intersects( bbox ) )
|
|
return false;
|
|
|
|
// Account for the width of the line
|
|
arect.Inflate( GetWidth() / 2 );
|
|
|
|
// Polygons in footprints use coordinates relative to the footprint.
|
|
// Therefore, instead of using m_poly, we make a copy which is translated
|
|
// to the actual location in the board.
|
|
VECTOR2I offset = getParentPosition();
|
|
|
|
for( int ii = 0; ii < m_poly.OutlineCount(); ++ii )
|
|
{
|
|
SHAPE_LINE_CHAIN poly = m_poly.Outline( ii );
|
|
poly.Rotate( getParentOrientation() );
|
|
poly.Move( offset );
|
|
|
|
int count = poly.GetPointCount();
|
|
|
|
for( int jj = 0; jj < count; jj++ )
|
|
{
|
|
VECTOR2I vertex = poly.GetPoint( jj );
|
|
|
|
// Test if the point is within aRect
|
|
if( arect.Contains( vertex ) )
|
|
return true;
|
|
|
|
if( jj + 1 < count )
|
|
{
|
|
VECTOR2I vertexNext = poly.GetPoint( jj + 1 );
|
|
|
|
// Test if this edge intersects aRect
|
|
if( arect.Intersects( vertex, vertexNext ) )
|
|
return true;
|
|
}
|
|
else if( poly.IsClosed() )
|
|
{
|
|
VECTOR2I vertexNext = poly.GetPoint( 0 );
|
|
|
|
// Test if this edge intersects aRect
|
|
if( arect.Intersects( vertex, vertexNext ) )
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
case SHAPE_T::BEZIER:
|
|
if( aContained )
|
|
{
|
|
return arect.Contains( bbox );
|
|
}
|
|
else
|
|
{
|
|
// Fast test: if aRect is outside the polygon bounding box,
|
|
// rectangles cannot intersect
|
|
if( !arect.Intersects( bbox ) )
|
|
return false;
|
|
|
|
// Account for the width of the line
|
|
arect.Inflate( GetWidth() / 2 );
|
|
unsigned count = m_bezierPoints.size();
|
|
|
|
for( unsigned ii = 1; ii < count; ii++ )
|
|
{
|
|
VECTOR2I vertex = m_bezierPoints[ii - 1];
|
|
VECTOR2I vertexNext = m_bezierPoints[ii];
|
|
|
|
// Test if the point is within aRect
|
|
if( arect.Contains( vertex ) )
|
|
return true;
|
|
|
|
// Test if this edge intersects aRect
|
|
if( arect.Intersects( vertex, vertexNext ) )
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
std::vector<VECTOR2I> EDA_SHAPE::GetRectCorners() const
|
|
{
|
|
std::vector<VECTOR2I> pts;
|
|
VECTOR2I topLeft = GetStart();
|
|
VECTOR2I botRight = GetEnd();
|
|
|
|
// Un-rotate rect topLeft and botRight
|
|
if( !getParentOrientation().IsCardinal() )
|
|
{
|
|
topLeft -= getParentPosition();
|
|
RotatePoint( topLeft, -getParentOrientation() );
|
|
|
|
botRight -= getParentPosition();
|
|
RotatePoint( botRight, -getParentOrientation() );
|
|
}
|
|
|
|
// Set up the un-rotated 4 corners
|
|
pts.emplace_back( topLeft );
|
|
pts.emplace_back( botRight.x, topLeft.y );
|
|
pts.emplace_back( botRight );
|
|
pts.emplace_back( topLeft.x, botRight.y );
|
|
|
|
// Now re-rotate the 4 corners to get a diamond
|
|
if( !getParentOrientation().IsCardinal() )
|
|
{
|
|
for( VECTOR2I& pt : pts )
|
|
{
|
|
RotatePoint( pt, getParentOrientation() );
|
|
pt += getParentPosition();
|
|
}
|
|
}
|
|
|
|
return pts;
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::computeArcBBox( BOX2I& aBBox ) const
|
|
{
|
|
// Start, end, and each inflection point the arc crosses will enclose the entire arc.
|
|
// Only include the center when filled; it's not necessarily inside the BB of an unfilled
|
|
// arc with a small included angle.
|
|
aBBox.SetOrigin( m_start );
|
|
aBBox.Merge( m_end );
|
|
|
|
if( IsFilled() )
|
|
aBBox.Merge( m_arcCenter );
|
|
|
|
int radius = GetRadius();
|
|
EDA_ANGLE t1, t2;
|
|
|
|
CalcArcAngles( t1, t2 );
|
|
|
|
t1.Normalize();
|
|
t2.Normalize();
|
|
|
|
if( t2 > t1 )
|
|
{
|
|
if( t1 < ANGLE_0 && t2 > ANGLE_0 )
|
|
aBBox.Merge( VECTOR2I( m_arcCenter.x + radius, m_arcCenter.y ) ); // right
|
|
|
|
if( t1 < ANGLE_90 && t2 > ANGLE_90 )
|
|
aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y + radius ) ); // down
|
|
|
|
if( t1 < ANGLE_180 && t2 > ANGLE_180 )
|
|
aBBox.Merge( VECTOR2I( m_arcCenter.x - radius, m_arcCenter.y ) ); // left
|
|
|
|
if( t1 < ANGLE_270 && t2 > ANGLE_270 )
|
|
aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y - radius ) ); // up
|
|
}
|
|
else
|
|
{
|
|
if( t1 < ANGLE_0 || t2 > ANGLE_0 )
|
|
aBBox.Merge( VECTOR2I( m_arcCenter.x + radius, m_arcCenter.y ) ); // right
|
|
|
|
if( t1 < ANGLE_90 || t2 > ANGLE_90 )
|
|
aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y + radius ) ); // down
|
|
|
|
if( t1 < ANGLE_180 || t2 > ANGLE_180 )
|
|
aBBox.Merge( VECTOR2I( m_arcCenter.x - radius, m_arcCenter.y ) ); // left
|
|
|
|
if( t1 < ANGLE_270 || t2 > ANGLE_270 )
|
|
aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y - radius ) ); // up
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::SetPolyPoints( const std::vector<VECTOR2I>& aPoints )
|
|
{
|
|
m_poly.RemoveAllContours();
|
|
m_poly.NewOutline();
|
|
|
|
for( const VECTOR2I& p : aPoints )
|
|
m_poly.Append( p.x, p.y );
|
|
}
|
|
|
|
|
|
std::vector<SHAPE*> EDA_SHAPE::makeEffectiveShapes( bool aEdgeOnly, bool aLineChainOnly ) const
|
|
{
|
|
std::vector<SHAPE*> effectiveShapes;
|
|
int width = GetEffectiveWidth();
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::ARC:
|
|
effectiveShapes.emplace_back( new SHAPE_ARC( m_arcCenter, m_start, GetArcAngle(), width ) );
|
|
break;
|
|
|
|
case SHAPE_T::SEGMENT:
|
|
effectiveShapes.emplace_back( new SHAPE_SEGMENT( m_start, m_end, width ) );
|
|
break;
|
|
|
|
case SHAPE_T::RECT:
|
|
{
|
|
std::vector<VECTOR2I> pts = GetRectCorners();
|
|
|
|
if( ( IsFilled() || IsAnnotationProxy() ) && !aEdgeOnly )
|
|
effectiveShapes.emplace_back( new SHAPE_SIMPLE( pts ) );
|
|
|
|
if( width > 0 || !IsFilled() || aEdgeOnly )
|
|
{
|
|
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[0], pts[1], width ) );
|
|
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[1], pts[2], width ) );
|
|
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[2], pts[3], width ) );
|
|
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[3], pts[0], width ) );
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SHAPE_T::CIRCLE:
|
|
{
|
|
if( IsFilled() && !aEdgeOnly )
|
|
effectiveShapes.emplace_back( new SHAPE_CIRCLE( getCenter(), GetRadius() ) );
|
|
|
|
if( width > 0 || !IsFilled() || aEdgeOnly )
|
|
effectiveShapes.emplace_back( new SHAPE_ARC( getCenter(), GetEnd(), ANGLE_360, width ) );
|
|
|
|
break;
|
|
}
|
|
|
|
case SHAPE_T::BEZIER:
|
|
{
|
|
std::vector<VECTOR2I> bezierPoints = buildBezierToSegmentsPointsList( width );
|
|
VECTOR2I start_pt = bezierPoints[0];
|
|
|
|
for( unsigned int jj = 1; jj < bezierPoints.size(); jj++ )
|
|
{
|
|
VECTOR2I end_pt = bezierPoints[jj];
|
|
effectiveShapes.emplace_back( new SHAPE_SEGMENT( start_pt, end_pt, width ) );
|
|
start_pt = end_pt;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case SHAPE_T::POLY:
|
|
{
|
|
if( GetPolyShape().OutlineCount() == 0 ) // malformed/empty polygon
|
|
break;
|
|
|
|
for( int ii = 0; ii < GetPolyShape().OutlineCount(); ++ii )
|
|
{
|
|
SHAPE_LINE_CHAIN l = GetPolyShape().COutline( ii );
|
|
|
|
if( aLineChainOnly )
|
|
l.SetClosed( false );
|
|
|
|
l.Rotate( getParentOrientation() );
|
|
l.Move( getParentPosition() );
|
|
|
|
if( IsFilled() && !aEdgeOnly )
|
|
effectiveShapes.emplace_back( new SHAPE_SIMPLE( l ) );
|
|
|
|
if( width > 0 || !IsFilled() || aEdgeOnly )
|
|
{
|
|
for( int jj = 0; jj < l.SegmentCount(); jj++ )
|
|
effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( jj ), width ) );
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
break;
|
|
}
|
|
|
|
return effectiveShapes;
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::DupPolyPointsList( std::vector<VECTOR2I>& aBuffer ) const
|
|
{
|
|
for( int ii = 0; ii < m_poly.OutlineCount(); ++ii )
|
|
{
|
|
int pointCount = m_poly.COutline( ii ).PointCount();
|
|
|
|
if( pointCount )
|
|
{
|
|
aBuffer.reserve( pointCount );
|
|
|
|
for ( auto iter = m_poly.CIterate(); iter; iter++ )
|
|
aBuffer.emplace_back( iter->x, iter->y );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool EDA_SHAPE::IsPolyShapeValid() const
|
|
{
|
|
// return true if the polygonal shape is valid (has more than 2 points)
|
|
if( GetPolyShape().OutlineCount() == 0 )
|
|
return false;
|
|
|
|
const SHAPE_LINE_CHAIN& outline = static_cast<const SHAPE_POLY_SET&>( GetPolyShape() ).Outline( 0 );
|
|
|
|
return outline.PointCount() > 2;
|
|
}
|
|
|
|
|
|
int EDA_SHAPE::GetPointCount() const
|
|
{
|
|
// return the number of corners of the polygonal shape
|
|
// this shape is expected to be only one polygon without hole
|
|
if( GetPolyShape().OutlineCount() )
|
|
return GetPolyShape().VertexCount( 0 );
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::beginEdit( const VECTOR2I& aPosition )
|
|
{
|
|
switch( GetShape() )
|
|
{
|
|
case SHAPE_T::SEGMENT:
|
|
case SHAPE_T::CIRCLE:
|
|
case SHAPE_T::RECT:
|
|
SetStart( aPosition );
|
|
SetEnd( aPosition );
|
|
break;
|
|
|
|
case SHAPE_T::ARC:
|
|
SetArcGeometry( aPosition, aPosition, aPosition );
|
|
m_editState = 1;
|
|
break;
|
|
|
|
case SHAPE_T::POLY:
|
|
m_poly.NewOutline();
|
|
m_poly.Outline( 0 ).SetClosed( false );
|
|
|
|
// Start and end of the first segment (co-located for now)
|
|
m_poly.Outline( 0 ).Append( aPosition );
|
|
m_poly.Outline( 0 ).Append( aPosition, true );
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
}
|
|
}
|
|
|
|
|
|
bool EDA_SHAPE::continueEdit( const VECTOR2I& aPosition )
|
|
{
|
|
switch( GetShape() )
|
|
{
|
|
case SHAPE_T::ARC:
|
|
case SHAPE_T::SEGMENT:
|
|
case SHAPE_T::CIRCLE:
|
|
case SHAPE_T::RECT:
|
|
return false;
|
|
|
|
case SHAPE_T::POLY:
|
|
{
|
|
SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );
|
|
|
|
// do not add zero-length segments
|
|
if( poly.CPoint( poly.GetPointCount() - 2 ) != poly.CLastPoint() )
|
|
poly.Append( aPosition, true );
|
|
}
|
|
return true;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::calcEdit( const VECTOR2I& aPosition )
|
|
{
|
|
#define sq( x ) pow( x, 2 )
|
|
|
|
switch( GetShape() )
|
|
{
|
|
case SHAPE_T::SEGMENT:
|
|
case SHAPE_T::CIRCLE:
|
|
case SHAPE_T::RECT:
|
|
SetEnd( aPosition );
|
|
break;
|
|
|
|
case SHAPE_T::ARC:
|
|
{
|
|
int radius = GetRadius();
|
|
|
|
// Edit state 0: drawing: place start
|
|
// Edit state 1: drawing: place end (center calculated for 90-degree subtended angle)
|
|
// Edit state 2: point edit: move start (center calculated for invariant subtended angle)
|
|
// Edit state 3: point edit: move end (center calculated for invariant subtended angle)
|
|
// Edit state 4: point edit: move center
|
|
// Edit state 5: point edit: move arc-mid-point
|
|
|
|
switch( m_editState )
|
|
{
|
|
case 0:
|
|
SetArcGeometry( aPosition, aPosition, aPosition );
|
|
return;
|
|
|
|
case 1:
|
|
m_end = aPosition;
|
|
radius = KiROUND( sqrt( sq( GetLineLength( m_start, m_end ) ) / 2.0 ) );
|
|
break;
|
|
|
|
case 2:
|
|
case 3:
|
|
{
|
|
VECTOR2I v = m_start - m_end;
|
|
double chordBefore = sq( v.x ) + sq( v.y );
|
|
|
|
if( m_editState == 2 )
|
|
m_start = aPosition;
|
|
else
|
|
m_end = aPosition;
|
|
|
|
v = m_start - m_end;
|
|
double chordAfter = sq( v.x ) + sq( v.y );
|
|
double ratio = chordAfter / chordBefore;
|
|
|
|
if( ratio != 0 )
|
|
{
|
|
radius = std::max( int( sqrt( sq( radius ) * ratio ) ) + 1,
|
|
int( sqrt( chordAfter ) / 2 ) + 1 );
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
{
|
|
double radialA = GetLineLength( m_start, aPosition );
|
|
double radialB = GetLineLength( m_end, aPosition );
|
|
radius = int( ( radialA + radialB ) / 2.0 ) + 1;
|
|
}
|
|
break;
|
|
|
|
case 5:
|
|
SetArcGeometry( GetStart(), aPosition, GetEnd() );
|
|
return;
|
|
}
|
|
|
|
// Calculate center based on start, end, and radius
|
|
//
|
|
// Let 'l' be the length of the chord and 'm' the middle point of the chord
|
|
double l = GetLineLength( m_start, m_end );
|
|
VECTOR2I m = ( m_start + m_end ) / 2;
|
|
|
|
// Calculate 'd', the vector from the chord midpoint to the center
|
|
VECTOR2I d;
|
|
d.x = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_start.y - m_end.y ) / l );
|
|
d.y = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_end.x - m_start.x ) / l );
|
|
|
|
VECTOR2I c1 = m + d;
|
|
VECTOR2I c2 = m - d;
|
|
|
|
// Solution gives us 2 centers; we need to pick one:
|
|
switch( m_editState )
|
|
{
|
|
case 1:
|
|
// Keep arc clockwise while drawing i.e. arc angle = 90 deg.
|
|
// it can be 90 or 270 deg depending on the arc center choice (c1 or c2)
|
|
m_arcCenter = c1; // first trial
|
|
|
|
if( GetArcAngle() > ANGLE_180 )
|
|
m_arcCenter = c2;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
case 3:
|
|
// Pick the one of c1, c2 to keep arc <= 180 deg
|
|
m_arcCenter = c1; // first trial
|
|
|
|
if( GetArcAngle() > ANGLE_180 )
|
|
m_arcCenter = c2;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
// Pick the one closer to the mouse position
|
|
m_arcCenter = GetLineLength( c1, aPosition ) < GetLineLength( c2, aPosition ) ? c1 : c2;
|
|
|
|
// keep arc angle <= 180 deg
|
|
if( GetArcAngle() > ANGLE_180 )
|
|
std::swap( m_start, m_end );
|
|
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SHAPE_T::POLY:
|
|
m_poly.Outline( 0 ).SetPoint( m_poly.Outline( 0 ).GetPointCount() - 1, aPosition );
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::endEdit( bool aClosed )
|
|
{
|
|
switch( GetShape() )
|
|
{
|
|
case SHAPE_T::ARC:
|
|
case SHAPE_T::SEGMENT:
|
|
case SHAPE_T::CIRCLE:
|
|
case SHAPE_T::RECT:
|
|
break;
|
|
|
|
case SHAPE_T::POLY:
|
|
{
|
|
SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );
|
|
|
|
// do not include last point twice
|
|
if( poly.GetPointCount() > 2 )
|
|
{
|
|
if( poly.CPoint( poly.GetPointCount() - 2 ) == poly.CLastPoint() )
|
|
{
|
|
poly.SetClosed( aClosed );
|
|
poly.Remove( poly.GetPointCount() - 1 );
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
}
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::SwapShape( EDA_SHAPE* aImage )
|
|
{
|
|
EDA_SHAPE* image = dynamic_cast<EDA_SHAPE*>( aImage );
|
|
assert( image );
|
|
|
|
#define SWAPITEM( x ) std::swap( x, image->x )
|
|
SWAPITEM( m_stroke );
|
|
SWAPITEM( m_start );
|
|
SWAPITEM( m_end );
|
|
SWAPITEM( m_arcCenter );
|
|
SWAPITEM( m_shape );
|
|
SWAPITEM( m_bezierC1 );
|
|
SWAPITEM( m_bezierC2 );
|
|
SWAPITEM( m_bezierPoints );
|
|
SWAPITEM( m_poly );
|
|
SWAPITEM( m_fill );
|
|
SWAPITEM( m_fillColor );
|
|
SWAPITEM( m_editState );
|
|
SWAPITEM( m_endsSwapped );
|
|
#undef SWAPITEM
|
|
}
|
|
|
|
|
|
int EDA_SHAPE::Compare( const EDA_SHAPE* aOther ) const
|
|
{
|
|
#define EPSILON 2 // Should be enough for rounding errors on calculated items
|
|
|
|
#define TEST( a, b ) { if( a != b ) return a - b; }
|
|
#define TEST_E( a, b ) { if( abs( a - b ) > EPSILON ) return a - b; }
|
|
#define TEST_PT( a, b ) { TEST_E( a.x, b.x ); TEST_E( a.y, b.y ); }
|
|
|
|
TEST_PT( m_start, aOther->m_start );
|
|
TEST_PT( m_end, aOther->m_end );
|
|
|
|
TEST( (int) m_shape, (int) aOther->m_shape );
|
|
|
|
if( m_shape == SHAPE_T::ARC )
|
|
{
|
|
TEST_PT( m_arcCenter, aOther->m_arcCenter );
|
|
}
|
|
else if( m_shape == SHAPE_T::BEZIER )
|
|
{
|
|
TEST_PT( m_bezierC1, aOther->m_bezierC1 );
|
|
TEST_PT( m_bezierC2, aOther->m_bezierC2 );
|
|
}
|
|
else if( m_shape == SHAPE_T::POLY )
|
|
{
|
|
TEST( m_poly.TotalVertices(), aOther->m_poly.TotalVertices() );
|
|
}
|
|
|
|
for( size_t ii = 0; ii < m_bezierPoints.size(); ++ii )
|
|
TEST_PT( m_bezierPoints[ii], aOther->m_bezierPoints[ii] );
|
|
|
|
for( int ii = 0; ii < m_poly.TotalVertices(); ++ii )
|
|
TEST_PT( m_poly.CVertex( ii ), aOther->m_poly.CVertex( ii ) );
|
|
|
|
TEST_E( m_stroke.GetWidth(), aOther->m_stroke.GetWidth() );
|
|
TEST( (int) m_stroke.GetPlotStyle(), (int) aOther->m_stroke.GetPlotStyle() );
|
|
TEST( (int) m_fill, (int) aOther->m_fill );
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void EDA_SHAPE::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError,
|
|
ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const
|
|
{
|
|
int width = ignoreLineWidth ? 0 : GetWidth();
|
|
|
|
width += 2 * aClearance;
|
|
|
|
switch( m_shape )
|
|
{
|
|
case SHAPE_T::CIRCLE:
|
|
{
|
|
int r = GetRadius();
|
|
|
|
if( IsFilled() )
|
|
TransformCircleToPolygon( aBuffer, getCenter(), r + width / 2, aError, aErrorLoc );
|
|
else
|
|
TransformRingToPolygon( aBuffer, getCenter(), r, width, aError, aErrorLoc );
|
|
|
|
break;
|
|
}
|
|
|
|
case SHAPE_T::RECT:
|
|
{
|
|
std::vector<VECTOR2I> pts = GetRectCorners();
|
|
|
|
if( IsFilled() || IsAnnotationProxy() )
|
|
{
|
|
aBuffer.NewOutline();
|
|
|
|
for( const VECTOR2I& pt : pts )
|
|
aBuffer.Append( pt );
|
|
}
|
|
|
|
if( width > 0 || !IsFilled() )
|
|
{
|
|
// Add in segments
|
|
TransformOvalToPolygon( aBuffer, pts[0], pts[1], width, aError, aErrorLoc );
|
|
TransformOvalToPolygon( aBuffer, pts[1], pts[2], width, aError, aErrorLoc );
|
|
TransformOvalToPolygon( aBuffer, pts[2], pts[3], width, aError, aErrorLoc );
|
|
TransformOvalToPolygon( aBuffer, pts[3], pts[0], width, aError, aErrorLoc );
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case SHAPE_T::ARC:
|
|
TransformArcToPolygon( aBuffer, GetStart(), GetArcMid(), GetEnd(), width, aError, aErrorLoc );
|
|
break;
|
|
|
|
case SHAPE_T::SEGMENT:
|
|
TransformOvalToPolygon( aBuffer, GetStart(), GetEnd(), width, aError, aErrorLoc );
|
|
break;
|
|
|
|
case SHAPE_T::POLY:
|
|
{
|
|
if( !IsPolyShapeValid() )
|
|
break;
|
|
|
|
// The polygon is expected to be a simple polygon; not self intersecting, no hole.
|
|
EDA_ANGLE orientation = getParentOrientation();
|
|
VECTOR2I offset = getParentPosition();
|
|
|
|
// Build the polygon with the actual position and orientation:
|
|
std::vector<VECTOR2I> poly;
|
|
DupPolyPointsList( poly );
|
|
|
|
for( VECTOR2I& point : poly )
|
|
{
|
|
RotatePoint( point, orientation );
|
|
point += offset;
|
|
}
|
|
|
|
if( IsFilled() )
|
|
{
|
|
aBuffer.NewOutline();
|
|
|
|
for( const VECTOR2I& point : poly )
|
|
aBuffer.Append( point.x, point.y );
|
|
}
|
|
|
|
if( width > 0 || !IsFilled() )
|
|
{
|
|
VECTOR2I pt1( poly[poly.size() - 1] );
|
|
|
|
for( const VECTOR2I& pt2 : poly )
|
|
{
|
|
if( pt2 != pt1 )
|
|
TransformOvalToPolygon( aBuffer, pt1, pt2, width, aError, aErrorLoc );
|
|
|
|
pt1 = pt2;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case SHAPE_T::BEZIER:
|
|
{
|
|
std::vector<VECTOR2I> ctrlPts = { GetStart(), GetBezierC1(), GetBezierC2(), GetEnd() };
|
|
BEZIER_POLY converter( ctrlPts );
|
|
std::vector<VECTOR2I> poly;
|
|
converter.GetPoly( poly, GetWidth() );
|
|
|
|
for( unsigned ii = 1; ii < poly.size(); ii++ )
|
|
TransformOvalToPolygon( aBuffer, poly[ii - 1], poly[ii], width, aError, aErrorLoc );
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
ENUM_TO_WXANY( SHAPE_T )
|
|
ENUM_TO_WXANY( PLOT_DASH_TYPE )
|
|
|
|
|
|
static struct EDA_SHAPE_DESC
|
|
{
|
|
EDA_SHAPE_DESC()
|
|
{
|
|
ENUM_MAP<SHAPE_T>::Instance()
|
|
.Map( SHAPE_T::SEGMENT, _HKI( "Segment" ) )
|
|
.Map( SHAPE_T::RECT, _HKI( "Rectangle" ) )
|
|
.Map( SHAPE_T::ARC, _HKI( "Arc" ) )
|
|
.Map( SHAPE_T::CIRCLE, _HKI( "Circle" ) )
|
|
.Map( SHAPE_T::POLY, _HKI( "Polygon" ) )
|
|
.Map( SHAPE_T::BEZIER, _HKI( "Bezier" ) );
|
|
ENUM_MAP<PLOT_DASH_TYPE>::Instance()
|
|
.Map( PLOT_DASH_TYPE::DEFAULT, _HKI( "Default" ) )
|
|
.Map( PLOT_DASH_TYPE::SOLID, _HKI( "Solid" ) )
|
|
.Map( PLOT_DASH_TYPE::DASH, _HKI( "Dashed" ) )
|
|
.Map( PLOT_DASH_TYPE::DOT, _HKI( "Dotted" ) )
|
|
.Map( PLOT_DASH_TYPE::DASHDOT, _HKI( "Dash-Dot" ) )
|
|
.Map( PLOT_DASH_TYPE::DASHDOTDOT, _HKI( "Dash-Dot-Dot" ) );
|
|
|
|
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
|
|
REGISTER_TYPE( EDA_SHAPE );
|
|
auto shape = new PROPERTY_ENUM<EDA_SHAPE, SHAPE_T>( _HKI( "Shape" ),
|
|
NO_SETTER( EDA_SHAPE, SHAPE_T ), &EDA_SHAPE::GetShape );
|
|
propMgr.AddProperty( shape );
|
|
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start X" ),
|
|
&EDA_SHAPE::SetStartX, &EDA_SHAPE::GetStartX, PROPERTY_DISPLAY::PT_COORD,
|
|
ORIGIN_TRANSFORMS::ABS_X_COORD ) );
|
|
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start Y" ),
|
|
&EDA_SHAPE::SetStartY, &EDA_SHAPE::GetStartY, PROPERTY_DISPLAY::PT_COORD,
|
|
ORIGIN_TRANSFORMS::ABS_Y_COORD ) );
|
|
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End X" ),
|
|
&EDA_SHAPE::SetEndX, &EDA_SHAPE::GetEndX, PROPERTY_DISPLAY::PT_COORD,
|
|
ORIGIN_TRANSFORMS::ABS_X_COORD ) );
|
|
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End Y" ),
|
|
&EDA_SHAPE::SetEndY, &EDA_SHAPE::GetEndY, PROPERTY_DISPLAY::PT_COORD,
|
|
ORIGIN_TRANSFORMS::ABS_Y_COORD ) );
|
|
// TODO: m_arcCenter, m_bezierC1, m_bezierC2, m_poly
|
|
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Line Width" ),
|
|
&EDA_SHAPE::SetWidth, &EDA_SHAPE::GetWidth, PROPERTY_DISPLAY::PT_SIZE ) );
|
|
|
|
auto angle = new PROPERTY<EDA_SHAPE, EDA_ANGLE>( _HKI( "Angle" ),
|
|
NO_SETTER( EDA_SHAPE, EDA_ANGLE ), &EDA_SHAPE::GetArcAngle,
|
|
PROPERTY_DISPLAY::PT_DECIDEGREE );
|
|
angle->SetAvailableFunc(
|
|
[=]( INSPECTABLE* aItem ) -> bool
|
|
{
|
|
return aItem->Get<SHAPE_T>( shape ) == SHAPE_T::ARC;
|
|
} );
|
|
propMgr.AddProperty( angle );
|
|
}
|
|
} _EDA_SHAPE_DESC;
|